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Abstract: This paper proposes a new privacy-preserving scheme for estimating the size of the intersection of two
given secret subsets. Given the inner product of two Bloom filters (BFs) of the given sets, the proposed scheme applies
Bayesian estimation under an assumption of beta distribution for an a priori probability of the size to be estimated.
The BF retains the communication complexity and the Bayesian estimation improves the estimation accuracy. A pos-
sible application of the proposed protocol is an epidemiological datasets regarding two attributes, Helicobacter pylori
infection and stomach cancer. Assuming information related to Helicobacter Pylori infection and stomach cancer are
separately collected, the protocol demonstrates that a χ2-test can be performed without disclosing the contents of the
two confidential databases.
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1. Introduction

With the rapid development of database systems and online
services, large amounts of information are being collected and
accumulated from various data sources independently and simul-
taneously. Privacy-preserving data mining (PPDM) has been at-
tracting significant attention as a technology that could enable us
to perform data analysis over multiple databases containing sen-
sitive information without violating subjects’ privacy.

In this paper, we investigate the problem of set intersection car-
dinality. Given two private sets, the goal of this problem is to eval-
uate the cardinality of the intersection without disclosing the sets
mutually. Set intersection cardinality has been extensively stud-
ied as a building block of PPDM, including association rule min-
ing [19], model and attribute selection [18], and other aspects [4].
Our major application of this problem is epidemiological analy-
sis, including privacy-preserving cohort studies. We wish to per-
form cohort studies over multiple independently collected medi-
cal databases, which are not allowed to disclose identifying infor-
mation about patients.

Consider two databases developed independently by two orga-
nizations. One organization collects individual medical informa-
tion, including patient ID, patient name, patient address, presence
or absence of disease 1, disease 2, and so on. The other organi-
zation collects individual genome information from research par-
ticipants; including participant ID, participant name, participant
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address, presence or absence of genome type 1, genome type 2,
and so on. The objective of a cohort study may be to investi-
gate the association between the outbreak of a specific disease
and genomes. For this analysis, the analyst makes use of four-
cell contingency tables; each cell counts the number of patients
who have (do not have) a specific disease and have (do not have)
a specific genome type. If both tables are private, the set intersec-
tion cardinality may be used for evaluating of the count of each
cell without sharing database content. In this study, we consider
the following four requirements for practical situations.
Requirement 1. The time and communication complexity

should be linear with respect to the number of records n.
This is because statistical analysis, including cohort studies,
usually treats databases with a large number of records.

Requirement 2. The time and communication complexity
should be independent of the size of the ID space. In the
use case described above, both organizations independently
collect information from individuals. Thus, unique IDs are
not given to records. Instead, the protocol must generate a
unique ID for each record with the combination of individual
attributes, such as the name and address. Because the space
required for the combination of such user attributes is often
much larger than the number of individuals, this requirement
is important.

Requirement 3. The protocol should be designed considering
the asymmetry of computational capabilities of organiza-
tions. Assume that a research institute that holds genome
information provides epidemiological analysis services upon
request to hospitals that hold medical information. In such
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a case, it is expected that the computational capabilities of
the hospitals are poor. Therefore, a reasonable solution can
be the outsourcing of computation; the research institute of-
fers servers with high computational power and the hospital
outsources most of the computation required for the analy-
sis to the research institute. This example indicates that the
protocol of set intersection cardinality should be designed
considering the asymmetry of computational capabilities.

Requirement 4. The outputs of the protocol must be random
shares. This requirement implicitly suggests that the set in-
tersection cardinality may be used as a part of a larger-scale
protocol. If the outputs of the protocol are random shares,
these must be seamlessly used for inputs to other privacy-
preserving protocols.

In this paper, we propose a set intersection cardinality protocol
that satisfies these requirements.

Related Work
Let S A and S B be private inputs of the set intersection cardinal-

ity. Let nA and nB be the cardinalities of S A and S B, respectively.
Agrawal et al. [1] presented a set intersection cardinality proto-

col using commutative encryption under DDH (Decisional Diffie-
Hellman) assumption. The time complexity of this protocol is
O(nA + nB); this is linear in the size of the databases and is in-
dependent of the size of the ID space. However, this protocol
assumes that the two parties have nearly the same computation
power. Furthermore, the protocol cannot output random shares.
De Cristofaro and Tsudik [5] introduced an extension of Ref. [1].
It also requires O(n) computation by both parties.

Freedman et al. [7] proposed a set intersection protocol using
oblivious polynomial evaluation. This protocol can be converted
to the set intersection cardinality with a slight modification, and
achieves O(nB+log log nA) time/communication complexity. Fur-
thermore, the time complexity is independent of the ID space size
and random shares can be output. This protocol also assumes that
both parties have equal computational power.

All the above protocols guarantee exact outputs. Kantarcioglu
et al. [11] approach the set intersection cardinality differently.
Their protocol maps the input set onto a binary vector using a
Bloom filter (BF) [2], and the set intersection cardinality is statis-
tically estimated from the scalar product of the two binary vec-
tors. With this approach, the results become approximations, al-
though the computation cost is expected to be greatly reduced.
The dimensionality of the vector used in this protocol is equal to
the ID space size; this does not meet Requirement 2. In Ref. [11],
a technique to shorten large IDs using hash functions was used
with their protocol. As shown later by our theoretical analysis,
given an error rate ε, the optimal range of hash functions for n

elements is O(n2). This indicates that such Naive ID generation
can be too inefficient for practical use.

Camenisch and Zaverucha [3] has introduced the certified set
intersection cardinality problem. This protocol considers asym-
metry in the security assumptions of the parties, but does not con-
sider asymmetry in their computational capability.

Ravikumar et al. used the TF-IDF measures to estimate the
scalar product in Ref. [17]. As for epidemiological study, Lu et al.

studied the contingency tables in Ref. [13].
Thus, to our knowledge, no set intersection cardinality proto-

col satisfies the four requirements above, which should be met
for practical privacy-preserving data analysis, especially for the
outsourcing models.

Our Contribution
In this manuscript, we present a protocol that satisfies the four

requirements. Considering the first and second requirement, the
sets are independently mapped onto BFs, and then the set inter-
section cardinality is statistically estimated from the scalar prod-
uct of the two binary vectors representing the BFs.

