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Abstract: Secret data in embedded devices can be revealed by injecting computational faults using the fault analysis
attacks. The fault analysis researches on a cryptographic implementation by far first assumed a certain fault model, and
then discussed the key recovery method under some assumptions. We note that a new remote-fault injection method
has emerged, which is threatening in practice. Due to its limited accessibility to cryptographic devices, the remote-
fault injection, however, can only inject uncertain faults. In this surroundings, this paper gives a general strategy of
the remote-fault attack on the AES block cipher with a data set of faulty ciphertexts generated by uncertain faults.
Our method effectively utilizes all the information from various kinds of faults, which is more realistic than previous
researches. As a result, we show that it can provide a decent success probability of key identification even when only
a few intended faults are available among 32 millions fault injections.

Keywords: cryptography, advance encryption standard, differential fault analysis, intentional electromagnetic inter-
ference, uncertain faults.

1. Introduction

Nowadays, cryptographic functions are widely applied in daily
embedded devices such as smart cards and smart phones. The
security of these devices depends on the secret information such
as an encryption/decryption key stored inside. It is well known
that such sensitive information is leaked from erroneous crypto-
graphic calculations that happen when the embedded devices is
under intentionally added physical disturbance such as an illegal
clock/power supply. These intentionally injected faults can be
used by fault attacks for revealing the secret information. Until
now, fault tolerance is the main research subject when consider-
ing the computational fault of the embedded devices. However,
for cryptographic embedded devices, fault-based attacks that are
significantly powerful in extracting the secret information need
to be considered as well. An updated survey of fault injection
attacks on cryptographic devices can be found in Ref. [1]. Differ-
ential Fault Analysis (DFA), which was proposed by Biham and
Sharmir in 1996 [2], is one of the most discussed fault-based at-
tacks. As shown in Refs. [3], [4], [5], [6], [7], if injected faults fit
an attacker’s intended fault model, only a few fault injections are
enough to identify the secret key in the case of AES (Advanced
Encryption Standard) [8].

The conventional fault-injection methods include the invasive
type such as the optical emission and the laser shot, and the non-
invasive type such as under-powering and over-clocking inputs.
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The invasive fault injections require damaging the chip by re-
moving the package of the cryptographic module, while the non-
invasive ones do not damage the device but require access to the
power supply or the clock supply line connected to the target de-
vice. In contrast, in 2011, Hayashi et al. demonstrated a series of
fault-injection techniques based on ElectroMagnetic (EM) cou-
pling [9], [10], [11], which enables us to perform a fault injection
remotely without any contact with a target device. Using this kind
of fault injections, attackers can observe faulty outputs without
leaving any hard evidence of the attacks. This remote-fault injec-
tion is believed to be very threatening in a practical attack sce-
nario, where the attacker has a limited access to the target device.

In general, it is difficult to achieve a 100% accuracy of having
the intended faults because of the environmental noise and the
limitations of equipments, etc. Needless to say, remote-fault in-
jections are much harder to control and result in being different
from the attacker’s expectation. Therefore, the key recovery of
the DFA attacks in reality should be discussed with a noisy data
set that includes many unexpected and useless data caused by un-
intended faults. Especially, when the remote-fault injections can
hardly control the fault-injection timing and intensity, the data set
will contain only a few useful data mixed with thousands or even
millions of unexpected ones. In this paper, we discuss the key re-
covery strategy when the injected faults are uncertain. Note that
we do not improve the existing DFA attacks under their assumed
fault models, however, we rather combine them and extend their
results considering that uncertain faults are injected. It is worth
mentioning that the unintended faults are treated as noise and they
can be any type of faults. Although some of these unintended
faults can be useful for the key recovery if their injections are
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certain. However, they are not helpful for the key recovery in the
setting of uncertain faults due to too much computational cost.
The requirement for a successful key recovery for the proposed
algorithms is that several intended faults are injected and no false
keys appears.

This paper also assumes the attackers do not know the value
of the inputs, so that an exhaustive search using a plaintext-
ciphertext pair is not accessible. This “chosen but unknown plain-
text” setting has the same significance with the “uncertain faults”
that challenges the successful key recovery for the attackers with
less advantage. Also when the key confirmation using a plaintext-
ciphertext pair is not available, the DFA key recovery can be
failed with a false key. Accordingly, the possibility of the emer-
gence of a false key needs to be discussed.

In this paper, firstly, we discuss a strategy when performing the
remote-fault injection. Secondly, we propose a general algorithm
for the DFA key recovery considering the probability of mistak-
ing the false key for the correct one. Thirdly, we use AES as a
case study to discuss the detailed strategy, and finally we demon-
strate the attack result based on the practical data obtained from
experiments with the EM-based remote-fault injections. We re-
veal that the combination of one 1-byte fault at the 8th round and
two 1-byte faults at the 9th round are of great use to recover the
secret key under the uncertain faults. One of the evaluation re-
sults shows that the secret key can be identified with a probability
of 99.2% even when we have 32 millions of wrong data and a
minimum of expected data. Based on a practical fault injection
scenario, this work verifies the improvement of reducing the re-
quired data by applying the proposed key recovery method for
uncertain faults.

