
Journal of Information Processing Vol.22 No.2 270–278 (Apr. 2014)

[DOI: 10.2197/ipsjjip.22.270]

Regular Paper

Statement-based Cost Estimate
for Co-utilization of Service Facilities

Hidenori Kawamura1,a) Ryota Ono1 Keiji Suzuki1

Received: July 6, 2013, Accepted: January 8, 2014

Abstract: In this paper, we focus on allocating of social service facilities which are operated under the first-come-
first-serve rule. In such facilities, users cannot make a reservation in advance. To reduce congestion, it is desirable to
adjust a schedule by communication devices. We propose the user-in-the-loop forecasting with the statement-based
cost estimate, and apply to two types of facility allocation models, i.e., the theme park scenario and the highway sce-
nario. The computer experiments show that the proposed estimate caused better results in both scenarios to reduce
congestion. In particular, the users in the highway scenario could achieve a near user equilibrium situation without any
advance experience of the system.
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1. Introduction

Recent progress in information technology related to cellular
phones and car navigation systems have enabled to develop new
types of services on a communication network. As one of such
service applications, we focus on the application for utilization
of socially shared service facilities. The service facilities, in this
paper, mean “first-come-first-served” facilities for any demands,
and basically nobody can book them in advance. The examples of
these facilities include roads or highways in a traffic system, at-
tractions in a theme park, public transportation and parking lots.
Although we are aware that recently some of these facilities pro-
vide a kind of reservation service, we do not focus on reservation
which possibly grows the idle time of facilities.

One of the important problems in service facility allocation is
that over capacity users often make a long queue. The waiting
time in a queue is really a waste of time, and it is especially
serious in a traffic system. If they can adjust their schedules
in advance, they may avoid over-concentrating to the facilities.
However, the users often demand some facilities with individual
constraints, and an independent optimization is difficult. On be-
half of the protection of the environment, the prevention of over-
concentration not only promotes the effective use of existing fa-
cilities but enables new developing facilities to be downsized. To
promote the effective use of facilities, we have tried to design a
planning system to coordinate the co-utilization of service facili-
ties among users.

This problem is a kind of resource allocation problems, and
Kurumatani has proposed the concept of “mass user support” to
tackle this type of problem [10]. The goal of mass user support is
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not only to optimize the individual utility but also to support a so-
cial system comprised of a group of individuals. Our application
is one of mass user support systems.

One important issue to construct such a planning system is how
to let users follow the system planning without reservation. The
users should be treated fairly with the guarantee of individual free
will, and it is not permitted to compel users to follow the system,
even if the system tries to enhance not only social welfare but in-
dividual utility. This issue is a matter of game theory but it is not
easy to analyze by a usual game-theoretic approach. Thus, we
have to analyze the problem by empirical game-theoretic appo-
rach [19].

Another issue is how to estimate an uncertain future situation
for individual planning. One of the simplest ideas is to utilize cur-
rent congestion information and recommend users to avoid con-
gested facilities. Some researchers have investigated the effec-
tiveness of such current congestion information. Kawamura and
Suzuki made multiagent models to simulate the visiting behav-
ior of users in a theme park and event-hall, respectively [6], [15].
Mahmassani, Shiose, Yamashita, Yhoshii and Whale made traffic
simulation models individually and they analyzed the effective-
ness of the current congestion information [11], [14], [16], [20],
[21], [22]. Arnott also analyzed the effectiveness of such infor-
mation with a theoretical traffic model [1]. Fischer investigated
the behavior of selfish agents in a routing problem [5].

These researches basically reached the same conclusion that
the simple utilization of current congestion information does not
cause good effect. This is because that the current information
depends on only the current situation and it becomes unavailable
when the user arrives at a facility in future. Such unavailabil-
ity causes the temporal and spatial oscillation of facility demand,
then, the total performance is spoiled by these influences.

Another idea is to implement some kind of congestion fore-
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Fig. 1 The outline of proposed simulation model.

casting. However, the forecasting from outside of the system may
not be effective because the forecasted congestion information di-
rectly affects the user behavior and it makes the future situation
different by the effect of its forecasting. Thus, we have an as-
sumption that the “user-in-the-loop” forecasting system is neces-
sary, in which the user planning and congestion forecasting are
connected each other to form the right feedback loop. Yamashita
and Yoshii have introduced a primitive version of such an idea to
traffic models [20], [21], and we are developing a more general
and practical theory for a facility co-utilization.