As discussed later, the size of the BF must be O(n2) to control
the false positive rate in Ref. [11]; this does not meet Require-
ment 2. Our protocol therefore uses a number of BFs of size
O(n). The set intersection cardinality is obtained by iteratively
applying Bayesian estimation to the scalar products of the BFs.

In the proposed protocol, the scalar product protocol is used as
a building block. Modulo exponentiation is performed only by
one party and this fits well with the outsourcing model (Require-
ment 3). In addition, the outputs can naturally be made random
shares (Requirement 4).

We demonstrate our protocol with an epidemiological datasets
regarding two attributes, Helicobacter pylori infection and stom-
ach cancer. Assuming information related to Helicobacter Pylori
infection and stomach cancer are separately collected, we demon-
strate that a χ2-test can be performed without disclosing the con-
tents of the two databases.

2. Preliminary

2.1 Bloom Filter
A BF is a simple space-efficient data structure for representing

a set to support membership queries [2]. Recently, BFs have been
used not only for database applications but also for network prob-
lems including detecting malicious addresses, packet routing, and
the measurement of traffic statistics.

A BF for representing a set S = {a1, . . . , an} of n elements
is an array of m bits, initially all set to 0. The BF uses k in-
dependent hash functions H1, . . . ,Hk such that Hi : {0, 1}∗ →
{1, . . . ,m}. The hash functions map each element in the map to a
random number uniformly chosen from {1, . . . ,m}. Let B(S ) be
a set representing a BF defined by B(S ) =

⋃
a∈S B(a) such that

B(a) = {H1(a), . . . ,Hk(a)}. Now let b be an m-dimensional vec-
tor, (b1, . . . , bm), which is an alternative representation of the BF,

defined by bi =

⎧⎪⎪⎨⎪⎪⎩
1 if i ∈ B(S ),
0 if i � B(S ),

for i = 1, . . . ,m. For ex-

ample, the hash functions that map an element a as H1(a) = 2,
H2(a) = 7 characterize a BF with m = 8, B(a) = {2, 7}. Alter-
natively, b(a) = (0, 1, 0, 0, 0, 0, 1, 0). We can use either the set
or vector representation of BF, depending on the cryptographic
building blocks used. Note the following relationship between
the set and vector representations, b(S 1) ·b(S 2) = |B(S 1)∩B(S 2)|.

To test if a is an element of set S , we can verify that

∀i = 1, . . . , k Hi(a) ∈ B(S ), (1)

which holds if a ∈ S . However, it also holds, with a small prob-
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ability, even if a � S . That is, BFs suffer from false positives.
According to Ref. [2], after all the elements of S are hashed into
the BF, under an assumption that hash functions are perfectly ran-
dom [2], the probability that element i does not belong to B(S ),

i.e., that the i-th bit of b(S ) is still 0, is p =
(
1 − 1

m

)kn ≈ e−kn/m.

We therefore have a probability of false positives given by p′ =(
1 − (1 − 1

m )kn
)k ≈

(
1 − e−kn/m

)k
. If k is sufficiently small for

given m and n, Equation (1) is likely to hold only for the ele-
ment of S . Conversely, with too large a value for k, the BF is
mostly occupied by 1 values. In Ref. [2], [6], the optimal BF was
found for k∗ = ln 2 · (m/n), which minimized the false-positive
probability.

2.2 Cryptographic Primitives
2.2.1 Paillier Cryptosystem

Additively homomorphic public-key schemes – Paillier [16] or
the modified ElGamal cryptosystems are both widely used. Both
allow for key generation and decryption to be distributed amongst
partially trusted authorities sharing private key. A cryptosystem E

is said to satisfy the additively homomorphic property if: taking
messages M1 and M2,

E[M1]E[M2] = E[M1 + M2],

E[M1]M2 = E[M1M2].

The Paillier cryptosystem consists of three stages: key genera-
tion, encryption, and decryption.
• Key generation: Let n be pq, a product of two large prime

numbers p and q, and g ∈ Z∗
n2 be a generator whose or-

der divides n. Compute λ = LCM(p − 1, q − 1) and
μ = (L(gλ (mod n2)))−1 (mod n), where L is defined by
L(u) = (u− 1)/n. The public key is (n, g) and the private key
is (λ, μ).

• Encryption: A ciphertext c of M is defined with randomly
chosen r ∈ Z∗

n2 as:

c = E(M) = gMrn (mod n2).

• Decryption: Given ciphertext c, plaintext M is computed as
M = L(cλ (mod n2)) · μ.

Paillier is more efficient than ElGamal with respect to decryp-
tion overhead, as the latter requires a sort of brute force technique
(in the limited domain) for decrypting candidates of messages.
We implement the Paillier cryptosystem for performance evalu-
ation since the single computational cost for encryption is more
significant for our proposed protocol.
2.2.2 Secure Scalar Product.

The scalar product of two vectors is performed securely by us-
ing a public-key encryption scheme in Algorithm 1.
2.2.3 Secure Function Evaluation (SFE).

We use the generic two-party secure-function evaluation sys-
tem, Fairplay [14] Fairplay is a compiler for a high-level proce-
dural definition language, CFDL, producing a one-pass Boolean
circuit in a language called SHDL. With Fairplay, we can perform
secure functions without revealing their inputs.
2.2.4 Security Model

We assume that the parties are honest-but-curious, which

Algorithm 1 Secure Scalar Product
Input: Alice has an n-dimensional vector x = (x1, . . . , xn). Bob has an n-

dimensional vector y = (y1, . . . , yn).

Output: Alice has sA and Bob has sB such that sA + sB = x · y.
( 1 ) Alice generates a key pair for a homomorphic public-key encryption

scheme and sends the public key to Bob.

( 2 ) Alice sends to Bob n ciphertexts E(x1), . . . , E(xn), encrypted with her

public key.

( 3 ) Bob chooses sB at random, computes c = E(x1)y1 · · · E(xn)yn/E(sB) and

sends c to Alice.

( 4 ) Alice uses her secret key to decrypt c to obtain sA = D(c) = x1y1 + · · ·+
xnyn − sB

is known as semi-honest model, with parties that own private
datasets following protocols properly but trying to learn addi-
tional information about the datasets from received messages.

The privacy of our proposed idea is defined in semi-hones
model as follows.

Definition 2.1 Let A and C be datasets (subsets) owned by
two parties, Alice and Bob. A secure protocol tests whether the
size of set intersection |A∩C| over the two datasets is greater than
a threshold without revealing A, B and A ∩C in the semi-honest-
model sense.

