
Electronic Preprint for Journal of Information Processing Vol.22 No.2

Regular Paper

Learning of Task Allocation Method Based on
Reorganization of Agent Networks in Known and

Unknown Environments

Kazuki Urakawa1,a) Toshiharu Sugawara1,b)

Received: July 6, 2013, Accepted: January 8, 2014

Abstract: We propose a team formation method that integrates the estimating of the resources of neighboring agents
in a tree-structured agent network in order to allocate tasks to the agents that have sufficient capabilities for doing tasks.
A task for providing the required service in a distributed environment is often achieved by a number of subtasks that
are dynamically constructed on demand in a bottom-up manner and then done by the team of appropriate agents. A
number of studies were conducted on efficient team formation for quality services. However, most of them assume that
resources in other agents are known, and this assumption is not adequate in real world applications. The contribution of
this paper is threefold. First, we extend the conventional method by combining the learning of task allocation and the
reorganization of agent networks. In particular, we introduce the elimination of links as well as the generation of links
in the reorganization. Second, we revise the learning method so as to use only information available locally. Finally,
we omitt the assumption that all resource information in other agents is given in advance. Instead, we extend the task
allocation method by combining it with the resource estimation of neighboring agents. We experimentally show that
this extension can considerably improve the efficiency of team formation compared with the conventional method even
though it does not require knowledge of resources in other agents. We also show that it can make the agent network
adaptive to environmental changes.
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1. Introduction

The task/resource allocation in multi-agent systems (MAS)
contexts has received a great deal of interest since it is a fun-
damental problem applicable to many applications. For ex-
ample, a service provided by networked computers on the In-
ternet is realized by doing a corresponding task that consists
of a number of subtasks dynamically constructed in a bottom-
up manner [11], [16]. This framework is often referred to as
service-oriented computing or service-oriented multi-agent sys-
tems [10], [16], in which an agent corresponds to a server or pro-
gram. Because they are developed and deployed by a different
organization or company to undertake specialized tasks and/or
subtasks however, it is usually impossible in a distributed open
environment to get all relevant information necessary for appro-
priate allocations within a reasonable time. Furthermore, these
agents have to be selected for timely service provision by taking
into account currently available resources/capabilities as well as
the user’s requirements. Since the failure or delay of only one
subtask for the service results is a significant delay or failure of
the required service, efficient distributed task allocation is a key
goal for services meeting the required quality.

This type of resource allocation in a distributed environment
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is often referred to as team formation (or coalitional formation)
problems in MAS literature [10], [14]. A team consists of (1) a
set of agents that have sufficient available resources for doing all
subtasks for the required task and (2) the assignment of the team’s
subtasks to the agents [18]. If we consider the timely and qual-
ity services on the Internet, the agents’ teams must dynamically
and adaptively as well as efficiently be formed in accordance with
the request patterns and frequencies of services, workloads, and
types of currently available agents. However, this is a challeng-
ing problem because agents always have to do this with uncertain
information related to other agents.

A number of studies proposed dynamic team formation algo-
rithms. For example, Abdallah and Lesser proposed an effective
team formation method that uses reinforcement learning in a tree-
structured, that is, hierarchical, agent network [2]. However, in
their approach, after sufficient learning time, tasks are likely to be
allocated only to specific agents and, thus, this results in unbal-
anced use of resources in the agent network. To avoid the imbal-
ance, Ref. [12] proposed incorporating a learning-based reorgani-
zation method into that proposed in Ref. [2]. However, we found
that their reorganization method often did not work well because
the reorganization process stopped, and so became meaningless
in the earlier stages of learning. Moreover, their learning method
assumed information on resources other agents manage/have and
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internal intermediate learning states in other agents; this assump-
tion is not acceptable in actual applications.

The contribution of this paper is threefold. First, we propose
a more effective task allocation method that is incorporated with
the reorganization method in a hierarchical agent network. We
also added the link elimination process into our method to im-
prove the efficiency. Second, we revised the learning method in
Ref. [12] so as to assume no internal intermediate learning states
in other agents. Third, we extend this method by incorporating it
with the resource estimation method for unknown environments,
meaning that the resources in other agents are unknown to each
other. Similarly, we call environments known environments if all
resource information in other agents is available in advance.

This paper is organized as follows. We first explain the related
work and then describe the model of agent and tasks and the issue
addressed here. In Section 4, the proposed learning with reorga-
nization for the team formation problem and resource estimation
method are presented. After that, we evaluate it experimentally
by comparing it with the conventional and random methods and
analyze the characteristics of the proposed methods. The experi-
mental results show that the proposed method can achieve more
effective team formation in accordance with the given environ-
ments.

2. Related Work

A number of studies have been done on efficient and dynamic
team formation methods. From a theoretical aspect, for exam-
ple, Sheholy and Kraus [14] proposed an optimal solution of al-
locating tasks to agents with resources. However, the algorithm
used was exponential. They also introduced a polynomial-time
method of calculating Pareto-optimal solutions [15], although the
solutions did not provide the maximum utilities for the entire sys-
tem. Reference [19] has shown an optimal team corresponding to
the agents and multiple tasks using a genetic algorithm. How-
ever, their research assumed that the agents with their associ-
ated resources/capabilities and the tasks were already known to
all agents in advance.