In this paper, we show the first idea of the user-in-the-loop fore-
casting and planning system for service facility allocation, and we
propose the statement-based cost estimate for realizing the sys-
tem. This paper is organized as follows. Section 2 describes a
user-facility model and two experimental scenarios. In Section 3,
we explain the user planning and cost estimate. Section 4 shows
some experimental results, and we discuss in Section 5. Finally,
we conclude our paper in Section 6.

2. Simulation Model

2.1 Environments
Service facilities and transiting users among these facilities

constitute our simulation model (see Fig. 1). The simulation runs
along simulation time t until t reaches the maximum time tmax.
The users behave once in turn at each time t, and t is incremented
by one after all the users behave.

A service facility, which provides users a kind of service un-
der the first-come-first-served rule, is represented as a node. The
nodes are connected by directed links, and these nodes and links
constitute a graph network. The set of directed links regulate the
users’ possible transition paths between the nodes. Node i on the
network has two given parameters, the number of service win-
dows, wi and the service time, si.

The service facility in node i can serve the number of wi users
simultaneously, and a user who begins to be served on node i has
to spend the time si to pass to a next node. Usually, wi is set to a
finite number and the facility in node i is strictly operated for the
number of wi users under the first-come-first-served rule. Other-
wise, wi can be set as “infinity” and it defines that node i has an
unlimited service window, then it can serve all visiting users im-
mediately and simultaneously. Over-capacity users have to wait
in a queue, and the number of users queuing up on node i is de-
noted by queuei.

The users appear at each time t according to the Poisson distri-

bution until the total number of users reaches the maximum num-
ber N. The arrival rate of the Poisson distribution is denoted by λ.
Each of the users departs an origination node and goes toward a
destination node through some facility nodes on the network. In
some experimental scenarios the users have to visit some given
facilities as constraints. The users individually aim to minimize
the travel time which is the difference between the departing time
from the origination and the arrival time to the destination.

Each user has a plan which consists of a sequence of nodes the
user intends to visit during its travel. It guides which node the
user should go to next. The plan of user j is denoted by plan j,
and how to decide plan j is the main interest of this paper. Our
idea is described in the next section.

When arriving at a new node, the user has to join a queue list
to wait for its turn. After all prior users in the queue finish their
service, the user begins to receive its service. If there is no prior
user in the queue list, the user immediately enters into its service.
The user who has just finished receiving its service chooses a next
node from ones linked by the current node.

Because the waiting time in a queue depends on the number of
prior queuing up users, the total travel time of the user depends
on the other users’ behavior. In other words, the travel time of
users is interconnected through mutual travel plans and cannot be
optimized individually. The total objective of this problem is to
find a better coordinating way to minimize the average travel time
of whole users.

For a more algorithmic description of the user behavior, let
user j be introduced the status parameter, status j and the current
position, position j. status j takes one value in status {inactive,

waiting, served, teminated}. At the beginning of simulation,
status j and position j are set to inactive and an origination node,
respectively. At each time t, status j and position j are switched,
according to the pseudocode in Fig. 2. The travel time of user j

is calculated when the user status reaches inactive.

2.2 Experimental Scenarios
We introduce two experimental scenarios as a bench mark, i.e.,

the theme park scenario and the highway scenario. For choos-
ing experimental scenarios, we focus on two constraint types of
visiting service facilities. In the first constraint type, it is corre-
sponding to the theme park scenario, the user is given the service
facilities in advance that he/she has to visit, and decides the order
of visit to reduce the travel time like Traveling Salesman Problem.
In the second constraint type, it is corresponding to the highway
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switch (status j)
case “inactive”:
if user j appears at an origination node
start time j ← t;
position j ← the next node indicated by plan j;
status j ← waiting;

break;

case “waiting”:
if the current facility becomes ready to serve user j
status j ← served;
remaining time j ← s(position j);

break;

case “served” :
remaining time j ← remaining time j − 1;
if remaining time j = 0
position j ← the next node indicated by plan j;
if position j is a destination
end time j ← t;
travel time j ← end time j − start time j;
status j ← terminated;

else
status j ← waiting;

break;

case “terminated”:
break;

Fig. 2 Pseudocode of status transition.

