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Abstract: As real-time embedded systems get more diverse and more complicated, systems with different types of
tasks (e.g., periodic tasks and aperiodic tasks) are prevailing. In such a system, it is important that schedulability
of periodic tasks is guaranteed and at the same time response times to aperiodic requests are short enough. Total
Bandwidth Server is one of convincing task scheduling algorithms for mixed task sets of periodic and aperiodic tasks.
Considering a fact that in most cases tasks’ execution times are much shorter than their worst-case execution times,
this paper proposes a method of reducing response times of aperiodic execution by using predictive execution times
instead of worst-case execution times for deadline calculations in the total bandwidth server to obtain shorter deadlines,
while ensuring the integrity of periodic tasks. In the evaluation by simulation, the proposed method combined with
a resource reclaiming technique improved average response times for aperiodic tasks, by up to 22% compared with
the original total bandwidth server technique, and by up to 48% compared with Constant Bandwidth Server, which is
another algorithm appropriate for tasks with varying execution times.

Keywords: Real-time scheduling, total bandwidth server (TBS), worst-case execution time (WCET), predictive exe-
cution time (PET)

1. Introduction

Along with the growing diversity and complexity of real-time
embedded systems, it is becoming common that different types or
criticalities of tasks compose a system and therefore importance
of real-time scheduling is increasing [1], [2]. For example, a con-
trol task and a user interface task would be mixed in a system.
The former is called a hard task and must completely satisfy real-
time requirements. The latter is a soft (or non real-time) task,
and should finish in a certain level of response times but is not
expected to fully behave in real-time [3]. To achieve adequate
real-time processing required in such a system, a sophisticated
real-time scheduling algorithm that targets both hard and soft (or
non real-time) tasks, guarantees the schedulability of hard tasks,
and at the same time exhibits short response times for soft (or non
real-time) tasks must be used.

The schedulability can be satisfied when all hard tasks’ exe-
cutions meet their deadline requirements. Therefore, hard tasks
should be periodically invoked and executed, and be assumed
to spend their worst-case execution times (WCETs), since the
schedulability must be confirmed before the system starts to op-
erate. On the other hand, soft (or non real-time) tasks can run on
aperiodic invocations as long as it does not influence the schedu-
lability of hard tasks, because of inexact (or non) real-time re-
quirements. Total Bandwidth Server (TBS) [4] is a scheduling
algorithm for mixed task sets with such hard and soft (or non
real-time) tasks. TBS is based on the earliest deadline first (EDF)
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algorithm [5] and therefore has a characteristic that a processor
can be utilized by up to 100% while maintaining the schedula-
bility. This paper explores algorithms based on TBS to further
improve the responsiveness of aperiodic tasks.

Due to the large scale and complexity of current processors
and application programs, WCETs tend to be difficult to estimate.
For example, deep pipelining execution of machine instructions
makes precise estimation of the number of their execution cycles
hard. In addition, in a system with many tasks, whether each
memory reference would hit in the cache memory or not is much
difficult to decide or predict [6]. Moreover, the worst-case exe-
cution path in a program is almost impossible to find and trace
since it includes many branches and loop structures and all input
patterns bring a vast search range [7]. Consequently, WCETs are
obliged to be pessimistically estimated and lead to having a large
gap with actual execution times. This gap becomes an obsta-
cle to obtaining the best schedules under scheduling algorithms
that make a decision based on tasks’ execution times, for exam-
ple, Shortest Job First (SJF) and Shortest Remaining Time First
(SRTF) [8].

The contribution of this work is an improvement over TBS,
where the average response times of aperiodic tasks can be
shorter than those in TBS. In this paper, two facts are taken
into consideration; one is that soft or non real-time tasks are not
required to strictly meet deadline constraints, and the other is
that in most cases tasks’ execution times are much shorter than
their WCETs. From the consideration, a method of shortening
response times of soft or non real-time tasks by introducing pre-
dictive execution times instead of WCETs into the TBS-based
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scheduling algorithm is proposed. In the evaluation with simula-
tion for tasks with varying execution times, the effectiveness of
the proposed method is shown by comparing it with the original
TBS and Constant Bandwidth Server [9] which is another algo-
rithm appropriate for tasks whose execution times fluctuate.