3. Difficulties in ID-less Datasets

3.1 Problem Definition
We are considering the problem of a two-party protocol that

can evaluate the size of the intersection of two sets without re-
vealing the sets themselves.

Let A and B be parties owing subsets S A and S B, respectively.
For an agreed threshold t, they each wish to know if

X = |S A∩B| = |S A ∩ S B| ≥ t (2)

is true, without revealing S A or S B to the other party. Here, X is
a random variable describing the size of the intersection S A∩B.

Note that we are not interested in learning about the intersec-
tion, itself but are only interested in evaluating its size because the
size is often useful in many privacy-preserving applications. For
example, an epidemic study might test if the difference between
two subsets is statistically significant. The difference of |XA∩B|
and t may even be confidential in some applications.

3.2 Naı̈ve ID Generation
Consider a dataset of n elements with multiple attributes, such

as name, sex, age and address, but with no unique identity be-
ing assigned. Instead, the elements are uniquely specified by
attributes, e.g., name and birthday. Let A be a set of attributes
A = {a1, . . . , an}.

The simplest way to generate a pseudo identity is to use a hash
function h : {0, 1}∗ → {1, . . . , �}. Using this hash function, we as-
sign h(ai) to the i-th element. For efficiency reasons, we assume
the range is sufficiently large that we can neglect the occurrence
of a collision such that h(ai) = h(a j) for some i � j. Letting hA

be the set of all pseudo identities, defined as hA = {h(ai) | ai ∈ A},
we can see any collision of identities by testing whether |hA| = n.

If the size � of the ID set increases, collisions can be avoided,
but the computational cost will accordingly increase with �.
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Fig. 1 Unique hash values, |hA | with respect to the range � (Experimental
result using DBLP).

Clearly, � ≥ n, but finding the optimal size is not trivial. To solve
the tradeoff between accuracy and performance reduction, let us
assume we have an optimal � that is sufficiently large to uniquely
determine the given set of n elements.

This problem is equivalent to the problem known as “birthday
paradox,” whereby, among a set of n randomly chosen people,
there is a probability that some pair of them has the same birth-
day. When identities (birthdays) are chosen with a uniform prob-
ability of 1/�, the probability that all n identities are unique is
given by

n−1∏
j=1

(
1 − j
�

)
≈

n−1∏
j=1

e− j/� = e−n(n−1)/2� ≈ e−n2/2�.

Therefore, given the probability ε with which n hash values are
unique, we have

n2

2�
= ln ε−1, (3)

from which follows the solution of our problem. The optimal
range of hash functions for n elements is given as � = n2/2 ln ε−1,
for which n elements will have distinct identities with a probabil-
ity of ε.

For example, a dataset of n = 7,000 users will be uniquely de-
termined by pseudo identities generated by a hash function such
that � = 4.7 × 108, with a probability of 95%.

Figure 1 shows the unique pseudo identities for n = 7,500
names in the DBLP*1, a public author dataset, with respect to the
range � of the hash function used to generate the identities. It in-
dicates that � = 4 × 106 satisfies to generate unique identities for
h(S ) with ε < 1, and n = 7,500. Therefore, this naı̈ve approach
is nearly infeasible because of the large computational overhead
occurred by the cryptographic protocols. For example, the se-
cure scalar product [8] for evaluating the set intersection of the
dataset requires n2 ciphertexts and n2 modular exponentiations.
This clearly does not satisfy Requirement 2, shown in Section 1.

3.3 Kantarcioglu’s Scheme
In Ref. [11], Kantarcioglu, Nix and Vaidya proposed the fol-

lowing cryptographic protocol using BF in an approximate algo-
rithm for the threshold scalar (dot) product.

*1 DBLP, A Citation Network Dataset, V1, (http://arnetminer.org/citation).

Let Y be a random variable representing the number of match-
ing bits in the two BFs of S A and S B. That is, Y is defined by
Y = |B(S A) ∩ B(S B)|. There is a positive correlation between X,
defined by true size of intersection S A∩B, and Y , which enables us
to predict X from Y which can be obtained from BFs in a secure
way.

Based on the properties of BFs [2], Eq. (2) is equivalent to

ZA + ZB + ZAB ≥ ZAZB
1
m

(
1 − 1

m

)−kt

, (4)

where ZA (ZB) is the number of 0s in B(S A) (B(S B)), respectively.
ZAB is the number of matching 0s in the two BFs of S A and S B.
That is, ZAB = m − |B(S A) ∩ B(S B)| = m − Y . To evaluate the
inequality privately, Kantarcioglu et al. performs a secure pro-
tocol for the scalar product of two vectors [8] to obtain u1 and
u2 such that b(S A) · b(S B) = m − ZAB = u1 + u2 and a secure
protocol for the multiplication of two integers ZA and ZB to ob-
tain v1 and v2 such that v1 + v2 = (1 − 1/m)−kt/mZAZB. Finally,
they use SFE for the shared comparison of two integers to test if
(ZA + u1 − m) + (ZB + u2) ≥ (v1 + v2).

According to their experimental results [11], their approxima-
tion algorithm using BFs with m = 3,000, k = 2, and n = 20,000
ran in 4 minutes, whereas an exact version required 27 minutes.

3.4 Difficulties in ID-less Datasets
In Ref. [11], Kantarcioglu et al. claim that as long as, m � n,

their method would be much faster than the typical implementa-
tion of a secure scalar (dot) product protocol*2. Their experimen-
tal results show that the accuracy of approximation increases as
m increases*3. We will show that these properties do not hold in
our target, ID-less datasets model, where the two datasets have
no consistent identities and hence n elements are specified with
some unique attribute(s).
( 1 ) (Accuracy) The size of intersection is approximated in their

scheme based on the expected value of probability of com-
mon bits in BFs. The accuracy is expected to be improved as
m increases. However, this is not true in large m because that
the vector becomes too sparse. To be adaptively dense vec-
tor, we must increase the number of hash functions, k. This
is not trivial. In Ref. [11], the experimental behavior with
some parameters were shown and no guarantee in accuracy.

( 2 ) (Performance) The size m of BF increases up to n2 in ID-
less datasets. As we discussed in Section 3.2, the range of
hash function should be as large as n2 in order to minimize
the probability to fail to uniquely identify elements. This is
too large to find the intersection since some schemes running
in O(n) complexity in private set intersection are known, e.g.,
Refs. [1], [5].