The remainder of this paper is organized as follows. In Sec-
tion 2, we have a discussion about the general strategy for remote-
fault injections. In Section 3, we study a key identification proce-
dure and propose the general key recovery algorithms consider-
ing both uncertain and detectable faults. Section 4 focuses on the
discussion about the attack target of AES-128 to explore the best
strategy for the key identification and the probability of the false
key. In Section 5, we demonstrate the attack result using some
practical data, and Section 6 concludes the paper.

2. General Strategy for Remote-Fault Injec-
tions

In this paper, we assume that the target device encrypts the at-
tackers’ chosen plaintexts but the values are unknown, and the
corresponding ciphertexts are public. Namely, as a minimal con-
dition, the attackers are able to inject faults to the target device
remotely and have access to the faulty ciphertexts. Without any
trigger signal available, the faults are injected at a random timing
and intensity, and hence the information about the injected fault
is principally unknown. In this section, we divide the strategy for
the remote-fault injections into three parts to discuss.

2.1 Fault Injection Timing
If the attackers can make sure that each faulty ciphertext corre-

sponds to a transient fault that disturbs intermediate values only
at a certain round of AES, it will be easier for them to recover the

secret key comfpared to the multiple-round faults. Each round
of AES has 4 types of operations as SubBytes, ShiftRows, Mix-
Columns and AddRoundKey. SubBytes is the only non-linear
operations among them, while the injected fault will spread and
affect each byte of the AES state after 2 rounds of calculations. As
the target of the DFA attack, AES is very weak under certain types
of injected faults, with which the full key recovery complexity be-
comes practical with only 2 intended fault injections. Therefore,
the attackers will set the interval of fault injections longer than
the duration of a one-time encryption operation. Moreover, as-
suming that each round of operation takes the same amount of
calculation time, which is true in most cases, faults are assumed
to be injected with the same probability for each round.

2.2 Fault Injection Intensity
The attackers will control the fault-injection intensity in order

to have a low fault-injection rate, which is known to be prefer-
able in the key recovery [3], [4]. More precisely, a small number
of affected bytes is diffused rapidly through a cryptographic algo-
rithm, e.g., two rounds for AES, so that they could recover all the
secret key by performing differential analysis with small guessing
entropy of the secret key. In the case of 128-bit AES (AES-128),
when a fault is injected at the 9th or 10th round, the difference be-
tween fault-free and faulty ciphertexts generated from the same
plaintext is not fully active as long as the fault injection does
not affect multiple bytes at once. In other words, by checking
the ciphertext difference, the attackers know that a specific fault,
e.g., one-byte fault, is injected to the 9th or 10th round. Such
detectable-fault injections enable us to determine the necessary
fault model in the key recovery process. The key-extracting algo-
rithms for undetectable and detectable faults will be discussed in
Section 3 in detail.

2.3 Number of DFA Experiments
The more the attackers inject faults, the more likely they suc-

ceed in having intended faults that can be used for recovering the
secret key. In the IEMI-based remote-fault injection by Hayashi
et al. [9], they focused on injecting the most efficient fault, i.e.,
twice of 1-byte faults at the 8th round of AES [3]. In this case, it
is difficult to decide how many experiments should be executed
since the 8th-round fault is unable to be detected from the cipher-
text difference.

Here, based on the assumption that all AES rounds are affected
by faults with the same probabilities, the attackers can predict
when to stop the experiments by observing the number of the
9th- or 10th-round fault injections that are detectable. For exam-
ple, a reasonable stopping timing in attacking AES is when the
two faulty ciphertexts corresponding to the 9th-round fault are
collected. However, this method does not always provide an ex-
pected data set, which leads to failure of identifying the secret
key.

Alternatively, the attackers can wait for multiple 1-byte faults
at the 9th round that are detectable. However, we need at least 8
times of 1-byte faults at the 9th round, which requires more fault
injections compared with the case of collecting two 1-byte faults
at the 8th round. This strategy is inefficient and sometimes infea-
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sible since the attackers have a limited access to the device and
can often collect a minimum data set in a practical scenario.

In this situation, we construct a general strategy for the attack-
ers to utilize a given data set and maximize the probability of
identifying the true key.

3. Preliminary Study of Key Identification
from Uncertain Faults

In a practical DFA experiment, we generally fail to inject an in-
tended fault, i.e., an uncertain fault is injected to a device. In this
case, we often result in performing DFA based on a wrong fault
model, which leads to obtaining wrong key candidates. As a re-
sult, we may mistake wrong key(s) for a correct one. Such wrong
keys are called false keys in this paper. Intuitively, the probability
of taking a false key becomes higher as the uncertainty of faults is
increased. In this section, we discuss the probability of retrieving
false keys under uncertain faults in detail.

3.1 Notations and Abbreviations
The notations and abbreviations used in this paper are summa-

rized as follows.