Genin and Aknine [8] proposed a method of learning for ef-
ficient team formation in a task-oriented domain. Agents retain
information on which tasks are proposed and accepted, and they
decide which agents are likely to join the team by using it. How-
ever, they assumed that all messages between agents are observ-
able. Reference [9] revised this method to improve the efficiency
of team formation by just using the past local experience and pa-
rameter learning, but this assumed that the resources/capabilities
required by each task are known before task allocation.

As mentioned in the previous section, Abdallah and Lesser pro-
posed an effective team formation method that uses reinforcement
learning in a hierarchical agent network [2]. In their approach,
all the agents in the network learn, from past experiences, the
policies for task allocations to other agents at the lower levels of
the hierarchy, and thus, effective and efficient team formation can
be achieved. However, in their approach, after sufficient learn-
ing time, tasks are likely to be allocated only to specific agents.
These learned but biased activities lead to an unbalanced use of
resources in the network, thus, busy and unbusy agents may co-

exist. To avoid this imbalance, Ref. [12] proposed the reorgani-
zation method and incorporated it into the learning-based team
formation proposed in Ref. [2]. However, their reorganization
method was not effective because agents with relatively many re-
sources are frequently identified as unbusy even though they are
already assigned many tasks. Another approach for task alloca-
tions in MAS was proposed in Ref. [16]; the proposed method
was quite efficient and applicable to the actual system. However,
it was based on a mobile agent framework, so their approach is
different from ours. More importantly, all the studies above as-
sume that information about the resources in other agents is al-
ready known to each other, but this assumption is often not ac-
ceptable in real-world settings.

3. Agent and Task Model

3.1 Agent Network
An agent network is denoted by graph (A, E), where A is the

set of agents and E is the set of edges connecting two agents. We
assume that an agent network has a hierarchical structure as in
Refs. [2], [12] because a hierarchical network can easily provide
the efficiency needed for decision-making and actual computa-
tional nodes in large-scale application systems often form tree-
structured overlay networks. An example is shown in Fig. 1,
where a node expresses the agents running in the experimental
equipment. In hierarchical networks, we assume that there are
two kinds of agents: managers and individuals. An individual is
placed on a leaf in the hierarchy and plays the role of allocating
its computational resources to the equipped tasks for execution.
Managers are on the nodes without leaves and play the role of
selecting a set of subtasks and allocating it to one of the child

agents, that is, the agents connected directly under them. The
agent directly connected to the upper level of the hierarchy is
called the parent agent (for example, m1 is the parent agent of
m3 and m4, and m3 and m4 are child agents of m1 in Fig. 1). The
manager at the root is the root manager and denoted as RM. In
this paper, we first assume that agents know only (1) the names of
the adjacent agents that are the parent and child agents and (2) the
amount of resources each child agent manages or has. Resources
that an individual has or a manager manages are described below.
We will omit the latter assumption for unknown environments.

The smallest unit of simulation time is called a step, and each
agent takes one primitive action such as message sending and task
execution. We assume that one step corresponds to 10 msec.

3.2 Tasks and Resources
Suppose that T is the set of all kinds of tasks and p types of

Fig. 1 Example of initial network structure.
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resources are used to execute tasks, where p is a positive inte-
ger. Task Ti ∈ T consists of a number of subtasks and is denoted
by Ti = {ti

1, t
i
2, · · · , t

i
q}, where ti

j is the subtask of Ti. Subtask ti
j

is represented by the tuple 〈ui
j, r

i, j
1 , r

i, j
2 , · · · , r

i, j
p 〉, where ui

j is the
utility earned if subtask ti

j is allocated to the resources for exe-

cution and ri, j
k is the amount of k-th resources necessary for ex-

ecuting subtask ti
j. Therefore, Ti is also expressed by the tuple

〈Ui,Ri
1,R

i
2, . . . ,R

i
p〉, where Ui =

∑
ti

j∈Ti
ui

j and Ri
k =
∑

ti
j∈Ti

ri, j
k . We

assume that utility is identical to the reward that is used in the
reinforcement learning.

3.3 Agent Model
Individual l ∈ A is denoted by the tuple 〈crl

1, crl
2, · · · , crl

p〉,
where crl

k is the amount of k-th resources owned by l. If l receives
a set of subtasks from its parent agent mi, it tries to allocate the
resources for the given subtasks. The amount of resources that
l has indicates the throughput of resources required in subtasks
for one step. Thus, the time required for executing the subtask
ti

j = 〈ui, r
i, j
1 , r

i, j
2 , · · · r

i, j
p 〉 is expressed by

D(l, ti
j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢
max

⎛⎜⎜⎜⎜⎜⎝
ri, j

1

crl
1

, · · · ,
ri, j

p

crl
p

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥
,

where, if crl
k = 0, we define

ri, j
k

crl
k

= ∞ (if ri, j
k � 0) and

ri, j
k

crl
k

= 0 (if ri, j
k = 0).