( 3 ) (Overhead) Their scheme requires the secure multiplication
as well as scalar product. It is not necessary in private set
intersection.

In later section, we will present our scheme which overcomes

*2 In Section 2.2 (Computation and Communicational cost). In Section 3,
they assume that the vector of 20,000 elements, whose density was 10%,
that is, the vector contains 2,000 1’s (= n), and it performs 20,000-
dimensional vector’s scalar product for exact match and m = 3,000 BF
for their scheme.

*3 In Section 3.1, Fig. 1 (b).
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Table 1 Comparison between Ref. [11] and ours.

item Ref. [11] Proposed

approximation Eq. (4) Eqs. (8), (7)
priori distribution – Beta distribution

BF size (m) large (n2) small (n/ ln 2)
accuracy improved as increasing

m
improved with
Bayesian estimation
from s tests

the above limitations. Table 1 gives a summary of comparison
between the scheme in Ref. [11] and proposed scheme.

4. Proposed Scheme

4.1 Probability Distribution of Matching Bits in BFs
Suppose that given S A∩B = S A ∩ S B, random variable X of

the cardinality of S A∩B, and instance x = X, we wish to es-
timate the number of matching 1s bits in their two BFs, i.e.,
y = |B(S A) ∩ B(S B)|. The quantity y is equal to the number of
1s values in the conjunction of the two BF vectors. This subsec-
tion presents the mathematical properties of BFs, which will be
used to estimate X in the subsequent subsection.

An element a in S A ∪ S B belongs to either (1) S A∩B or (2)
S A ∪ S B − S A∩B. The case (1) always ensures that B({a}) ⊂
B(S A) ∩ B(S B). Any element a in S A yields 1s bits at the ex-
actly same positions specified by b in S B. While, in the case (2),
1s bits is set only if Hi(a) = Hj(b) arises for some i, j ≤ m, a ∈ S A

and not in S B and b ∈ S B and not in S A such that a � b. In other
words, the case (2) happens by false positive. Since cases (1) and
(2) are mutually exclusive events, we computes each conditional
probability as follows.

Case (1): The probability that a certain bit in the conjunction
of BFs is 0 after k random bits are set to 1 for all x element in
S A ∩ S B is qX = (1 − 1

m )kx.

Case (2): Suppose an element a that belongs to S A and not to
S B can have the same hash value Hi(a) = Hj(b) as some element
b � a in S B and not in S A. The probability that a certain bit is
0 in the BF for a in S A − S A∩B is qA = (1 − 1

m )k(nA−x). Similarly,
the BF of an element in S B − S A∩B having a certain bit being 0
has a probability of qB = (1 − 1/m)(nB−x)k. Therefore, the prob-
ability of a certain bit in the BF for S A ∪ S B − S A∩B being 1 is
given by the product of the compliment of each event, namely
(1 − qA)(1 − qB) = 1 − qA − qB + qAqB.

Because the conjunction of BF has 1 for a certain zth bit by
being either an element of S A∩B or S A ∪ S B − S A∩B, we have the
probability θ for a bit being 1 as the disjunction of the two events,
namely,

(1) Hi(a) = z for some a ∈ S A ∩ S B or,
(2) Hi(a) = Hj(b) = z for some a ∈ S A − S A ∩ S B,
b ∈ S B − S A ∩ S B,

equivalently,
not not (1) Hi(a) � z for all a ∈ S A ∩ S B and
not (2) Hi(a) � z for all a ∈ S A − S A ∩ S B, and
Hj(b) � z for all b ∈ S B − S A ∩ S B.

Therefore, we have the probability

θ = 1 − qX(1 − (1 − qA)(1 − qB))

= 1 −
(
1 − 1

m

)knA

−
(
1 − 1

m

)knB

+

(
1 − 1

m

)k(nA+nB−x)

. (5)

Fig. 2 Probability θ of a certain bit being 1 in the conjunction of two BFs
with respect to x = |S A ∩ S B|.

Fig. 3 Probability distribution of Y , the number of 1s bit in the BF for
Pr(Y |X = 1) and Pr(Y |X = 4).

Consequently, the conditional probability of Y = |B(S A)∧ B(S B)|
being y, given x = |S A∩S B|, is given by the binomial distribution
B(m, θ), of m independent binary events with success probability
θ. That is,

Pr(Y = y|X = x) =

(
m
y

)
θy(1 − θ)m−y. (6)

In a numerical example, consider two sets with nA = 10 and
nB = 8, whose BFs have k = 3, m = 40, qA = 0.47, and qB = 0.54.
The conjunction of the BFs has 1s with a probability θ = 0.33 for
x = 4. Figure 2 shows the probability θ with respect to x. Note
that θ is not 0 even for x = 0 because a bit might be set to 1
by a false positive. Note also that θ is monotone and onto map-
ping {0, . . . , n} → [0, 1], which makes the inverse mapping θ−1

possible.
Figure 3 shows the probability distribution of Pr(Y |X), which

is the conditional probability of the number of matching BF bits
Y given the size of the intersection X. When X = 4, the number
of matching bits in the BFs is distributed from 5 to 20 with a peak
of 13.

4.2 Bayesian Estimation of X
Given known parameter values and Pr(X|Y), we wish to iden-

tify the posterior distribution Pr(Y |X) using Bayes’ rule.
One possible solution is an approximation based on a the

likelihood value from a single observation, as described by
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Fig. 4 Posterior probability distribution Pr(θ|Y) based on the beta distribu-
tion as a conjugate prior distribution.

Kantarcioglu et al. [11]. Their scheme suffers from the complex-
ity of O(m). That is, a secure scalar product will require m cipher-
texts, which is greater than n. Moreover, the accuracy achieved is
inadequate.

Instead, we will use recursive Bayesian estimation of several
small BFs. That is more efficient because each individual BF
used to perform the secure scalar product between two BFs will
be smaller. Moreover, the iteration over multiple BFs improves
the accuracy of the estimation. Given the properties of beta dis-
tribution, the iteration process can be performed with lightweight
overheads.

Using the conjugate prior distribution of Eq. (6), we assume a
beta distribution Be(α, β), which gives

Pr(θ) =
θα−1(1 − θ)β−1∫ 1

0
θα−1(1 − θ)β−1dy

.