Fig. 3 The network model of the theme park scenario. Each user arrives at
the origination node 0, visits randomly given 4 attractions through
road nodes, and finally goes to destination node 1.

scenario, the user is given the origination and the destination in
advance, and has some alternative ways to reach the destination.
The choice of the alternative affects the travel time. The combina-
tion of such types of constraints can represent various conditions
of utilizing service facilities and we firstly investigate these sce-
narios as a bench mark.
Theme park scenario

This scenario consists of an origination node, a destination
node, attraction nodes and road nodes (see Fig. 3). Each visitor
user coming to the theme park starts from the origination node
and goes toward the destination node through randomly given
four attraction nodes. “Randomly given” means that the users
have the four attractions most to their taste and these are ran-
domly defined. The user has to visit every given attraction just
once in the travel. The road nodes bridge those nodes by enough
throughputs with an unlimited service window. The microscopi-
cal motivation of each user is toward optimizing a permutation of
visited attractions, while we would tackle globally balancing the
load of the attractions.

In this setting, the attractions have some different service time,

Fig. 4 The network model of the highway scenario. Each user starts from a
randomly selected origination node from three ones. The destination
is also randomly given from three destination ones in advance. There
are four user choosing points neighboring to tollgates.

which causes the difficulty in balancing the load of the attractions.
The topological characteristic, i.e., the distance from the origina-
tion or destination to each attraction, also causes the difficulty in
consideration of estimating the total moving time and avoiding
congestion at the attractions.

We are concerned in this model with investigating the charac-
teristic of dynamic service facility allocation rather than devel-
oping a real application to an actual theme park or amusement
park. This model can be positioned as one of typical service
facility allocation problems in related works that have revealed
the relationship between a user visiting behavior and information
broadcasting in a congested space [6], [7], [12], [13], [15]. This
model can be extended to a more complex simulation or combi-
natorial optimization problems by introducing complementarity,
substitutability or order constraints of facilities.
Highway scenario

In this scenario, there are three highway lanes connecting from
three origination nodes and three destination nodes (see Fig. 4).
Highway users depart off a randomly selected origination node
and head for a destination node also randomly selected. Each
lane, which is one-way, consists of several pairs of a road node
and a tollgate node. The road node, which bridges tollgate nodes
by one-way links, demands the users some time to pass through.
The tollgate node is supposed as one of the abstract source of traf-
fic jam and each of those nodes has a different service time. The
user can switch the lane through the connection links to avoid a
traffic jam. The global purpose in this scenario is to achieve a
user equilibrium situation [17], one ideal situation in traffic sys-
tems, in which each user can not find any better route than the
current one they individually optimized.

Some related works in traffic researches theoretically or
analytically investigate similar scenarios with several one-
way lanes highway and commuters [9], [11], [16]. Although
those researches use more sophisticated traffic models, e.g., a
Greenshield’s V-K model or a cellular automata model, we have
adopted this queuing model for the sake of simplification. We
believe a method solving this simple model could be applied to
other models by a little extension. In addition, some researches
in resource allocation suppose that the users have a perfect ratio-
nality or learnability in a repeatable situation [1], [2], [5], [8], [9],
but our target is to construct a more realistic way to achieve a
globally optimized situation without such an assumption.
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3. User Planning

3.1 Plan Search
For the construction of a user planning process, we suppose

submissive users in the simulation. The indication by sufficiently
optimized plans is enough to keep an incentive for users to fol-
low the plans. In other words, if we can produce the system with
a very effective individual planning, there is no incentive of the
user to refuse its plan and it is unnecessary to compel the users to
follow such plans.

In the simulation, the planning of each user is carried out at the
beginning of the user activity on the origination node and every
planning interval, which is denoted by interval j. The planning
process of the user is independent with other users, therefore, the
whole planning is asynchronously distributed among all partici-
pating users.

The plan for user j, plan j consists of a sequence of nodes, and
this sequence is constrained to start from the current position and
complete at the destination node through some connecting nodes.
Let nodek

j denote the k-th node which user j intends to visit in
plan j. The scheduled time to visit the k-th node in plan j is de-
noted by timek

j and defined as follows.

timek
j = t, k = 1.

timek
j = timek−1

j

+ cost(nodek−1
j )(timek−1

j ), k ≥ 2. (1)

Where, the notation costi(t∗) represents the estimated required
time to pass node i at current or future time t∗. We suppose
the users inquire such a cost to a central cost information server
which watches the queue lists and provides the cost information
to demanding users. The estimated travel time, namely the eval-
uation of plan j, is obtained as the last timek

j to reach the destina-
tion. The objective of planning is to find plan j which minimizes
the estimated travel time but it is not always a correct estimation
for the future situation. The cost estimate is described later.