MCx
y : one of four MixColumns functions, labeled with

y(= 0, 1, 2, 3), at the x-th round of AES
k, k10 : a secret key and 128-bit 10th-round key of AES

k10
y : a 4-byte 10th-round key of AES operated with

the output of MC9
y

m : the amount of information leakage
p : the number of total uncertain fault injections

used for DFA experiments
q : the number of intended fault injections used for

DFA experiments
K,Ks : key space, e.g., K = 2128 and Ks = 232 for 128-

bit AES
FxByR : fault model when an x-byte fault is injected at

the y-th round of AES
F̃xByR : the same fault model as FxByR but the attackers

are unsure whether or not an x-byte fault is in-
jected at the y-th round of AES

A, B,C,D : sets used for identifying the true key

3.2 Identification of True Key from Undetectable-Uncertain
Faults

We deal with uncertain faults, where intended and unintended
faults are randomly injected for each experiment. More precisely,
we have no clue as to whether the experimentally obtained key
candidate sets include the true key or not. With undetectable-
uncertain faults, we have two types of key candidate sets. One
includes the true key and the other does not. They are obtained
from DFA respectively based on a correct and wrong fault mod-
els *1. Algorithm 1 shows a general algorithm that can be used
for extracting the true key from uncertain faults.

Intuition tells us that Algorithm 1 works well when the in-
tended faults are injected at a high success rate and the size of key

*1 Note that both models are the same when we expect a specific fault in-
jection.

Algorithm 1 Algorithm for extracting the secret key from
undetectable-uncertain faults
Require: the empty sets A, B0, B1, . . ., and Bn.

Ensure: the secret key k.

1: obtain sets of key candidates, B0 and B1, with two DFA experiments

based on a fault model, F̃, and set A = B0 and i = 1.

2: while A ∩ Bi = ∅ do

3: update A as A⇐ A ∪ Bi, and increment i (i = i + 1).

4: obtain Bi with a DFA experiment based on F̃.

5: end while

6: update A as A⇐ A ∩ Bi.

7: return the element of A � k.

candidates, |Bi|, is small enough. This is because the condition of
step 2 in Algorithm 1 is hardly taken for a false key. However, in
some cases such that |Bi| is not small enough for each DFA ex-
periment, Algorithm 1 may output a false key. In the following,
we discuss the conditions that Algorithm 1 outputs k correctly.

We discuss the probability of having no false key(s), i.e., the
case that step 2 in Algorithm 1 is taken by coincidence. Suppose
that we keep on failing to inject an intended fault for p times of
DFA experiments based on a wrong fault model. We do not have
false keys as far as step 2 is not taken in Algorithm 1. In this case,
we have

A =
p⋃

i=0

Bi, (1)

where k � Bi (i = 0, 1, . . . , p). If the elements of |Bi| are assumed
to be randomly chosen from the whole key space *2, the probabil-
ity of satisfying Eq. (1) can be expressed as

Pr

[
A =

p⋃
i=0

Bi

]
=

p∏
i=1

Pr

[
Bi ∩

i−1⋃
j=0

Bj = ∅
]

=

p∏
i=1

b∏
j=1

(
1 − bi

K − j + 1

)
, (2)

where the assumption, |Bi| = b, holds for i = 0, 1, . . . , p for sim-
plicity. Note that, as far as using the same fault model, we have
almost the same number of key candidates for each DFA experi-
ment in a practical case. According to Eq. (2), if we take b small
enough such that b � K, we have

Pr

[
A =

p⋃
i=0

Bi

]
≈

p∏
i=1

(
1 − bi

K

)b

. (3)

Next, we consider the case that the true key, k, can be found in
several sets of Bi. Suppose that Algorithm 1 outputs the true key
on the p-th execution of the DFA experiment. In this case, the
probability of having no false keys by executing Algorithm 1 is
regarded the same as Eq. (3) *3. Therefore, as far as the condition
of b � K is satisfied, Algorithm 1 outputs the true key correctly
with a probability given by Eq. (3). In other words, Eqs. (2) and
(3) are for calculating the probability that every element from all
the key candidate sets is unique.

*2 This is a natural assumption in a DFA experiment considering the prop-
erty of a cryptographic algorithm such as AES.

*3 The cardinality of the sets containing the true key is also assumed to be
b.
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Algorithm 2 Algorithm for extracting the secret key from uncer-
tain faults utilizing detectable faults
Require: the empty sets C, D0,D1, . . ., and Dn.

Ensure: the secret key k.

1: obtain a set of key candidates, C, with one or several DFA experiments

based on a fault model, Fu (i.e., k ∈ C,) and set c = |C| and i = 0.

2: while |C| = c do

3: obtain a set of the key candidates, Di, with a DFA experiment based

on a different fault model, F̃v.

4: if C ∩ Di � ∅ then

5: update C as C ⇐ C ∩ Di.

6: else

7: hold C and discard Di, and increment i (i = i + 1).

8: end if

9: end while

10: return the element of C.

3.3 Identification of True Key from Uncertain Faults Utiliz-
ing Detectable Faults

In contrast to the case that all the faults are undetectable and
uncertain, we sometimes can judge whether or not the intended
fault is injected from the ciphertext such as the 1-byte fault at the
9th round, F1B9R, with high probability *4. Algorithm 2 shows
a general procedure that can be used for extracting the true key,
which makes the best use of detectable faults.