The initial prior distribution is given by Be(1, 1), which yields a
uniform distribution Pr(θ) = 1. Using Bayes’ theorem, we obtain
the posterior probability of θ given y as

Pr(θ|y) = Pr(θ)Pr(y|θ)∫
Pr(θ)Pr(y|θ)dθ

∝ Pr(θ)Pr(x|θ) ∝ θα−1+y(1 − θ)β−1+m−y,

which results again in a beta distribution Be(α′, β′) with new pa-
rameters as

α′ = α + y,

β′ = β + m − y
For example, consider a posterior distribution Pr(θ|Y) based on

a BF with m = 40, for Y = 4, and 8, as shown in Fig. 4.
Helicobacter Pylori infection is considered to be an event that

occurs to each individual independently. Modeling such a situ-
ation with the binomial distribution is considered to be reason-
able; beta distribution, the natural conjugate prior distribution of
the binomial distribution, is used as the prior distribution in our
protocol mainly due to its mathematical convenience. The initial
prior was set to the non-informative uniform distribution in the
experiments. Nonetheless, it is difficult to exclude the subjectiv-
ity from the settings of the prior distributions, and the obtained
experimental results need to be carefully examined.

Fig. 5 Distribution of the variance of θ̂, Var[θ], with respect to m, the size
of the BF, for n = 10, k = 3, and y = 14.

The mean of the beta distribution is denoted by E[θ] = α/(α +
β). We can therefore estimate θ̂ when the BFs of two sets have
y matching bits as follows, θ̂ = α′

α′+β′ =
1+y
2+m . After estimating θ̂,

the size of the intersection is given by the inverse of Eq. (5), a
mapping θ−1, as

x̂ = nA + nB − 1
k

log1− 1
m

⎛⎜⎜⎜⎜⎜⎝θ̂ − 1 +

(
1 − 1

m

)knB

+

(
1 − 1

m

)knA
⎞⎟⎟⎟⎟⎟⎠ .

(7)

The inverse mapping can be evaluated locally in the final stage of
privacy preservation (without encryption). We are not concerned
that if Eq. (7) might appear complicated to evaluate.

4.3 “Bootstrap” of BFs
To improve the accuracy, there are two approaches.

(1) Enlarge the size of BF, m, and the estimate θ̂,*4

(2) Estimate θ̂ from multiple observations of Y1, Y2, . . . ,Ys.
Using a BF with more bits m could decrease the false posi-

tives in the membership test with the cost increasing as m. It is of
interest that the value of m does not play a significant role in esti-
mating of the intersection size, as we had expected. We will now
show the mathematical properties that explain this observation.
4.3.1 (1) Variance of the beta Distribution for a Large BF

According to the known variance of the beta distribution
Var[θ] = αβ/((α+β)2(α+β+1)), we illustrate the change of vari-
ance with respect to m in Fig. 5. Since the variance determines the
standard deviation, which provides a confidence interval for the
estimation, we can predict the accuracy via the reduction in vari-
ance. Figure 5 shows that the variance of θ̂ decreases slightly as
m increases. However, the reduction in variance is not significant,
given the increased cost of the required ciphertexts. For example,
a BF with m = 100 requires 10 times more ciphertexts than that
for an element in S with n = |S | = 10.
4.3.2 (2) Variance from “Bootstrap” s Small BFs

Let y1, y2, . . . , ys be the sequence of matching bits in s indepen-
dent BFs for S A and S B. Recursive Bayesian estimation based on
the sequence gives the posterior probability Pr(θ|y1, . . . , ys) for
the beta distribution Be(α′, β′) defined by

*4 We do not consider the number of hash functions k because there are
some constraints between m and k, such as kn < m and k = (ln 2)m/n for
minimizing false positives.
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Fig. 6 Distribution of the variance of θ̂, Var[θ], estimated from s indepen-
dent BFs of the same size.

α′ = α +
s∑

i=1

yi, β′ = β −
s∑

i=1

yi + sm.

The estimation of θ̂ is provided from the mean of the beta distri-
bution, namely

θ̂ =
α +

∑s
i=1 yi

α + β + sm
(8)

Figure 6 illustrates the reduction in the variance of θ̂. It implies
that the bootstrapping reduces the confidence interval for the es-
timation of θ significantly with increasing s.

4.4 Proposed Scheme
We give the procedure for estimating the size of the intersection

without revealing each set in Algorithm 2. At Step 1, both parties
A and B compute BFs for their n-element sets S A and S B with
parameters, size of BF m and the number of hash function k such
that k = (m/n) ln 2. For tradeoff between efficiency and accuracy,
k = 1 and m = n/ ln 2 can be used. Since this process can be per-
formed locally and the hash function performs very efficiently,
we consider the overhead is negligible. Both parties participate
in the secure scalar product protocol (Algorithm 1), which is the
most significant part in computation. The scalar product of two
BFs, y, gives the number of common 1’s bit in BFs, which can
be divided into two integers, making the SFE possible to approx-
imate θ̂ in Eq. (8) without revealing any yi. Note that the output
of Step 2 are random shares, si,A and si,B, which satisfy Require-
ment 4. Step 5 is performed in public (or locally) after θ̂ reaches
at convergence.

The flow in improving accuracy through Bayesian estimation
is illustrated in Fig. 7. Instead of extend the size of BF, we per-
form the secure scalar product protocols multiple times to get the
sequence of y1, y2, . . . , ys, which will be used to predict the θ̂ in
Bayesian estimation. Both parties iterate the test until the ex-
pected accuracy is given. The confidence interval is given by the
standard deviation of estimated value.

4.5 Security
The following theorem shows the security of Algorithm 2.
Theorem 4.1 Suppose A and B behaves in the semi-honest

model. Let S A and S B be inputs for Bloom Filter Bootstrap.

Fig. 7 Bootstrap of Bloom Filters.

Algorithm 2 Bloom Filter Bootstrap BFB (S A, S B)
Input: Alice has subset S A of n elements. Bob also has S B. Both know m

(size of the BF), k (number of hash functions) and a threshold.

Output: x̂ (estimate of the size of the intersection of S A and S B).

( 1 ) A computes BF b(S A) for S A and B computes BF b(S B).

( 2 ) A and B jointly perform Algorithm 1 to obtain si,A and si,B, respectively,

such that yi = si,A + si,B for i = 1, . . . , s.