This optimization problem in our model is the combination of
two problems, a permutation problem and a shortest path prob-
lem. For example, in the highway scenario, the user does not
have any stop point and expects to arrive at a destination node
as soon as possible. This is actually the shortest path problem to
find the shortest path from a current node to the destination node
in the highway network. On the other hand, in the theme park
scenario, the user has to go toward a destination through some
given attraction nodes every once in a plan. It is considered as
the combination problem to find an order of attractions and the
shortest path connecting these attractions.

To make a plan, the combination of a simple local search and
Dijkstra’s algorithm [3] is implemented in each user. At the first
step of planning, a random order of not-visited attractions is gen-
erated. Then, Dijkstra’s algorithm makes a shortest path con-
necting to the current position to the destination through these
attractions following the order. If there are some same cost paths,
one of these is randomly chosen. The shortest path corresponds
with a sequence of nodes on the network. This sequence is kept
as the initial candidate plan. If the user has no stop point like in

the highway scenario, Dijkstra’s algorithm simply connects the
current position to the destination.

The travel time of the plan is estimated by Eq. (1). After esti-
mating the candidate plan, a neighbor plan is generated by ran-
domly exchanging an order of two stop-points in the candidate
plan, and these are connected by the Dijkstra’s algorithm again.
If the neighbor plan excels the candidate one, it replaces the can-
didate plan; otherwise, the candidate plan is kept as it is. The
generating and replacing process is repeated until replacement
has not occurred for the pre-defined number of times. As default
setting we chose 15 times as the pre-defined number because in
the theme park scenario each user does not have many visited
attractions and the search space is small enough. The final candi-
date plan is accepted as a formal plan to indicate the user a next
node to go.

The above process would cause a good effect if an accurate
future cost estimate is possible, but it is not so easy. The ac-
tual behavior of a queue list in each facility is an aggregate phe-
nomenon by not only one user but all other users activities. In
other words, the actual, not estimated, travel time of each user is
interconnected with other users, some of whom are moving on
the network, and others do not appear yet. Thus, how to estimate
the cost in a future situation is the most important key to resolve
the dynamic service facility allocation problem.

To construct the cost estimate, we can pick up some options,
i.e., the static or current information-based cost estimate and a
kind of forecasting cost estimate. The static information-based
cost estimate utilizes a static characteristic of a system, e.g., a
usual car navigation system calculates the shortest route based
on a geographical road map. This estimate is not linked to other
users’ behavior and could work well in a non-congested system.
In our simulation, the users based on such estimate always utilize
service facilities by a usual way with disregarding congestion and
their behavior merely spoils a part of a facility capacity. Thus,
we are not concerned with the current information-based cost es-
timate users. Some forecasting cost estimate from the outside
of the system utilizes historical data in many trials, and such an
estimate also causes the similar effect of static information case.
That estimate is possibly effective in the long term load balancing
but we are not concerned with such a long term effect because we
suppose in this paper that the same situation does not repeat.

We focus on two ways, one is the current cost estimate (CCE)
as one of typical congestion information, and another is the
statement-based cost estimate (SCE). The statement-based cost
estimate is the main idea for the user-in-the-loop forecasting and
we expect it to form the right feedback to reduce an undesirable
unbalance and oscillation in the utilization of congested facilities.

3.2 Current Cost Estimate (CCE)
CCE is simply based on the current situation of each facility.

The cost of facility i at future time t∗(> t) is calculated with only
the current number of queue list.

costi(t
∗) = (queuei/wi + 1) · si + 1. (2)

In the case wi is set to be unlimited it is simply equivalent to
(si + 1). This cost is an approximated value rather than an exact
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one even if the user arrives at the facility i immediately. Because
of that this cost does not take into account the timing when cur-
rently served users go out. A more exact current cost estimate
could be built with the inclusion of such timing but we are not
concerned with it here for simplicity.

In the case t∗ = t, the facility i equals to position j, and costi(t∗)
means the estimated remaining time to complete the service in
the current facility. It is estimated as follows.

costi(t
∗) =

⎧⎪⎪⎨⎪⎪⎩
remaining time j if j is in service,
(pqueuei/wi + 1) · si + 1 otherwise.