This paper consists of five sections. Section 2 describes related
works for scheduling algorithms, especially for task sets with
hard/periodic and soft (or non real-time)/aperiodic tasks. Then,
Section 3 proposes a method that is extended from TBS and uses
predictive execution times rather than WCETs to improve aperi-
odic tasks’ response times. Evaluation of the proposed method is
shown in Section 4. Finally, Section 5 concludes the paper with
summary and future works.

2. Related Works

2.1 Scheduling Algorithms for Both Periodic and Aperiodic
Tasks

There are various scheduling algorithms for task sets consist-
ing of both periodic and aperiodic tasks. They are categorized
to fixed-priority servers and dynamic-priority servers. Fixed-
priority servers are based on the rate monotonic (RM) schedul-
ing [5], which has a merit that higher-priority periodic tasks
(with shorter-periods) tend to have lower jitters and shorter re-
sponse times. As representative examples, there are Deferrable
Server [10], Priority Exchange [10], Sporadic Server [11], and
Slack Stealing [12]. On the other hand, dynamic-priority servers
are based on the earliest deadline first (EDF) algorithm, which
provides a strong merit that a processor can be utilized by up
to 100% while maintaining schedulability. Dynamic Priority
Exchange [4], Dynamic Sporadic Server [4], Total Bandwidth
Server [4], Earliest Deadline Late Server [4], and Constant Band-
width Server [9] are examples of dynamic-priority servers. The
aim of these algorithms is to make response times of aperiodic re-
quests as short as possible with guaranteed schedulability, while
the effectiveness is obtained in exchange for their implementation
complexity.

In the technique proposed in this paper, an aperiodic execu-
tion is divided into two parts to obtain earlier deadlines than the
original TBS. Similar to this work, there is a model, “imprecise
computation,” to improve real-time processing by dividing a task
into two parts [13]. This assumes that each task consists of two
parts, a mandatory subtask “M” and an optional subtask “O,” both
of which, basically, have the same deadline. When systems expe-
rience transient overload situations, this model can mitigate the
load by giving up computing the optional subtasks, which means
quality or precision is degraded but a minimum of real-time prop-
erty can be kept. However, this can be done only when the tasks
have been originally designed to trade performance with compu-
tational requiremetns. On the other hand, the technique in this
paper does not assume that a task consists of M and O. All the
aperiodic tasks are computed till the end of their codes. There-
fore, the technique is a method that provides “precise” computa-
tions, not “imprecise” computations.

There is another strategy, slack reclaiming, for improving real-

time processing [12], [14], [15]*1. In the slack reclaiming, when
some tasks finish earlier than their WCETs, the slack time (or un-
used bandwidth) is utilized by other (soft or non real-time) task
executions. This means slack time can be utilized only after the
early completion of the prior tasks. In contrast, in the technique
in this paper, it is predicted that the execution of a target (ape-
riodic) task would be completed early. Then the corresponding
early deadline is given in advance of the execution. This means
the future slack by the task’s own execution can be utilized for
itself.

2.2 Total Bandwidth Server
Resource reservation is a general technique for real-time sys-

tems where aperiodic tasks are executed only in some reserved
bandwidth and avoid influencing hard tasks’ schedulability [3],
[16]. Total Bandwidth Server (TBS) is one of the resource reser-
vation methods and is a scheduling algorithm for a mixture of
hard and non real-time tasks*2. TBS provides fair response times
for non real-time tasks while keeping its implementation com-
plexity moderate [4], [17]. It is assumed that hard tasks are in-
voked periodically and have relative deadlines equal to the length
of their period, and that non real-time tasks are requested irreg-
ularly but do not have explicit deadline requirements in advance.
When a non real-time task is invoked, a tentative absolute dead-
line is calculated and assigned to the task as:

dk = max(rk, dk−1) +
Ck

Us
(1)

where k means the kth instance of aperiodic tasks, rk is the ar-
rival (invocation) time of the kth instance, dk−1 is the absolute
deadline for the k − 1th (previous) instance, Ck is WCET of the
kth instance*3, and Us is the processor utilization factor by the
server which takes charge of execution of aperiodic tasks. The
server is considered to be able to occupy the Us utilization fac-
tor and, every time an aperiodic request arrives, it leads to give
the instance the bandwidth equal to Us. The term, max(rk, dk−1),
prevents bandwidths given to successive aperiodic instances from
overlapping with each other. After the requested aperiodic task is
given the deadline by Eq. (1), all periodic and aperiodic instances
are scheduled by following the EDF algorithm. Letting Up be
the processor utilization factor by all hard periodic tasks, it was
proved that a task set is schedulable if and only if Up+Us ≤ 1 [4].