( 3 ) A sends s1,A, . . . , ss,A to SFE. B sends s1,B, . . . , ss,A to the SFE and make

to evaulate if the right-hand side of Eq. (8) is greater than a given thresh-

old. If it does not hold, stop (accept the null hypotheis).

( 4 ) A and B reveal
∑s

i si,A and
∑s

i si,B and estimate θ̂ using Eq. (8).

( 5 ) Either A or B identifies x̂ using Eq. (7).

Then, the protocol Bloom Filter Bootstrap is secure in the sense
of Definition 2.1.
Sketch of the proof. Since step 2 is multiple invocation of the
scalar product protocol, the security is reduced to that of the scalar
product protocol. Since step 3 is invocation of SFE, the security
is reduced to that of SFE. By following the security proof in
Refs. [8] and [14], the security of Bloom Filter Bootstrap is im-
mediately proved. Note that computation in step 5 is performed
by A without communication with B, the security is not compro-
mised by execution of these steps.

4.6 Complexity
We examine the complexities of our proposed scheme in terms

of computation and communication costs. When these quantities
are almost identical, we unify these by simply n. Protocols are
compared in Table 2. In comparison with Ref. [11], we assume
the ID-less model, where the size of BF can increase up to n2.

Table 2 shows that the computational cost for A is linear to
ms, while the cost for B is 0 (no modular exponentiation is re-
quired). Hence, it is preferable for outsourcing solution to our
Requirement 3, where hospitals do not have powerful computa-
tional resources and become B in our protocol.

The protocols are classified into three groups. The first group is
the scheme based on Oblivious Polynomial Evaluation. Scheme
FNP [7] is designed to reveal not only the size of intersection but
also the elements in the intersection. We show the performance
for comparison purpose.

The second class, consisting of AES [1] and CT [5], is classi-
fied as Oblivious Pseudo-Random Functions (OPRF). AES de-
pends on the commutative one-way function, while CT uses the
RSA (Fig. 3 in Ref. [5]) and the blind RSA (Fig. 4 in Ref. [5]) en-
cryptions. The privacy of scheme (Fig. 3 in Ref. [5]) is proved
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Table 2 Complexity Comparison of protocols.

FNP [7] AES [1] CT [5] KNV [11] Proposed

primitives OPE commutative enc. (blind) RSA SSP w. BF SSP w. BF
comp. at A nA log log nB nA + nB 2nA + 1 m ms

BF size – – – n2 ≥ m > kn m = n/ ln 2
comp. at B nB + nA log log nB 2nA + nB nA + nB + 1 1 1
complexity O(nA log log nB) O(n) O(n) O(n2) O(n)
comm. cost nA + nB nA + nB 2nA + nB m + 1 ms + 1

OPE (Oblivious Polynomial Evaluation), SSP (Secure Scalar Product)

as the view of honest-but-curious party is indistinguishable un-
der the One-More Gap Diffie-Hellman assumption in the random
oracle model.

The last class is based on BF and Secure Scalar Product
schemes. KNV [11] uses a single BF with large size, while ours
iterates s independent BFs with small size. The sizes are shown
in Table.

5. Accuracy Evaluation

5.1 Simulation with DBLP dataset
We evaluate the accuracy of the proposed scheme using a pub-

lic dataset of author names, DBLP.
Four pairs of datasets S A and S B with nA = nB = 100 were

chosen from DBLP with the intersection sizes x = 20, 40, 60, 80.
Table 3 shows the experimental results for the estimation of x,
for x = 20, 40, 60, and 80, where we used a BF with of size
m = 400, a number of hash functions k = 3, and iterated the
estimation s times. The similar results for various BF sizes are
given in Table 4. The results show that our scheme estimates the
intersection within an error of ±1. The numbers of matching bits
in the BFs, Y , are distributed according to the binominal distribu-
tion, as shown in Fig. 13. Note that all BFs estimate a size of the
intersection close to the actual size of 40, but the differences are
unstable.

5.2 Optimal BF design
The accuracy of estimation depends on the size of BF, m, and

the number of hash function, k, and the iteration of testing, s.
In order to clarify the strategy for optimal accuracy, we examine
the Mean Absolute Error (MAE) with respect to m and k. Fig-
ure 8 shows MAE in terms of m from 40 through 280, where
nA = nB = 100, x = 20, k = 1 and s = 20. Figure 9 shows MAE
with respect to k = 1, . . . , 6 where m = 200. The MAE decreases
as m increases, while the computational/communicational over-
head increases accordingly. On the other hand, the increase of k

does not reduce MAE.
A possible reason for the source of the error might be the re-

striction of m and k. As we discussed in Section 4.3, the optimal
size for the BF is not trivial. We therefore suggest choosing k = 1
first and then determining a near-optimal BF size by

m = kn/ ln 2 = 1 · 100/ ln 2 = 144.26.

Since large m increases the computational cost at secure scalar
product, we conclude minimize k, i.e., k = 1 and optimize
m = n/ ln 2.

The distribution of the estimation for s = 10, 30, and 100 is
shown in Fig. 14. As s increases, the distribution approaches a

Table 3 Results of estimating X for various intersection sizes, x, for the
dataset (nA = nB = 100, m = 400, k = 3).

x 20 40 60 80
E[Y] 125.24 141.45 160.98 184.11
σ(Y) 6.78 5.92 5.34 5.15
E(θ) 0.31 0.35 0.40 0.46

x̂ 19.523 38.869 58.969 79.411

Table 4 Results of estimating X for various BF sizes, m for the dataset
(nA = nB = 100, x = 40).

m 200 400 600 800
k 1 3 4 6

E[Y] 46.62 141.45 189.64 283.66
σ(Y) 3.146 5.923 6.436 7.488
E(θ) 0.24 0.35 0.32 0.35

x̂ 39.490 38.869 39.604 39.227

Fig. 8 Mean Absolute Error (MAE) with respect to the size of BF, m.

Fig. 9 Mean Absolute Error (MAE) with respect to the number of hash
functions, k.
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Fig. 10 Distributions of matching bits in the BFs, y, drown in solid line, and
distribution of the means, E[y], in bars.