Similar to Algorithm 1, Algorithm 2 can extract the true key
when the intended faults are injected at a high success rate and
the sizes of key candidates, |C| and |Di|, are small enough. It
is worth mentioning that Algorithm 2 requires much less mem-
ory than Algorithm 1 because we can check whether F̃v is the
intended one or not by following the step 4 in Algorithm 2. In
other words, the undetectable F̃v becomes detectable thanks to C

obtained based on Fu, which makes the key recovery efficient.
If the detectable faults are used for reducing a part of the key, C

contains a partial-key candidates. Therefore, the key space dealt
with in Algorithm 2, denoted as Ks, is normally smaller than the
whole key space, K. More specifically, Algorithm 2 can also be
understood as an algorithm extracting the 4-byte 10th-round key,
i.e., k10

0 , from the detectable F1B9R and undetectable-uncertain
1-byte faults at the 8th round, F̃1B8R, where intended and unin-
tended faults are indistinguishably mixed.

Accordingly, we can derive the probability of having no false
keys, i.e., step 4 in Algorithm 2 is not taken by coincidence, dur-
ing the p times of DFA experiments as

Pr
[
|C| = c

]
=

p∏
i=1

d∏
j=1

(
1 − c

Ks − j + 1

)

≈
(
1 − c

Ks

)dp

≈ exp

(
− cd

Ks
p

)
, (4)

where we assume that |Di| = d holds for i = 0, 1, . . . , p and
c, d � Ks.

*4 F2B9R, F3B9R, and F4B9R may be misjudged as F1B9R. However, we ig-
nore such cases since the probabilities are assumed to be much lower
than that of F1B9R. Even if we misjudge the fault, we can eliminate the
resultant false keys as will be discussed in Section 4.

Suppose that Algorithm 2 outputs the true key on the p-th exe-
cution of the DFA experiment. In this case, as far as the condition
of c, d � Ks is satisfied, Algorithm 2 outputs the true key cor-
rectly with a probability given by Eq. (4). Equation (4) is similar
to Eqs. (2) and (3). The difference is that c replaces bi in Eq. (4)
since the key candidate set obtained from the detectable fault is
used.

3.4 Practicability of Algorithms 1 and 2
However, in the case that the number of key candidates, b, c,

or d, is not small enough for each DFA experiment, Algorithms 1
and 2 may output a set including false keys. When multiple el-
ements appear as the result of Algorithm 1 or 2, at least one of
them is a false key. Then the attacker can continue the search for
the remaining data for the key candidate that appears the most
times. After all the data are used, if still multiple key candidates
are equally likely to be correct, then the data is not enough for key
identification. However, we can restrict the key space to a very
small set. In the setting of no key confirmation using a plaintext-
ciphertext pair, the recovered key cannot be surely the correct
one. In the following sections, we discuss the practicability of
Algorithm 1 based on several well-known fault models on AES-
128.

4. Fault Models for AES-128

4.1 One-byte Faults at the 8th Round of AES-128
For AES-128, the most efficient DFA was firstly proposed by

Piret and Quisquater in 2003 [3], and several optimizations have
been reported [5], [6]. Tunstall and Mukhopadyay proposed a
DFA method whereby the key space can be reduced up to 212.
It is assumed that an attacker is able to inject a one-byte fault
at the 8th round, F1B8R, and they analyze the differential of the
correct and faulty outputs to retrieve the key candidates.

Under the fault model of F1B8R, it is reported that the leaked
information, m, can be derived as

m = 128 − log2

(
(28 − 1) × 16

)
≈ 116.006,

in the case of AES-128 from the information-theoretic point of
view [7]. Therefore, we conclude that the method by Tunstall and
Mukhopadyay is optimal *5. Suppose that the attacker can inject
the intended fault, F1B8R, without failure and obtain two sets of
the key candidates, B0 and B1 in Algorithm 1, whose cardinali-
ties are both 212. The probability in Eq. (3) becomes almost 1 for
b = 212, p = 2, and K = 2128, which means that we hardly have
false keys.

We extend this discussion to DFA with uncertain faults, which
has not been mentioned explicitly in any previous work. Consid-
ering a practical case, where p is small enough compared to K,
e.g., p = 220, the probability in Eq. (3) also becomes almost 1.
Therefore, uncertain faults aiming at F1B8R are regarded as pow-
erful to identify the 128-bit secret key of AES-128. However, we
should notice the fact that as p increases, the probability gradu-
ally decreases and a false key may occur in Algorithm 1. In this
case, we may need more sets of key candidates from DFA with

*5 This agrees well with the experimental results using an actual AES im-
plementation.
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the intended fault.

4.2 One-byte Faults at the 9th Round of AES-128
The one-byte fault model at the 9th round, F1B9R, is also useful

for the attackers.de The fault propagates through one of the Mix-
Columns functions at the 9th round, and results in a 4-byte dif-
ference in the output, which means that the corresponding 4-byte
key space can be reduced based on the model of F1B9R. We de-
note the column of the MixColumns functions with the fault prop-
agation at the 9th round as MC9

�. According to the information-
theoretic observation [7], the information leakage with regard to
4 bytes of the 10th-round key, k10

� , is derived as

m = 32 − log2

(
(28 − 1) × 4

)
≈ 22.006.