In TBS, overestimated WCETs would make the calculated
deadlines later than necessary by Eq. (1). According to the EDF
scheduling policy, this might delay the execution of the aperi-
odic instance and cause long response time. To make matters
worse, the delayed deadline can influence the following aperi-
odic instances by the term, max(rk, dk−1), in Eq. (1) (from k − 1th

*1 Strictly, Slack Stealing [12] is a method that utilizes slack time obtained
by postponing hard tasks’ execution, not by expecting their shorter exe-
cution than WCETs.

*2 TBS basically targets hard tasks and non real-time tasks. However, it
can handle soft tasks instead of non real-time tasks. Therefore, this pa-
per does not distinguish soft tasks and non real-time tasks.

*3 In the literature for TBS, it is not clearly described that Ck is WCET.
However it is undeniable since, if it is not the case, the schedulability
cannot be guaranteed, that is, deadline misses for hard tasks would oc-
cur.
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to kth). Reference [18] showed the method, resource reclaiming,
where the deadline is recalculated by using the actually elapsed
execution time when the execution of the instance finishes, and
the new deadline is used for the deadline calculation for the sub-
sequent aperiodic instances. By this method, the subsequent in-
stances benefit from the earlier deadlines and their response times
would be improved.

In the resource reclaiming, kth aperiodic instance is given the
deadline d′k by:

d′k = rk +
Ck

Us
(2)

rk is the value calculated as:

rk = max(rk, dk−1, fk−1) (3)

That is, the maximal value among the arrival time, the recalcu-
lated deadline for the previous instance (dk−1, described below),
and the finishing time of the previous instance ( fk−1) is selected as
the release time. (dk−1 can be earlier than fk−1, since the k−1th in-
stance was executed with the old deadline before the deadline re-
calculation, d′k−1, not with the recalculated deadline, dk−1.) When
the k − 1th aperiodic instance finishes, the deadline is recalcu-
lated by the following formula that includes the actual execution
time, Ck−1, of the instance, and is reflected in Eq. (3), and then in
Eq. (2), for the subsequent task.

dk−1 = rk−1 +
Ck−1

Us
(4)

There are other algorithms that derive from TBS. In Ref. [19],
Buttazzo, et al. proposed a method for firm (not hard) periodic
tasks and soft (or non real-time) aperiodic tasks. Exploiting a fact
that a firm deadline allows the corresponding task to be missed to
some degree, the algorithm achieves shorter response times for
aperiodic tasks by skipping periodic executions at times and en-
suring larger bandwidth for the aperiodic tasks. Similarly, Kato,
et al., proposed a method where aperiodic instances start execu-
tion immediately when the requests arrive, and continue the exe-
cution for a certain interval [20]. This would shorten the response
times but would cause deadline misses of periodic tasks while
controlling the frequency of the deadline misses by feedback con-
trol. These two methods aim to achieve short response times at
the sacrifice of completeness of periodic task executions. On the
other hand, this paper proposes a method of shortening response
times of aperiodic instances while ensuring the integrity of hard
periodic tasks.

2.3 Constant Bandwidth Server
In almost all task execution models in real-time scheduling

theories, tasks’ execution times are assumed to be fixed (usu-
ally, their WCETs). Constant Bandwidth Server (CBS) [9] is a
scheduling algorithm that does not expect fixed execution times.
This scheduling algorithm is appropriate for tasks, such as those
in multimedia applications, that change their elapsed times from
execution to execution.

CBS has its server period and budget to serve aperiodic re-
quests. A common deadline is prepared and managed with the

server period and budget, and all aperiodic tasks are given the
common deadline, independent of their execution times. The
deadline is repeatedly updated according to rules, basically by
incrementing by the length of the period. CBS has a merit that
resource reclaiming is naturally performed since the budget is de-
creased by only the amount actually spent for tasks’ execution.
However the deadline depends on the period, not on tasks’ execu-
tion times, which might not provide an optimal deadline tailored
for each task.