Fig. 11 Conversion of probability of 1s bit in BF, θ, with respect to iteration
of BFs, s.

binominal distribution, with a mean equal to sθ = 142.758. The
accuracy improves as s increases as shown in Fig. 15. Note that
the variance of the estimation σ(θ) decreases as s increases, and
the expected value E(θ) is close to convergence.

The accuracy can be improved by iteration of small BF tests
rather than increasing the size of BFs. In fact, Fig. 10 demon-
strates the reduction of variance of observation of E[Y], indicated
by bar plot, when s = 10. The solid line represents the distri-
bution of Y , which is widely distributed than that of E[Y]. It
is known as Central Limit Theorem [15], that as s increases, the
amount of sampling variation decreases. Figure 11 shows that
the variance of estimated probability θ̂ reduces as the iteration s

increases. The experiment shows even small s = 10 gives con-
version of probability θ. The selection of optimal s can be made
based on the variance of the prediction of θ. As we have showed
in Section 4.3, the variance of beta distribution decreases with s,
which determines the accuracy of approximation.

Finally, we obtain the estimate of intersection size, x̂, by
Eq. (7). We illustrate the distribution of θ and the correspond-
ing estimation of x in Fig. 12. The estimates x̂ are distributed

Fig. 12 Relation between the size of intersection, x, and the probability of
1s bit, θ.

Fig. 13 Probability distribution of Y , the number of matching bits in BFs
for X = 40 and 60.

Fig. 14 Probability distribution of Y , the number of matching bits in BFs
for s = 10, 30, and 100.

normally at true size, x = 20.
5.2.1 Sufficient Number of Iterations

We have seen that increasing number s of iteration of Bayesian
estimation improves the accuracy of estimation for particular
case. In this section, we show that for any given problem with
n, m, k, there exists sufficient number s of iteration to archive
desired precision.

c© 2014 Information Processing Society of Japan 396



Journal of Information Processing Vol.22 No.2 388–400 (Apr. 2014)

Fig. 15 Expected value E(θ) and variance σ(θ) of the Bayesian estimation
of θ with respect to the number of BFs, s.

Fig. 16 Standard Deviation of θ in terms of BF bit size m for 200, . . . , 800,
where n = 100, x = 40, k = 3.

First, let us remind that parameters n, m and k are not inde-
pendent in BF. As described in Section 2.1, parameters such that
k = ln 2 · (m/n) minimize false-positive probability. So, we con-
sider sufficient number s in terms of representative m only.

The estimation of x is equivalent to that of θ since there is one-
to-one correspondence. Hence, we estimate the accuracy of θ
instead of x. As studied in Section 4.3.2, the mean of the beta
distribution gives an estimation of θ as

θ̂ =
α +

∑s
i=1 yi

α + β + sm
=

α

α + β + sm
+

∑s
i=1 yi

α + β + sm
(9)

≤ α

α + β + sm
+

∑s
i=1 yi

sm
=

α

α + β + sm
+ E[Y]

1
m
. (10)

Hence, the estimation of θ is dominated by E[Y], the average of
s samples of the number of 1s bit in conjunction of two BFs. We
regard the performing BF, yi, as random sampling. According
to the law of large numbers, the average of independent s sam-
ples should be close to the expected value with variance of σ2/s.
Hence, the confidence interval of estimation of θ can be made
small by increasing s.

Figure 16 shows the experimental results using DBLP dataset
with n = 100, x = 40, k = 3. The standard deviation of sampled
yi is shown in terms of several BF size m = 200, 400, 600, 800. As
shown in figure, the standard deviation converses around s = 15
for all cases. Hence, we conclude that the proposed scheme finds
sufficient number of s to estimate the set of intersection.

5.3 Performance
We implemented the proposed scheme in Java, JDK 1.6, with

BigInteger class. As additive homomorphic public key algorithm,
we use Paillier cryptosystem with 1024 bit key. With platform of
commodity PC, Intel Core (TM) i7-663DQM, 2 GHz, 4 GB, run-
ning Windows 7 (64 bit), the encryption runs in te = 15.7 [s], the
decryption takes td = 21.5 [s] in average. The secure scalar prod-
uct of 64-bit vectors (nA = nB = 64, x = 5) is performed in
5.28 [s], i.e., 82.5 [ms/element]. With this platform, the process-
ing time to deal with the problem in Ref. [11], n = 2,000, k = 1,
and m = n/ ln 2 = 2,885, is 4 minute and 125 second.

The naive pseudo identification in Section 3.2 suffers the com-
plexity of n2. Given the set with n = 100, Eq. (3) suggests the
necessary range of hash function as � = n2/2 ln 1/ε = 97,479
with probability of 95%. The proposed scheme requires m = 200,
which corresponds to s = 487.

6. Privacy-Preserving Risk Analysis of H. py-
lori

Helicobacter pylori, or H. pylori, is a bacterium that is found
in the stomachs of two-thirds of the world’s population. Epidemi-
ology studies have shown that individuals infected with H. pylori

have an increased risk of cancer of the stomach [10], [12].
Although H. pylori has been classified as a cancer-causing

agent, it is not known how H. pylori infection increases the risk
of cancer of the stomach. Some researchers have estimated that
the risk of cancer the noncardiac region of the stomach is nearly
six times higher for H. pylori–infected individuals than for unin-
fected people [9]. Some cohort studies revealed that the risk of
gastric cardiac cancer among H. pylori–infected individuals was
about one-third of that among uninfected individuals. The source
of uncertainty is that the number of gastric cancers in the cohort
study was too small to make a definitive statement. Cancer is
a highly confidential matter and people will not reveal that they
have it.

Our proposed methodology addresses the problem of epidemi-
ology studies that preserve the privacy of the patients. The cryp-
tographic protocol allows several small cohorts to be aggregated
and analyzed for more certain evidence of increase or reduction
of risk. Given two datasets of patients with cancer and H. pylori,
the proposed protocol determines the size of the intersection of
the two sets without revealing any entries in the datasets. With
a secure hash function, the proposed scheme identifies a patient
from their personal attributes.

6.1 Contingency Tables
The epidemiology study aims to determine whether an H. py-

lori-infected individual has increased the risk of gastric cancer.
The evidence is shown by a measure of relative risk (RR), the
probability of disease among exposed individuals divided by the
probability of disease among the unexposed. Suppose that a sam-
ple of N individuals is arranged in the form of the 2 × 2 con-
tingency table in Table 5; the relative risk (RR) of H. pylori is
estimated by

RR =
Pr(cancer | H. pylori)
Pr(cancer |unexposed)

=
a

a + b

/
c

c + d
≈ ad

bc
,
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Table 5 2 × 2 Contingency table for H. pylori and stomach cancer.