Therefore, the key space of k10
� can be reduced up to 210 approxi-

mately. Suppose that two faults of F1B9R are injected as intended
and they are propagated to the same MC9

�. We have b = 210,
p = 2, and K = 232 in Algorithm 1 and can use the relation of
Eq. (3), and the probability becomes almost 1. Thus, we rarely
have false keys in Algorithm 1.

Note that we do not consider the case for the uncertain fault
aiming to inject F1B9R because the attacker easily knows whether
or not F1B9R is actually injected from the difference between cor-
rect and faulty outputs. Again, as mentioned in Section 2.3, the
key recovery based on only the detectable F1B9R is possible but
considered to be ineffective since the available information from
F1B8R is not effectively used.

4.3 One-byte Faults at the Eighth and Ninth Rounds of
AES-128

This section shows that it is a good strategy to use the combina-
tion of undetectable-uncertain F1B8R (i.e., F̃1B8R) and detectable
F1B9R to identify the key. As the first step, the faults of F1B9R

are used with F̃1B8R to reduce the key space of k10
� . As the sec-

ond step, for the reduced key space, we apply the fault model of
F1B8R to the rest of DFA experiments as discussed in Section 4.1.
This analysis method is especially useful when the intended F1B8R

faults are rarely injected.
Assuming that we succeed in injecting the intended F1B8R only

once through DFA experiments, in the following, we discuss how
many faults of F1B9R are necessary for identifying the key.
4.3.1 Case of F1B8R × 1 + F1B9R × 1 Under Certain Fault

Injections
For instance, we have one F1B9R and one F1B8R injected to

AES-128 as intended in two DFA experiments. The 4 bytes of
the 10th-round key, e.g., k10

1 , XOR-ed with the output of a spe-
cific MixColumns function, e.g., MC9

1 as shown in Fig. 1, can
be identified with a probability of almost 1 as mentioned in Sec-
tion 4.3. Accordingly, we can specify all the differential values
of the output of MC9

1 using the identified 4-byte 10th-round key,
k10

1 . Hence, the 1-byte differential value in the output of MC8
0 is

exactly determined. Moreover, as we know that only 1 byte is
active in the input of MC8

0, we have only four possible differential
values in the inputs of MC8

0 considering the differential property
of the MixColumns function. This observation enables us to ob-
tain the information leakage as

Fig. 1 A simplified AES structure oriented to the differential property used
in this paper.

m = 128 − log2 4 = 126.

Therefore, we cannot identify the 128-bit key and three false keys
would be obtained theoretically. Note that the above observation
holds for the case that more than one fault of F1B9R is injected to
the input of the same MC9

1.
4.3.2 Case of F1B8R × 1 + F1B9R × 2 Under Certain Fault

Injections
If we have one fault for F1B8R and (more than) two faults for

F1B9R, which are related to different MixColumns functions, e.g.,
MC9

0 and MC9
1 in Fig. 1, injected to AES-128 without failure, we

can identify the key. In order to understand this, we consider two
sets of key candidates, each of which is obtained from one F1B9R

and one F1B8R as mentioned above. Note that each set of the key
candidates has three 128-bit false keys depending on the location
of the differential values in the inputs of MC8

0. The probability
that the false keys collide for two sets is negligible, so that the
key can be identified.
4.3.3 Case of F̃1B8R × p+ F1B9R × α Under Uncertain Fault

Injections (α = 1, 2)
However, in the case that uncertain faults happen while aiming

to inject F1B8R, the probability of having no false keys becomes
higher as q/p increases.

In order to explain this, we consider an example case that one
F1B8R is realized in 211 fault injections and one F1B9R is obtained.
As discussed previously, we first use the F1B9R to find out the cor-
rect F1B8R from 211 times of experiments. Note that the correct
F1B8R can identify 4 bytes of k10

� with the F1B9R while the false
F1B8R usually cannot. Using Eq. (4) for c = d = 210, p = 211,
and Ks = 232, the probability of identifying the correct F1B8R is
derived as

exp

(
− cd

Ks
p

)
= exp

(
− 210 · 210

232
· 211

)
≈ 0.607.

As p increases, the probability becomes lower. Accordingly, we
have several false keys left as 4 bytes of k10

� with the case for DFA
experiments with F̃1B8R × p + F1B9R × 1 for a large p.

Furthermore, in order to derive the expected value of false keys,
denoted as w, we consider the probability that the number of false
keys is i. Assuming that at most one false key is obtained in a
single DFA experiment, the probability can be expressed as

(
p
i

)⎛⎜⎜⎜⎜⎜⎜⎝
(
d
1

)
c

Ks

(
1 − c

Ks

)d−1
⎞⎟⎟⎟⎟⎟⎟⎠

i⎛⎜⎜⎜⎜⎜⎜⎝
(
1 − c

Ks

)d
⎞⎟⎟⎟⎟⎟⎟⎠

p−i

c© 2014 Information Processing Society of Japan 146



Journal of Information Processing Vol.22 No.2 142–151 (Apr. 2014)

=

(
p
i

)(
cd
Ks

)i(
1 − c

Ks

)dp−i

=

(
p
i

)(
cd

Ks − c

)i(
1 − c

Ks

)dp

.