According to Ref. [9], CBS is summarized as follows. A CBS
has the server period (Ts), the maximum budget (Qs), the server
bandwidth (Us = Qs/Ts), the current budget (cs), and, at each
instant, the fixed (common) deadline (ds,k). Aperiodic jobs are
served in FIFO order. The served (head in FIFO) aperiodic job
is given a dynamic deadline equal to the current fixed deadline,
and scheduled by EDF together with periodic tasks. Whenever
an aperiodic job has been executed, the current budget, cs, is de-
creased by the same amount as the elapsed ticks for the execution.
When cs gets zero, cs is replenished to Qs, and the next fixed
deadline is calculated by ds,k+1 = ds,k + Ts. When an aperiodic
job arrives at t = r j and the server does not have other pending
jobs, if cs > (ds,k − r j)Us, it generates the next fixed deadline
by ds,k+1 = r j + Ts and cs is replenished to Qs. Otherwise (if
cs ≤ (ds,k − r j)Us), it is served with the current deadline of ds,k

and the current budget of cs.

3. The Adaptive Total Bandwidth Server

As is the case with TBS, a method proposed in this chapter,
adaptive total bandwidth server (Adaptive TBS), assumes that
task sets consist of periodic tasks with hard deadlines and aperi-
odic tasks without explicit deadlines, where it is desirable that ex-
ecution of aperiodic tasks finishes as early as possible. Since ape-
riodic tasks do not have deadlines, it is not necessary to assume
that WCETs are spent for their executions from a schedulability
point of view. That is, although TBS dynamically gives tentative
deadlines to aperiodic instances, missing the deadlines is not seri-
ous or catastrophic. Therefore, use of WCETs for deadline calcu-
lation is not essential. Instead, shorter times can be supposed as
execution times and used for the deadline calculation while main-
taining schedulability of the whole task set. When the supposed
execution time elapsed but the execution did not finish yet, the
deadline is recalculated by using the longer execution time, that
is, WCET, and then the EDF scheduling only has to be performed
again. By this strategy, when aperiodic execution finishes in the
supposed (short) time, the corresponding short deadline and the
EDF algorithm can make the response time shorter.

3.1 Predictive Execution Times (PET)
In practice, actual execution time of a task tends to be much

shorter than the corresponding WCET, since the WCET is pes-
simistically estimated. The proposed adaptive TBS intends to use
actual execution times instead of WCETs in the deadline calcula-
tion for aperiodic instances. However, since the actual execution
times are unknown beforehand, they are predicted. There are var-
ious possible ways to obtain the predictive execution times.
( 1 ) Random choice of execution times
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This has high possibility of choosing shorter times than ac-
tual execution times, and therefore would cause many dead-
line misses (although the misses are not serious). On the
other hand, when the predicted time is much longer than the
actual execution time, the calculated deadline would not be
early enough.

( 2 ) Measurement in advance
This seems effective in terms of closeness with the actual
execution times but has a defect of not being able to follow
the change of execution times when a task is executed many
times in the system operation.

( 3 ) History-based prediction
This predicts execution times by an execution history of the
same task and therefore may follow the fluctuation of execu-
tion times.

Although prediction accuracy would affect the effectiveness of
the proposed adaptive TBS as confirmed in Section 4, this paper
does not go deeply into the elaboration of the prediction method.
For the present, the following prediction method which corre-
sponds to the above (3) is used.

CPET
ik = α ×CPET

ik−1
+ (1 − α) ×CAET

ik−1
(5)

CPET
i0 = CWCET

i

Here, CPET
ik

is a predictive execution time (PET) for the kth in-
stance of an aperiodic task Ji. CAET

ik−1
is the execution time actually

spent for the previous (k−1th) execution of the same task Ji. The
initial value, CPET

i0
, is equal to WCET of the task, CWCET

i . This
formula calculates as the predictive execution time an weighted
average of the previous PET and the previous actual execution
time with the weighting coefficient α.

3.2 Definition of Adaptive TBS
As in Ref. [4], it is assumed that a periodic task have a constant

period, hard deadline equal to the end of its period, and constant
worst-case execution time, and that an aperiodic task does not
have deadline in advance and its arrival time is unknown.

In the adaptive TBS, execution of an aperiodic task is divided
into two sub instances. They are regarded as different instances,
and then the original TBS is naturally applied.

In the following descriptions, aperiodic tasks are not distin-
guished and they are supposed to have a global serial instance
number, k, according to the request order. Execution of kth aperi-
odic instance, Jk, is divided into two parts, JPET

k and JRES T
k . JPET

k

corresponds to the execution from the beginning of Jk to the pre-
dicted finishing time. JRES T

k corresponds to the execution from
the predicted finishing time. If the execution of Jk finishes at
or before the predicted time, JRES T

k does not exist. Let the worst-
case execution time of Jk be CWCET

k , the predictive execution time
of Jk be CPET

k , and the execution time of JRES T
k be CRES T

k =

CWCET
k − CPET

k . (Practically, 0 ≤ CRES T
k ≤ CWCET

k − CPET
k .