(3)

Where, pqueuei represents the number of prior queuing users
against user j in the queue list of facility i.

3.3 Statement-based Cost Estimate (SCE)
The following description starts from just after a user decides

a plan because the SCE runs on a cyclic process between plan-
ning and cost estimation. We focus on plank which contains the
sequence of pairs of nodek

j and timek
j . When the plan is fixed, it

is also fixed when user j intends to arrive at each node included
in the plan. Based on this schedule, the set of “statements,” each
of which represents the potential timing of a user arrival, is gen-
erated.

statement j(i, t
∗) =

⎧⎪⎪⎨⎪⎪⎩
1 if ∃k, t∗ = timek

j ,

0 otherwise.
(4)

In other words, statement j(i, t∗) takes 1 if user j intends to ar-
rive node j at the future time t∗; otherwise, it takes 0. These
statements are uncertainly tentative and the user can change the
plan anytime but the aggregation of these statements becomes an
effective information to harness the whole load balance. After
deciding a plan, these statements are sent to the central cost in-
formation server.

Next, the number of potential users which are scheduled to join
the queue at node i in the time range [t, t∗] is defined.

numi(t
∗) = queuei +

t∗∑

T=t

∑

j

statement j(i, T ). (5)

We suppose that there are the number of numi(t∗) prior users
against the user who intends to arrive at time t∗ and the user can
start being served after their service. Node i is statistically ex-
pected to deal with the number of (t∗ − t) · wi/si users for time
(t∗ − t), and the expected queue number at time t∗ is defined as
follows.

queue∗i (t∗) = max
[
0, numi(t

∗) − (t∗ − t) · wi/si
]
. (6)

The SCE at time t∗(> t) can be defined by replacing the current
queue length to the expected length in Eq. (2).

costi(t
∗) = (queue∗(t∗)/wi + 1) · si + 1. (7)

This is also equivalent to (si + 1) if wi is set to unlimited. In the
case t∗ = t it takes the same manner in Eq. (3).

The SCE synchronizes with the aggregation of user plans and
it can harness the users to avoid congestion. Each user can op-
timize and change its own plan individually, and that change is
rightly reflected to the cost estimate in the central server. We call
this process the user-in-the-loop forecasting with the SCE.

4. Computer Experiments

4.1 Setting
For computer experiments, we prepared the combination of

the two scenarios (see Figs. 3 and 4 again) and the two cost es-
timate ways. We denote the theme park scenario and the high-
way scenario by the symbols “T” and “H,” and the CCE and
the SCE by the symbols “C” and “S”, respectively. There are
four experimental settings, i.e., “TC,” “TS,” “HC” and “HS.”
In addition, we introduced five types of user appearance den-
sity, (N, λ) = (1,000, 0.1), (2,000, 0.2), (3,000, 0.3), (4,000, 0.4),
(5,000, 0.5), to each setting, since the density of users is the key
factor to cause congestion on the facility network. In these set-
tings, all the users have appeared until about t = 10,000. The
capacity of facilities is large enough to deal with all the users for
the case N = 1,000 and a congestion could not occur in such
a case. On the other hand, a congestion could emerge on every
facility in the case N = 5,000. The combination of setting and
density is denoted like TC-1000, TC-2000, . . . , HS-5000. The
planning interval interval j is set to 300 in each case, according to
preliminary experiments. The maximum time tmax is set to 40,000
and all the users have sufficiently finished their activity until this
time.

4.2 Experiment 1
In experiment 1, the simulation was run 50 times per a set-

ting. Tables 1 and 2 show the average travel time and its standard
deviation in the simulation results. In addition, the instance tran-
sitions of queue lengths in the settings TC, TS, HS and HC-3000
are depicted in Fig. 5.

First, we focus on the results of the theme park scenario. The
averaged travel time takes a similar value in the both cases of
TC-1000 and TS-1000. The facilities in these cases have enough
capacity to deal with all the users and there is no much accumu-
lative queue list. Both cost estimates do not make a difference in

Table 1 The performance comparison with two cost estimate ways in the
theme park scenario. In each TC or TS cell, the upper amount is
the average travel time, and the lower is the standard deviation.
Each ratio cell shows the ratio of the average travel time in TC and
TS cases.