Therefore, the expected value is derived as

w ≈
p∑

i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩i

(
p
i

)(
cd

Ks − c

)i(
1 − c

Ks

)dp
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= p
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· exp

(
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)

=
cd
Ks

p · exp

(
− cd

Ks

)

≈ cd
Ks

p. (5)

Hence, we see that w is proportional to p when c, d � Ks.
For the case of F̃1B8R × p + F1B9R × 2, suppose that two 4-byte

10th-round keys, e.g., k10
0 and k10

1 , are obtained by executing Al-
gorithm 2 twice *6. Specifically, we execute Algorithm 2 using
a data set with one F1B9R at MC9

0 and F̃1B8R × p to obtain k10
0 .

And then, we execute Algorithm 2 again based on the same data
set including one F1B9R at MC9

1 and F̃1B8R × p for retrieving k10
1 .

Once we have k10
0 and k10

1 , we see the validity of those 4-byte key
candidates by using the property of the MixColumns function at
the 8th round, i.e., MC8

0, to see the consistency among the key
candidates. More precisely, we check whether or not pairs of the
key candidates for k10

0 and k10
1 are generated from the same DFA

experiments based on F̃1B8R, and the differential values meet the
relationship of MC8

0.
Suppose that we obtain w false keys, as derived in Eq. (5), for

both k10
0 and k10

1 , in addition to the true key. Then, we consider
the probability that j(≤ w) pairs of the false keys for k10

0 and k10
1

satisfy the above-mentioned consistency. We notice the following
facts in deriving the probability.
(i) We assume that false keys for k10

0 and k10
1 are independently de-

termined corresponding to w (out of p) DFA experiments based
on F̃1B8R. We have the probability that at least one pair of the
key candidates for k10

0 and k10
1 are generated from the same DFA

experiments is Qj =
(
w
j

)(
p−w
w− j

)
/
(

p
w

)
.

(ii) Moreover, the probability that the differential values meet the
relationship of MC8

0 is about 28/216 or 2−8 since there are 28 − 1
and (28−1)2 differential values respectively for the input and out-
put of MC8

0.
As a result, we have the probability that there are no false keys

and identify the key as

(
1 −

w∑
j=1

Qj

)
+

( w∑
j=1

Qj(1 − 2−8) j

)

*6 Note that we have several key candidates for k10
0 and k10

1 according to the
results summarized in Table 1, and the key candidates are not narrowed
down as for k10

2 and k10
3 .

Table 1 Probability of identifying the correct k10 for various p in the case
for F̃1B8R × p + F1B9R × 2 (c = d = 210 and Ks = 232).

p 220 221 222 223 224 225

w 256 512 1024 2048 4096 8192
Pr. 1.000 1.000 1.000 0.998 0.996 0.992

= 1 −
w∑

j=1

Qj

(
1 − (1 − 2−8) j

)
. (6)

Table 1 summarizes the probability of identifying k10 for var-
ious p, which is derived by Eq. (6). We know that even under
uncertain faults, we can identify the true key at a high probability
by utilizing two F1B9R related to different MC9

�. As a result, con-
sidering the case that 32 millions or 225 DFA experiments, which
is regarded as near to a limitation of reality, the success rate of
identifying the key is 99.2%.

In this section, for a specific attack target of 128-bit AES,
we discussed the key recovery under different fault models. In
summary, Sections 4.3.1 and 4.3.2 discuss the attacks using cer-
tain faults, while Section 4.3.3 is about uncertain faults. In Sec-
tion 4.3.3, the fault of F1B9R is treated as detectable uncertain
faults and the discussion is related to the Algorithm 2 in Sec-
tion 3. It is worth mentioning that F1B9R is not widely used in
previous fault attacks. On the other hand, Algorithm 1 that only
uses F1B8R is often used since it is the most straightforward key
identification method when ignoring the usage of F1B9R.

5. DFA Experiments with Remote-Fault Injec-
tions

5.1 Intentional Electromagnetic Interference on AES Hard-
ware

We employ the same configuration for the fault-injection ex-
periments as in Refs. [9], [10], [11].

Figure 2 shows a block diagram of the Intentional ElectroMag-
netic Interference (IEMI) fault-injection setup, where the cryp-
tographic module is mounted on a common device, i.e., a PCB
board, equipped with a twisted-pair power cable. In general,
IEMI is an overt threat that usually causes permanent damage
when applied to electronic devices [12]. However, in this ex-
periment, we cause transient faults in electrical devices without
damaging their operation and hardware based on above previous
studies. The main purpose in the implementation of this IEMI
technique is to invert one or several bits in the intermediate re-
sult, which can be recovered after a reset or at the end of the op-
eration. Here, the entire function of the Integrated Circuit (IC) is
expected to be unchanged during such a fault injection. This sec-
tion presents an experiment in which the above-mentioned IEMI-
based remote-fault injection is applied to an actual cryptographic
IC. We first describe the setup of the experiment and injection
results.