The worst-case scenario, CRES T
k = CWCET

k − CPET
k is assumed

for schedulability.) When the kth aperiodic request arrives at the
time t = rk, two instances for the request are assigned deadlines
as:

dPET
k = max(rk, dk−1) +

CPET
k

Us
(6)

Fig. 1 Deadline assignment in Adaptive TBS.

dRES T
k = dPET

k +
CRES T

k

Us
(7)

Deadline assignment in the original TBS was as:

dk = max(rk, dk−1) +
CWCET

k

Us
(8)

From CRES T
k = CWCET

k −CPET
k and Eqs. (6), (7), and (8),

dRES T
k = max(rk, dk−1) +

CPET
k

Us
+

CWCET
k −CPET

k

Us

= max(rk, dk−1) +
CWCET

k

Us

= dk

Therefore, two deadlines can be calculated by Eqs. (6) and (8) at
the arrival time. The use of Eq. (8) is more suitable than Eq. (7)
since the second term in the right expression is calculated with
two constants and therefore has only to be calculated once in ad-
vance of the system operation.

Figure 1 is an example of assigning deadlines to an aperiodic
request occurring at tick 101. This aperiodic task is supposed to
have the worst-case execution time of CWCET

k = 3 and the pre-
dictive execution time of CPET

k = 1. The processor utilization
reserved for the aperiodic server is 0.25. The deadline for JPET

k

becomes dPET
k = 101 + 1/0.25 = 105, and that for the remaining

execution (JRES T
k ) becomes dRES T

k = 105+ (3− 1)/0.25 = 113 (=
dWCET

k ). In this example, if the task finishes within the predictive
execution time, the response time is 104−101 = 3. Otherwise, the
remaining part should be executed, and the response time would
be 110 − 101 = 9. (This example implies that other tasks with
deadlines earlier than dWCET

k are executed from tick 104 to 108.)

3.3 Example of Adaptive TBS
In this section, an example of scheduling by the adaptive TBS

is shown. In Fig. 2, (1) and (2) show scheduling results of the
original TBS and the adaptive TBS, respectively. There are two
periodic tasks, τ1 and τ2, and an aperiodic request arriving at tick
51. The period of τ1 is T1 = 4, and its execution time is C1 = 1.
τ2 has the period T2 = 6, and the execution time is C2 = 3*4.
Therefore, the processor utilization by the two periodic tasks is
Up = 0.25+0.5 = 0.75 and the utilization by the aperiodic server
leads to Us = 1 − Up = 0.25.

WCET of the aperiodic request is supposed to be 3, while
the predictive execution time and the actual execution time are
2. In the original TBS, the deadline of the aperiodic task is
dWCET

k = 51 + 3/0.25 = 63. According to the EDF algorithm,
the aperiodic task starts execution at tick 55, is suspended at tick

*4 In this example, it is assumed that the execution times of τ1 and τ2 are
fixed.
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Fig. 2 Example of schedules by the original and adaptive TBS.

56, resumes at tick 60, and finishes at tick 61. Consequently, the
response time becomes 61 − 51 = 10 ticks. On the other hand, in
the adaptive TBS, the two deadlines, dPET

k = 51 + 2/0.25 = 59
and dRES T

k = 59 + (3 − 2)/0.25 = 63, are given. Based on EDF,
the aperiodic task starts execution at tick 55 and finishes at tick
57, which gives the response time of 57 − 51 = 6 ticks. In this
example, the adaptive TBS shortens the response time by 4 ticks
compared with the original TBS.

Suppose that the same task set is scheduled except that the ac-
tual execution time of the aperiodic task is 3 ticks. In the original
TBS, the aperiodic execution would finish at tick 62. On the other
hand, the adaptive TBS suspends the aperiodic execution at tick
57, resumes the execution at tick 61, and then finishes it at tick
62. Like this scenario, even if the execution time is incorrectly
predicted, the response time would be the same as or shorter than
that in the original TBS.