1000 2000 3000 4000 5000

TC- 4,065.8 8,043.3 14,001.1 20,270.2 26,691.2
(20.5) (159.3) (151.2) (160.4) (177.0)

TS- 4,063.2 7,862.5 13,308.5 18,816.6 24,210.2
(11.3) (204.0) (232.7) (263.8) (348.0)

Ratio
(TS/TC)

99.94% 97.75% 95.05% 92.83% 90.70%

Table 2 The performance comparison with two cost estimate ways in the
highway scenario. In each HC or HS cell, the upper amount is the
average travel time, and the lower is the standard deviation. Each
ratio cell shows the ratio of the average travel time in HC and HS
cases.

1000 2000 3000 4000 5000

HC- 2,694.5 3,542.7 5,712.1 8,145.5 10,671.2
(9.3) (69.0) (147.2) (104.4) (118.8)

HS- 2,681.4 2,848.0 5,277.8 7,738.6 10,236.2
(3.4) (94.8) (99.6) (74.5) (70.8)

Ratio
(HS/HC)

99.51% 80.39% 92.40% 95.01% 95.92%
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Fig. 5 The example transition of queue length in each facility. The horizontal indicates the simulation
time [0, 20000]. Each line corresponds to the indicated facility node. The light and shade represent
the normalized length of queue, which is divided by the observed maximum queue length in each
queue.

the travel time. On the other hand, the increase of N makes TS
results better than TC. For example, in the case of N = 5,000,
the planning with the SCE can save about 9.3% of the travel time
against the CCE.

The difference of queuing behavior is shown in Fig. 5. All sim-
ulations exhibited similar characteristics of queue length fluctua-
tion in each setting, and the figure is drawn with a set of single
simulations in each setting. In the theme park scenario, the user
with the CCE does not take into account the current congestion.
It is because the remaining attractions of the user at an instant
are fixed and the total waiting time of the remaining attractions
takes the same value in any plan under the CCE. Thus, the user
of TC tries to optimize a plan ignoring the current congestion,
and prefers to visit the attractions close to the origination node,
gradually further ones, and the ones close to the destination in
turn.

See Fig. 5, and the transition of queue lengths in TC-3000 in-
dicates that the queue lengths of the attraction close to the orig-
ination or destination nodes, i.e., nodes 2, 3, 10 and 11, take a
larger density at an early stage of the simulation, while the queue
lengths of further attractions, i.e., nodes 5, 6, 7 and 8, take a peak
in a little later time. The temporal difference of taking a peak
causes temporal unbalance of the facility demand. On the other
hand, the user of TS-3000 can temporally optimize a plan with
consideration of future congestion, and the load of each attrac-
tion depends on the service time setting rather than the topolog-
ical setting. This is the reason that the user of TS-3000 takes a
better performance than TC-3000.

Next, we focus on the results of the highway scenario. The
result in the case of N = 1,000 is similar with the theme park
scenario, but in the case of N = 2,000 the user of HS shows
the highest performance against HC. In this case, the SCE can
save about 19.4% of the travel time against the CCE. The user
flow around the density of N = 2,000 could be the critical point
of congestion in which little difference of flow control makes a
large difference of the travel time. The SCE in N = 5,000 saves
only about 4.0% of the travel time against the CCE, however, it
saves the largest total travel time of all the users than other cases.

See Fig. 5 again, and we can confirm the large difference be-
tween queuing behavior of HC-3000 and HS-3000. The user in
HC-3000 tries to avoid congestion and selects a tollgate which
is estimated to have less waiting time than others. The selecting
user has to spend a while on a road node to reach the tollgate.
For some time, successive users refer to the almost same cost as
the former, and they cluster to go to the same tollgate. The ef-
fect of this clustering emerges later, and this time delay causes
an oscillation of queue lengths as shown in Fig. 5. It spoils the
performance of the CCE. On the other hand, the SCE can succes-
sively harness users flow based on a forecasted future situation,
and the users flow smoothly adapts to the traffic load. In the HS-
3000 case, each tollgate is equally congested at any time, and that
is the most effective way to use this type of structure.

4.3 Experiment 2
We cannot compel users to follow an indicated plan even if the

plan contributes to reduce not only the individual travel time but
the total one. Keeping the incentive to behave along the plan is
one of the most important matters to manage this type of system.
It is desirable that the indicated plan is the best one than any other
potential plans like a best response in game theory. However, it
is not easy to find the best plan because the user cannot observe
an entire payoff matrix in advance and merely can know the con-
sequence of its own behavior. The SCE tries to draw a part of the
payoff matrix in progress for the users who believe the SCE.