As shown in Fig. 2, we employ a standard evaluation board
SASEBO-G as the test device [13]. The side-channel attack stan-
dard evaluation board (SASEBO) is developed for evaluating the
cryptographic implementations against physical attacks includ-
ing the fault-based attacks. SASEBO-G is an FPGA-based type
of SASEBO boards, which has several ports that make the power
consumption measurement more accessible. In our experiment,
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Fig. 2 Experimental setup.

we measure the power consumption of the FPGA from a con-
nector named J8 to observe the effects of fault injection via the
power consumption variation. An AES circuit supporting 128-bit
key length is implemented in FPGA1. The circuit uses a loop ar-
chitecture, where one round is processed every clock cycle. As a
result, a single encryption operation takes 10 clock cycles for the
ten cryptographic rounds and one additional clock cycle for data
I/O. The clock frequency and the supply voltage on SASEBO-G
are 24 MHz and 3.3 V, respectively. The secret key is a reference
value (0x2b7e151628aed2a6abf7158809cf4f3c), as given in the
algorithm specification. The fault injections are performed for
340,000 different plaintexts generated at random, and the faulty
outputs, i.e., ciphertexts, are stored in a PC. We calculate the true
outputs separately and determine what kinds of faults have oc-
curred in the module by comparing the corresponding true output
with the faulty one.

Sinusoidal waves are generated by a signal generator
(MG3641A), after which they are amplified by using an amplifier
(ZHL-2-12.) Finally, the sinusoidal waves are introduced via
an injection probe (FCC F-140) into a power cable attached to
SASEBO-G. The injection probe is located 60-cm away from
SASEBO-G. In this experiment, we observe the VDD/GND fluc-
tuations of the FPGA1 by using an oscilloscope (MSO6104A) in
order to determine how the introduced sinusoidal wave affects
the original wave of the voltage drop. Note that the measurement
point is located on the GND line of FPGA1.

In the experiments, we employed sinusoidal waves with a fre-
quency between 170 and 200 MHz, increased at steps of 1 MHz,
against SASEBO-G running AES operations continuously. This
is because the transfer functions for transferring from the injec-
tion probe to the points near FPGA1 have the lowest decrease
rate. We find that we can generate faults with high probability
based on the previous experimental results [9], [10], [11]. Note
that in this case it is also possible to induce faults by introducing
an impulse wave composed of a wide range of frequencies, e.g., a
wave generated by an ESD gun, with a much higher voltage, e.g.,
around 10 – 1,000 V. However, such high-voltage signals would
damage some of the components inside the device, and therefore
such an IEMI attack would not pose a severe threat from the view-
point of information leakage.

Fig. 3 Voltage waveforms observed during AES operation.

Table 2 Occurrence frequency of F1B8R and F1B9R with IEMI-based
remote-fault injections.

F1B8R F1B9R

0.007% (1/13,640) 0.073% (10/13,640)

Figure 3 shows voltage fluctuations between VDD and GND
during AES operations with and without any fault injection,
which is observed at a power consumption measurement connec-
tor J8. The encryption process starts at around 250 ns and finishes
after 11 clock cycles. There are 11 peaks in each of the wave-
forms. Compared with the original waveform, the faulty wave-
form fluctuated widely in the range of approximately 400 mV. In
this experiment, faulty outputs were observed as a result of in-
jected voltages in the interval between 132 and 135 dBµV. As
shown in Fig. 3, the AES power consumption waveform with no
fault injection (black line) is much more stable compared to the
waveform under fault injection (grey lines). The electromagnetic
interference varies the electric potential of VDD/GND and gen-
erates temporary faults. Such faults would be similar to those
obtained by under powering. The results show that faults can be
injected by using sinusoidal waves of several volts, which can
be generated by a combination of off-the-shelf equipments, under
the experimental conditions of injecting faults from a distance
of 60 cm from the device. On the other hand, we did not ob-
serve any faults to the cryptographic module when we employed
sinusoidal waves in other frequency bands because the other si-
nusoidal waves first caused damage to other modules.

5.2 Results of DFA with IEMI-Based Remote-Fault Injec-
tions

Based on the experiments shown in Section 5.1, Table 2 shows
the occurrence frequency of faults for F1B8R and F1B9R. Differ-
ent from the theoretical assumption we made, the occurrence fre-
quency of the faults varies for each round. This is because the
IEMI-based remote-fault injection is not stable and the size of
each data set is not big enough.

As can be seen from the data set, two faults of F1B8R are not
available so that we fail to identify the key as far as using the
previous strategy [9]. Instead, we thought of using the detectable
faults, F1B9R. However, we may not be able to identify the true
key since the detectable faults, F1B9R, may not be related to all
the different MC9

� as discussed in Section 2.3, which is, in fact,
the case of the data set obtained from the experiments. Therefore,
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Table 3 Comparison between three attack approaches to identify the true key.