3.4 Schedulability of Adaptive TBS
After an aperiodic request is divided into two sub instances,

the adaptive TBS behaves just as the original TBS, where the two
(different) sub instances can be considered to arrive at the same
time. Obviously, from Eqs. (6) and (7), the utilization by the two
sub instances between max(rk, dk−1) and dRES T

k (= dk) is the same
as that in the original TBS as follows.

UJPET
k
=

CPET
k

dPET
k −max(rk, dk−1)

= Us

UJRES T
k
=

CRES T
k

dRES T
k − dPET

k

= Us

Therefore, schedulability of the adaptive TBS leads to be the
same as that of the original TBS presented in Ref. [17].

3.5 Implementation Complexity
In the proposed algorithm, aperiodic task execution is divided

into two sub instances. However, operating systems should man-
age a task with a single information set, task control block (TCB).
This is realized by re-setting up the deadline and re-inserting the
task in the ready queue when PET elapses and the task has not fin-
ished, which is the only difference from the original TBS. To find
that the execution reaches PET, the scheduler should be executed
every tick timing. This is achieved by calling the scheduler when
timer/tick interrupts occur, which is a natural procedure that op-
erating systems usually follow. In addition, as described in Sec-
tion 3.2, the value of the second term in the right side in Eq. (8)
should be statically computed and used when necessary to reduce
the recalculation overheads.

3.6 Affinity with Resource Reclaiming
In the TBS, when deadline is calculated for the kth aperiodic

request, dk−1 is needed. In the Adaptive TBS, since the previous
(k − 1th) aperiodic execution is divided into two sub instances,
the deadline for the second sub instance, that is dRES T

k−1 , is used
for the calculation. However, when the execution of the k − 1th
request finishes in its PET (CPET

k−1 ), the second sub instance is not
executed. In this case, instead of dRES T

k−1 , dPET
k−1 can be used to

calculate the deadline for the kth task. This is the first resource
reclaiming method for the adaptive TBS.

A greedier method [18] described in Section 2 can be easily
applied to the adaptive TBS. When the execution of an aperiodic
request finishes, whether or not the execution is for the first or
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Fig. 3 Average response times.

second sub instance after the division, the deadline is recalculated
by Eq. (4), then the updated deadline is applied to Eq. (3), and
consequently the following aperiodic tasks can be given earlier
deadlines by Eq. (2). This can be the second resource reclaim-
ing method for the adaptive TBS, and naturally includes the first
method above. For the evaluation in this paper, the second re-
source reclaiming method described above is used with the adap-
tive TBS.

4. Evaluation

In this Section, the original TBS, CBS described in Section 2,
and the proposed adaptive TBS are compared by simulation for
task sets with varying execution times.

4.1 Evaluation Methodology
The original TBS (Original TBS), the original TBS with the

resource reclaiming technique (Original TBS w/ RR), CBS, the
adaptive TBS (Adaptive TBS), the adaptive TBS with the re-
source reclaiming (Adaptive TBS w/ RR), and the ideal adaptive
TBS where execution times of aperiodic tasks are known*5 (Ora-
cle ATBS) are compared in terms of average response times.

In the simulations, task sets generated by using probabilistic
distributions are used similar to related works [4], [9], [10], [11],
[12], [15], [16], [17], [18], [19], [20]. Task sets consist of peri-
odic tasks with the total processor utilization (Up) of 60% to 90%
at intervals of 5% and aperiodic tasks with the total utilization
of about 2% in the observation period (100,000 ticks). Both the
aperiodic servers for CBS and the adaptive TBS have the utiliza-

*5 In other words, PET is perfectly predicted and therefore task execution
finishes only by the first sub instance.

tion Us = 1 − Up. For periodic tasks, their periods are decided
by exponential distributions where the average value is 100 ticks.
Their WCETs and actual execution times are equal and obtained
by exponential distributions with the average of 10 ticks. As for
aperiodic tasks, a task set includes four different aperiodic tasks.
Each aperiodic task in a set is invoked multiple times and the ar-
rival times are decided by Poisson distribution with 1.25 per 1,000
ticks on average. The WCETs are decided by exponential distri-
butions with the average of 8 ticks. Each task instance has its
actual execution time decided by exponential distributions with
the average of 4 ticks, under the condition that the upper bound is
the corresponding WCET. For all aperiodic task sets, the average
ratio of actual execution times to the corresponding WCETs was
about 0.33.