To investigate the optimality of an individual plan by the SCE,
we carried out another simulation with TC, TS, HC, and HS-
3000, in which the simulation of the plan of a randomly selected
user is replaced by a random one without changing any other sit-
uation. In the TC/TS-3000 case, a random plan means a plan
which consists of a random sequence of given attractions and
shortest paths connecting these attractions by the Dijkstra’s al-
gorithm. There are 4! = 24 possible patterns of attraction orders
for each user, and one pattern is randomly picked up as a random
plan. In the HS/HC-3000 case, a random plan is constrained to
start from a given origination node and reach to a given destina-
tion node. We run 200 trials of the simulation for each setting and
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Fig. 6 Ratio distribution of (the travel time by a randomly replaced plan)/(the travel time by a normally
decided plan). The graphs are shown along indicator bands on the X axis with the percentage on
the Y axis. Each indicator band on the X axis means corresponding the range of ratio, e.g., the
indicator “0.9” means the range between [0.9, 1.0].

Table 3 The travel time of the normally decided plan and the random one.
These plans are of the same user and the other users’ plans are
not changed. The upper and the lower values in each cell are the
average travel time and the standard deviation.

Normal Random Ratio
Plan Plan (Ran./Nor.)

TC-3000 13,589.7 14,088.1 104.70%
(3,847.9) (4,037.5)

TS-3000 12,758.9 12,978.4 103.27%
(4,516.0) (4,625.0)

HC-3000 5,584.2 5,680.5 104.80%
(1,787.7) (1,927.8)

HS-3000 5,091.8 5,099.4 100.06%
(1,424.6) (1,444.1)

these results can empirically show the optimality of the cost esti-
mate. In this experiment, if we find the improvement of the travel
time by the replacement of the selected alternative to a random
one, it means that some users did not select the best choice. On
the other hand, if we do not find the improvement by a random
replacement, it means that almost all users could probably find
the best choice in their plan.

The graphs in Fig. 6 show the ratio distribution of the travel
time of a replaced random plan and a normal one in each case.
In these graphs, a band indicator less than 1.0 corresponds to the
case that the travel time of the random plan outperforms that of
the normally decided one, and a band more than 1.0 indicates that
the normally decided plan is better than the random one. Table 3
shows the averaged travel time and the ratio in those two plans,
which are calculated from the same simulation results.

In the results of the theme park scenario, we can see that there
are many better plans than the normally decided one in both cases
of TC-3000 and TS-3000. The percentage of better plans in TC-
3000 is about 36%, and about 43% in TS-3000. This is not good
news but the reason is simple. In the theme park scenario, the
former users and the latter users share the facilities in the same
network. The former users optimize their plans before the latter
users appear, and their plans interfere each other in the later part
of the former user plans. The estimated cost by the former users
is changed by the latter users, and the former users consequently
fail to optimize their plans.

In the results of the highway scenario, in the case of HC-3000,
the 49% percentage of random plans shows a better performance
than the normally decided one. In the case of HS-3000, the ran-
dom plans show almost the same performance as the normal one.
The users in the highway scenario flow one-way from an origina-
tion side to a destination side in the network, and the former users
are temporally and spatially separated from the later users. Thus,
the planning with the SCE works very well. The fact that the
random plans and the normal plan show the same performance
in HS-3000 means that the users cannot find another better plan
than the current one and the whole behavior achieves near a user-
equilibrium situation. It is the Nash-equilibrium situation of traf-
fic systems and it is important that the users with the SCE achieve
such a situation without preliminary knowledge, perfect rational-
ity or learnability in a repeatable situation.

5. Discussion

The experimental results show that the SCE has a better per-
formance than the CCE. The SCE is a kind of advance queue
simulation and indirect negotiations among the users. Although
a simultaneous participation of whole users takes good effect in
principle, the SCE is spoiled in its performance by the situation
that the latter user behavior interferes the later part of the for-
mer user plan. It is particularly conspicuous in the theme park
scenario. To improve the performance of the SCE, a supplemen-
tary term which counts up potential users is necessary to add to
Eq. (5). Such a supplementary term does not have to include the
details of individual user plans, and a kind of stochastic prediction
could be applied.