Fault Model Identification Alg. Mem. [Bytes] Time [TF1B9R ] Key Identification

F̃1B8R × 2 Algorithm 1 216 · p 5p Fail
F1B9R × z - 212 z Fail

F̃1B8R × p + F1B9R × 2 Algorithm 2 217 p + w Success

For the judgement of the key identification, we use the experimental data in Table 2 and z = 10.
For the comparison of the memory and time cost, we use the theoretical estimations.

the only strategy to identify the true key in this case is to use the
fault model, F̃1B8R × p + F1B9R × 2.
5.2.1 Comparison for Key-Identification Experiments

The key recovery does not use the detectable faults of F1B9R,
which is similar to Algorithm 1. While we actively use the F1B9R

in our key recovery process which makes our key recovery pro-
cess similar to Algorithm 2. Three key recovery processes are
compared in this section.

First of all, the key recovery using F1B9R has a higher success
rate for the identification of the true key than the one that only
uses F1B8R. For example for the data set we mentioned that only
one fault of F1B8R is available, the secret key cannot be identified
using Algorithm 1.

For the key-identification process based on only faults of
F1B8R, each faulty ciphertext should be treated as it is corre-
sponding to the fault of F1B8R, therefore all the corresponding
key spaces have to be stored as can be seen in Algorithm 1. Thus,
the memory required to store all the key space is estimated to be
about 212 · p · 16 or 216 · p. For the time complexity, we consider
each F1B8R is treated as 4 times of F1B9R at the final AES round
and 1 time of F1B9R at the 9th AES round. The total process time
is about z · TF1B9R since only the z faulty ciphertexts need to be
used.

As for the key-identification process based on only faults of
F1B9R, which is detectable. Therefore, we need the memory only
to store all the partial-key candidates, k10

� , which is estimated as
210 · 4 or 212, approximately. For the time complexity, we con-
sider each F1B8R is treated as 4 times of F1B9R at the final AES
round and 1 time of F1B9R at the 9th AES round. Denote the time
of dealing with a F1B9R as TF1B9R , the total process time is about
5p · TF1B9R since all the p faulty ciphertexts have to be treated as
F1B8R. This approach requires significantly less memory and time
costs, however, it heavily depends on the property of the fault in-
jections.

On the other hand, for the approach using both F1B8R and
F1B9R, which uses the detectable F1B9R to verify the undetectable
F̃1B8R, only the key space for the verified F1B8R needs to be stored.
As a result, we can largely reduce the memory cost for storing
the key spaces. Considering only 2 faults of F1B9R and 1 fault of
F1B8R are required for the key identification, the size of the stored
key space is about 210 · 2 · 4 + 212 · 16 ≈ 217. For the process-
ing time, first, key candidates of two different k10

� are obtained in
2 ·TF1B9R . Secondly, we need about p ·TF1B9R to reduce the key can-
didates for a k10

� and we have w key candidates. At the same time,
we can specify w faulty ciphertexts that satisfy the fault model
of F1B8R out of p faulty ciphertexts. For the w faulty ciphertexts,
we check the consistency as discussed in Section 4.3.3 *7, which

*7 We assumed that the true key can be identified by the consistency check
(i) in Section 4.3.3 for simplicity)

requires w · TF1B9R . Lastly, we perform DFA based on F1B8R to
identify the whole key, which requires 5 ·TF1B9R . In total, we have
(2 + p + w + 5) · TF1B9R ≈ (p + w) · TF1B9R for the time cost.

As shown in Table 3, we compare the memory and time com-
plexity for these two key recovery processes as well as the re-
sults of the key identification. For AES-128, the most useful fault
injection is F1B8R, which has been discussed a lot, while F1B9R

has not been done enough since it is not very effective for the
key recovery. Therefore, even under the more practical scenario
where only uncertain faults are available, Algorithm 1 tends to
be used by considering F1B8R, which leads to a straightforward
result from previous researches. However, we note that F1B9R is
detectable and can help significantly in the key identification pro-
cess, and hence Algorithm 2 is proposed here. Comparing the
results using Algorithms 1 and 2, we know that Algorithm 2 is
better in key recovery for the data set obtained from a practical
experiment (see Table 3). The reason behind this is that the de-
tectable fault of F1B9R is actively used and the useful information
is not wasted for the key recovery.

6. Conclusions

This paper discussed the practical strategy for the key recov-
ery on AES implementation with uncertain faults. For the un-
certain faults, the injected faults are not necessarily as intended,
and therefore the previous DFA researches cannot be applied di-
rectly. In this paper, we proposed a methodology for the key re-
covery process considering the uncertain faults can be divided as
undetectable ones and the others. We discussed the probability
of having false keys in detail against various scenarios of fault
occurrences. The proposed key recovery algorithms and proba-
bility calculation are verified using the data from the IEMI-based
remote-fault injections. Our work filled the gap between the prac-
tical injections and the theoretical DFA key recovery researches.
We also demonstrated that the key can still be identified effec-
tively at a high success rate when the injected faults are uncertain
and noisy.
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