For each Up from 60% to 90%*6, all combinations of ten peri-
odic task sets and ten aperiodic task sets (total 100 task sets) are
simulated and the average value of aperiodic response times is
shown. For the adaptive TBS, the weighting coefficient for PET
calculation (α in Section 3.1) is 0.5. For CBS, two cases, with the
server period of 20 ticks and with that of 100 ticks, are simulated.
The maximum budget becomes Qs = �Ts × Us�.

4.2 Results
The results are shown in Fig. 3 in which the horizontal axis in-

dicates the processor utilization by periodic tasks (Up), and the
vertical axis indicates the average response time of aperiodic task
executions. Under Up of 65%, the average response times are
almost the same for all the methods except CBS with Ts = 100.

*6 Since tasks’ execution times are decided by using probability distribu-
tions, Up is, for example, not exactly 60%, but about 60% (e.g., 60.2%).
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This is because the server utilization, Us = 1−Up, is large enough
to quickly serve aperiodic requests. Over 70%, the differences
gradually appear. When Up is 90%, the differences are largest;
the average response time of Original TBS is 45.2 ticks, that of
Original TBS w/ RR is 25.2 ticks, that of CBS with Ts = 20
is 25.9 ticks, and that of CBS with Ts = 100 is 18.2 ticks. On
the other hand, Adaptive TBS, Adaptive TBS w/ RR, and Oracle
ATBS exhibit the average response times of 39.2, 19.7, and 9.8
ticks, respectively.
4.2.1 Adaptive TBS vs. Original TBS

In this evaluation, the method with deadline assignment based
on PET (Adaptive TBS) improved the average response time by
13% compared to Original TBS that is based on WCET, and the
proposed method with the resource reclaiming technique (Adap-
tive TBS w/ RR) outperformed Original TBS w/ RR by 22%.
Consequently, the PET-based method exhibits better ability when
it is applied with the resource reclaiming technique.

The use of PET is discussed. The ratio of aperiodic executions
that finished in PET was 57%. Table 1 shows the average of the
shortened deadline length for aperiodic instances that finished in
their PET in the simulation of Fig. 3. “Shortened deadline length”
means how shorter in ticks the deadline is than in the case based
on WCET. The difference between Adaptive TBS and Adaptive
TBS w/ RR does not exist, and therefore the table shows the val-
ues collectively. It is confirmed that the larger Up is, the longer
the shortened length is. This is because larger Up corresponds to
smaller Us(= 1 − Up), therefore the second term of the right ex-
pression in Eq. (1) would be larger and then the shortened length
would be longer. Consequently, the adaptive TBS methods using
PET provide larger improvements when the processor utilization
by periodic tasks is high, in other words, when the capacity of the
aperiodic server is small.

Next, effects of resource reclaiming are discussed. Table 2
shows ratios of resource reclaiming that actually affected the
deadline calculation for the succeeding tasks (that is, ratios of the
cases where dk−1 is the maximum in Eq. (1) before resource re-
claiming). In addition, the table includes average shortened dead-
line lengths in parentheses by the resource reclaiming. From the
table, it is confirmed that, when Up is larger, more and longer

Table 1 Average of shortened deadline length brought by PETs (ticks).

Up (%) Average of shortened deadline
60 19.7
65 22.8
70 26.5
75 31.8
80 40.0
85 54.1
90 84.6

Table 2 Affected resource reclaiming ratio (%) and average shortened dead-
line lengths.

Up (%) Original TBS w/ RR Adaptive TBS w/ RR
60 13.7 (20.1) 12.5 (19.7)
65 16.0 (23.2) 14.8 (22.8)
70 18.8 (28.2) 17.6 (27.7)
75 22.7 (36.8) 21.4 (36.3)
80 28.8 (52.7) 27.4 (51.6)
85 38.3 (85.5) 36.6 (83.3)
90 57.9 (299.1) 56.0 (297.4)

resource reclaiming effects are obtained.
4.2.2 Adaptive TBS vs. CBS

As for CBS with the short server period (Ts = 20 ticks), when
Up is not heavy (from 60% to 85%), the budget is large enough
and therefore the average response times become short. However,
when Up is heavy (90%), the budget is small and then aperiodic
instances might not finish in a period. In this case, the deadline
is postponed to the end of the next period. Then the EDF algo-
rithm would give the instances low priority and the response time
would be longer. When Up is 90%, CBS with Ts = 20 exhibited
the average response time of 25.9 ticks, which is longer than CBS
with Ts = 100 and Adaptive TBS w/ RR.