H. pylori Cancer No cancer total

Yes a b a + b
No c d c + d

total a + c b + d N

where we assume a � b and hence a + b = b.
To examine whether H. pylori-infection increases the risk of

cancer, i.e., RR > 1, we test the null and the alternative hypothe-
ses.
H0: The proportion of patients with cancer among individuals

infected with H. pylori is equal to the proportion of patients
with cancer among those uninfected.

HA: The proportions of patients with cancer are not identical in
the two populations.

The chi-square test compares the observed frequencies in each
category of the contingency table, O, with the expected frequen-
cies given that the null hypothesis is true, E. To perform the test,
we calculate the sum

χ2 =

k∑
i=1

(Oi − Ei)2

Ei
=

(N − 1) ((ad − bc) ± N/2)2

(a + c)(b + d)(a + b)(c + d)
,

where k is the number of cells in the table. The probability dis-
tribution of this sum is approximated by a χ2 distribution with
(2 − 1)(2 − 1) = 1 degree of freedom. Alternatively, by taking
it squire root, we may assume that χ is normally distributed with
mean 0 and standard deviation 1.

6.2 Datasets
In our experiment, we have two datasets collected by indepen-

dent agencies.
( 1 ) Patients with gastric cancer CAN.

The Chiba Cancer Center has performed an epidemiology
study of causes and effects of cancer conditions since 1975
in Chiba Prefecture, Japan. Table 6 shows the statistics
for three years from 2003, used in this study. The dataset
contains private attributes, including name, gender, birthday,
mailing address, ZIP code, and medical treatments, e.g., pa-
tient ID, days of operations, day of death, type of cancers,
and degree of tumor differentiation. The distribution of ages
of patients is shown in Fig. 17.

( 2 ) Individuals infected with H. pylori PYL.
The Japanese Ministry of Health and Welfare (MHW) con-
ducted a medical examination in 2001 in a small village in
Chiba Prefecture. The dataset contains the number of H. py-

lori-infected individuals but their cancer status is not known.

6.3 Hypothesis Testing
Our proposed algorithm estimates the size of the intersection

of the two datasets, thus allowing the estimation of relative risk
of H. pylori.

The statistics show that the size of the population in Chiba Pre-
fecture in 2003 was 6,056,462 (3,029,486 male). The dataset in
Table 6 has nA = 7,401 recodes of patients with cancer. Table 7
contains nB = 2,629 individuals infected with H. pylori. We ap-
ply a BF with size m = 14,000, k = 1 and s = 10 to the two
datasets and obtain the scalar product, y = b(CAN) · b(PYL) as

Table 6 Chiba Cancer Center dataset CAN.

year male female total

2003 2,330 1,134 3,464
2004 2,610 1,242 3,852
2005 2,559 1,205 3,763

total 7,500 3,581 11,081

Fig. 17 Distribution of ages in CAN.

Table 7 MHW dataset of H. pylori infections PYL.

year male female total

2001 2,671 5,206 7,877

Table 8 Experimental results for CAN and PYL.

H. pylori Cancer No cancer total

Yes 80 2,549 2,629
No 7,321 2,990,050 2,997,371

total 7,401 2,992,599 3,000,000*5

μ(y) = 1,023.9 on average. Based on Bayes’ theorem, we esti-
mate the probability θ̂ in Eq. (8) as

θ̂ =
α +

∑s yi

α + β + sm
= 0.073142.

From Eq. (7), x̂ = 81.1702, while the exact size of the intersection
is 80. The number of individuals who are infected with H. pylori

but do not have is therefore na − x̂ = 2,549. The other values
can be obtained similarly. Finally, the numbers of individuals are
summarized in Table 8.

An estimate of the relative risk of having cancer among H. py-

lori-infected individuals is therefore

RR =
80 · 222,964
2,549 · 7,321

= 12.81.

The chi-square test of the null hypothesis yields

χ =

√
3,000,000 − 1(80 · 222,964 − 2,549 · 7,321 − 3,000,000/2)√

7,401 · 2,992,599 · 2,629 · 230,285
= 28.71 > N(.05/2) = 1.960,

which is too high to assume the null hypothesis. Therefore, we
reject the null hypothesis at the 0.05 level of confidence.

In the experiment in Intel Xeon E5620 2.40 GHz, Mem-
ory 16 GB, the processing of the BF takes 17,030 second (=
4.7 hour), while the naive ID generation requires a scalar prod-
uct of n2 = 4.9 × 107, which is estimated to be 223 hours.

*5 The number is referred from statistics in Chiba prefecture. There are
potential individuals infected by H. Pylori who was not counted in the
table.
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7. Conclusions

We have proposed an efficient algorithm for the estimation of
the size of the intersection of two private sets. The proposed
scheme gives a Bayesian estimation of the intersection size based
on the mathematical properties of the number of matching bits in
two BFs. A well-known secure scalar product protocol enables us
to evaluate the number of matching bits in a privacy-preserving
way and to test hypothesizes that are useful in epidemiological
studies. We have shown the properties of the accuracy of estima-
tion for various parameters and the experimental results for the
DBLP public dataset. One of our main results is that the boot-
strap approach, iterating small BFs several times, is better than
using a single large BF.

The extension of scalar product protocol to multiple parties
can be done by replacing the Step 3 as that Bob forwards n ci-
phertexts computed with his secret vector as E(x1)y1 , . . . , E(xn)yn

to Carol who then perform the original Step 3 as c =

E(x1)y1z1 · · · E(xn)ynzn/E(sB). The extension of Bloom filter to
multiple parities is not trivial and one of our future work.
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Editor’s Recommendation
The authors propose a new efficient privacy-preserving scheme

for estimating the size of the intersection of two given secret sub-
sets. The proposed scheme successfully increases the efficiency
of the estimation process compared to the previous schemes, by
effectively combining Bloom filters and Baysian estimation in its
estimation algorithm. The proposed scheme is expected to in-
crease the feasibility of the collaborative processing of big data
with preserving citizens’ privacy, which is one of the big chal-
lenges in the recent IT industries.

(Program Chair of Computer Security Symposium 2012,
Tsuyoshi Takagi)
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