In the experiments, we have picked up only the CCE as a con-
trast. Although we could build other planning with ad-hoc heuris-
tics and it may be better than the proposal, we are not concerned
with such a heuristic method. The heuristic method for this type
of problem would utilize explicit or implicit features of a problem
setting, and the change of setting, e.g., topology of a network,
easily affects the performance of the method. It could not be a
fundamental solution of the problem.

In addition, the experimental results with some density patterns
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of users showed that the performance difference between the SCE
and the CCE is not simple. In the theme park scenario, the SCE
consistently exhibited a better performance than the CCE, and
the performance difference became linearly larger according to
the density of users. In the highway scenario, although the SCE
exhibited a better performance than the CCE, the advantage of
the SCE seems unstable and not linear. It indicates that the effec-
tiveness of coordination between the users is not simple and the
relationship between the congestion behavior of the system and
the coordination should be carefully investigated.

If this user-in-the-loop forecasting is applied to a real applica-
tion, e.g., car navigation systems, we have to carefully investigate
the diffusion process of the system in advance. The system must
give the users sufficient incentive to follow a plan during a transi-
tional period of diffusion. Otherwise, nobody could use the sys-
tem even if everybody knows it contributes to improve the total
performance of the facility allocation. The supplementary term of
the users who do not use the proposed system could be necessary.

Our first aim of this research is to lead users’ behavior to a
Nash-equilibrium or user-equilibrium by sophisticated informa-
tion technology. Of course we know that game theory clarifies
such an equilibrium does not always become the best result in any
situation, but the total time slot of a facility is fixed and individ-
ual efficient use of facilities could lead to improve the total system
performance. The complexity in more realistic problems makes a
system difficult to be analyzed in a game theoretical fashion but
we can know a part of the full picture by an empirical analysis
and it is important to tackle such complicated problems [19].

Further our interest is, if it exists, to bridge the gap between
the Nash-equilibrium and the Pareto optimum in facility alloca-
tion problems. In this paper we modeled the situation that the
users can utilize all facilities and the cost of users is the sum-
mation of a waiting time. However, many actual facilities, e.g.,
highways, require not only time but money cost which is one of
outside parameters of the system. We cannot easily control the
time cost under the facility capacity constraint but it is possible
to tackle the money cost control, actually such a control is stud-
ied in road pricing researches. If we can control the money cost
of each facility in real time by the statements of users, it could
change the game structure and contribute to bridge the gap be-
tween the Nash-equilibrium and the Pareto optimum in the sys-
tem. A market-oriented way related with the statements, time cost
and money cost would be available for such a control [18].

Our proposal is effective to improve the global load of systems,
and it would be more effective to combine more local excellent
contrivance. For example, Dresner proposes the reservation sys-
tem in which car drivers adjust entering timing to an intersection
with each other and they can pass through the intersection with-
out stop signals [4]. The idea, like seamless connection of our
proposal and such systems, is effective to drastically reduce traf-
fic jams.

In the experiment, we do not confirm the optimality of social
welfare with the proposed method. To investigate the optimality
of social welfare, we have to find the optimum solution to maxi-
mize the social welfare, however, the solution space of this prob-
lem is very huge and finding the optimum solution is difficult.

For example in TC-3000 and TS-3000 with 3000 user agents,
each user has 24 possible visiting patterns and the whole solu-
tion space of these settings is 243000. In HC-3000 and HS cases,
each user has 11 alternatives on average from the origination to
the destination, and the total solution space is 113000. In addition,
the social optimum may force some users to receive individually
a worse plan unfairly and it cannot be acceptable for all users.
According to the above reason, it is not easy to discuss about the
head room to optimal solutions.

6. Conclusions

In this paper, we proposed the user-in-the-loop forecasting with
the statement-based cost estimate, and applied to two types of
facility allocation models, i.e., the theme park scenario and the
highway scenario. The computer experiments showed that the
proposed estimate caused a better result in both scenarios than
the current cost estimate. In the highway scenario, the users with
the statement-based cost could achieve a user-equilibrium with-
out any preliminary knowledge, perfect rationality or learnability.
However, the users in the theme park scenario could not select the
best response because the latter users unexpectedly affected the
later part of the former user’s plan. As a next step, we will focus
on the supplementation of potential or not-participating users ef-
fect, modeling of time and money cost, and introducing of market
mechanisms.
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