On the other hand, with the long server period (Ts = 100 ticks),
since CBS gives aperiodic instances deadlines equal to the period
even if the execution times are short, the response times would
not be short especially when Up is not heavy. Actually, at a maxi-
mum in these results, the average response time of Adaptive TBS
w/ RR is shorter by 48% than that of CBS with Ts = 100 when
Up = 70%. On the other hand, when Up is large (90%) and the
budget is small, the average response time of CBS with Ts = 100
is shorter than that of Adaptive TBS w/ RR by about 1.5 ticks.
The adaptive TBS cannot give deadlines short enough to aperi-
odic instances when their PETs longer than the actual execution
times are estimated. In such a case, CBS might make response
times shorter if the execution times fit the budget.

As the results imply, an appropriate server period of CBS varies
depending on the utilization. Short periods would be appropriate
for low Up and long ones for high Up. Although periodic task
sets are fixed in actual applications, their execution times tend to
vary as those of aperiodic tasks. Since Up is decided based on
tasks’ WCETs, the actual utilization would be smaller than Up.
This means optimal T s would be unknown and difficult to decide
beforehand. In addition, in this evaluation, arrivals and execution
times of the four aperiodic tasks followed the same probability
distribution. If the execution times much differ from task to task,
it would be more difficult to find the appropriate server period and
budget for all the tasks.

In this comparison, although effectiveness of CBS and the
adaptive TBS seems to depend on the cases of Ts and Up, it
would be likely that Adaptive TBS w/ RR gives more convinc-
ing performance than the others throughout all Up. Furthermore,
as Oracle ATBS shows, the adaptive TBS with the perfect pre-
diction of PETs always outperforms CBS. This means that better
PETs would improve the response times. The average prediction
accuracy in the simulations is shown in Table 3, where percent-
ages of predicted PETs matching the actual execution times as
well as percentages of underestimated and overestimated PETs
are given. With the adaptive TBS, when PET is underestimated,
(not serious) deadline misses might occur and the remaining part
is executed with the deadline based on WCET, which means that

Table 3 Average prediction accuracy for PETs (%).

Relation Ratio (%)
Matched 13.86
Underestimated 43.16
Overestimated 42.98
(Over- but shorter than WCET) (42.16)
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short response time is difficult to achieve. This is the case in 43%
of aperiodic executions from the table. On the other hand, when
PET is overestimated, enough urgent deadline is not given, and
then response time short enough cannot be expected. (However,
overestimated PET shorter than WCET can bring some effect.
The bottom line in the table shows this ratio.) This table indicates
that the prediction accuracy is not high enough and there are fre-
quent overestimations and underestimations. Therefore, appro-
priate deadlines are not obtained in most cases. Better prediction
methods should be investigated to improve the effects.

5. Concluding Remarks

Total Bandwidth Server is task scheduling algorithm for task
sets consisting of periodic tasks with hard deadlines and aperiodic
tasks without deadlines. In this paper, for improving the TBS,
a method that uses predictive execution times (PET) instead of
worst-case execution times for deadline calculation of aperiodic
instances is proposed. The use of PETs is allowed since aperiodic
tasks do not have explicit deadlines. The aim of the method is to
shorten response times of aperiodic tasks, while the schedulabil-
ity of periodic tasks is not influenced. The method can be used
with the resource reclaiming technique to further reduce response
times.

The evaluation by simulations confirmed that the use of PETs
could shorten response times of aperiodic executions by 13% in
the case without resource reclaiming, and by 22% in the case with
resource reclaiming. In addition, it was found that CBS that is
tolerant of variation in tasks’ execution times has difficulty in fix-
ing the server period appropriate for any processor utilization.
The adaptive TBS has a possibility of always outperforming CBS
if the prediction accuracy for PETs improves. Therefore, better
prediction methods for PETs need to be explored, than that sim-
ply based on the weighted average of the previous execution time
and the previous PET, described in this paper. Unlike estima-
tion of WCETs, prediction of PETs does not involve schedula-
bility issues. Therefore, occasional over/underestimation is not
serious. This means that various history-based or statistical tech-
niques that are more sophisticated than that in this paper can be
candidates for the prediction methods.

The evaluation in this paper used task sets that were gener-
ated based on probability distributions. To reflect actual situa-
tions where task execution times fluctuate, actual program codes,
such as multimedia tasks mainly targeted in CBS [9], should be
used. In the future, evaluation with actual program codes and
scheduling overheads should be performed.
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