We extend this notation for the set of subtasks W (⊂ Ti); the time
required for executing W is

D(l,W) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢max

⎛⎜⎜⎜⎜⎜⎝
rW

1

crl
1

, · · · ,
rW

p

crl
p

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥ , (1)

where rW
k =
∑

ti
j∈W ri, j

k .
The resources that a manager manages are defined recursively

from the bottom level of the total (that is, the sum of) resources
of the child agents that are individuals or managers. That is, for
manager agent m ∈ A, the amount of k-th resources managed by
m is defined as

crm
k =

∑

a∈ch(m)

cra
k , (2)

where ch(m) is the set of the child agents of m. We assume
that the resources in agents are computational resources like
CPUs/memory and the installed software. Thus, the resources are
assumed to be stable and do not change so frequently. Therefore,
the certain resources are always slow and have some delay in pro-
cessing their tasks. In the unknown environment, agents do not
know the resources that their child agents manage or have in our
environment, so they have to estimate the amount of resources.

We also define parameter δ (a positive integer) as the deadline
of team formation; that is, all managers have to try to find an in-
dividual that can process the set of subtasks within δ steps. If the
manager cannot find such an individual, the allocated subtasks are
discarded. For task Ti, the set of individuals involved in the pro-
cess of subtasks in Ti is called the team and is denoted as CTi . For
W ⊂ Ti, the set of individuals allocated subtasks in W is CW . The

agent network earns the utility of a task when all its subtasks are
successfully allocated to individuals. The performance is mea-
sured by the sum of utilities earned by all agents in the network
during a certain period. The problem addressed in this paper is
how to make the agent network earn as many utilities as possible.

3.4 Communication Delay
We incorporate the concept of communication delay into the

agent network model. Communication in this paper is any kind
of message between agents, such as allocation of a set of sub-
tasks, a success or failure response of the allocation, and infor-
mation delivery. We assume that an agent can communicate only
with adjacent agents in a network. A communication delay is
usually defined as the sum of the latency of transmission (this
is usually proportional to the distance) and elapsed time for pro-
cessing, and the latter is further made up of the required times
for a number of activities such as processing received messages,
decision-making for subsequent messages based on the learned
strategies, and preparing messages to be sent.

Due to recent broadband networks, we can assume that a com-
munication delay is dominated by the required time for process-
ing in each node; thus, we model the communication delay con-
sistent with this consideration. This means that we should take
into account the hop count, which is the number of nodes in-
volved in messages, to determine the communication delay. Fur-
thermore, because no agent has a global view, any agent can ob-
serve the communication delay as the difference from the time
when a message is sent to the time when the response is received.
Observed delay may change if their environment have temporally
due to sudden traffic. However, we assume that such a delay van-
ished in a relatively a short time. Thus we think it does not signifi-
cantly affect the proposed learning. If such a delay continues for a
long time, agents identify that the environment moves to another
state, and learns another policy adaptive to the new environment.

We define parameter 2d (≥ 0) for the round trip time (RTT)
in the period between adjacent agents to express and control the
degree of delay. Any manager can know whether the team for-
mation request has succeeded or not after the observed response
time, that is, from the time of requesting another agent to form
or join a team for a set of subtasks W (⊂ Ti) to the time of re-
ceiving notification of the completion of team formation or the
acceptance to join a team. The response time observed by man-
ager agent mk plus the time required for execution of the allocated
subtasks is expressed by obsmk

W (d), which is a function of d. Note
that obsmk

W is the sum of twice the hop counts from mk to the indi-
viduals and the maximum value of the times calculated by Eq. (1),
which are the times required to process the allocated subtasks W

in individuals under mk. The response time at the RM, obsRM
Ti

(d),
is simply denoted by obsTi (d) for Ti ∈ T .

3.5 Team Formation
In each step, a finite multiset of tasks T whose elements are in

T is given to the RM. Then, the RM immediately begins to pro-
cess all the tasks in T one by one. For Ti(∈ T), the RM divides
it into a number of subsets of subtasks and allocates each subset
to the child agent placed directly below in accordance with the
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policy derived by reinforcement learning (details are described in
Section 4.1). When manager mj receives a set of subtasks from
its parent manager, it further divides the set into smaller subsets
if needed and then allocates each of them to the child agent of
mj. Finally, individual l allocates its resources to the received
subtasks so that they can be done within δ steps. At this time,
we consider that l participates in the team that processes task Ti.
Then, l reports that it has become a member of CTi with the value
of the required time defined by Eq. (1). If one of the individuals
cannot complete the given subtasks in less time than the deadline
δ or one of the managers cannot find a child agent to allocate the
subtasks to, the team formation for Ti fails. If all the subtasks of
the task Ti = {ti

1, t
i
2, · · · , t

i
q} are allocated to individuals, we can

say that the team CTi is successfully formed. The set of teams is
expressed by C = {CT |T ∈ S}, where S ⊆ T is the set of tasks
whose teams are successfully formed. Then, the team formation
process is iterated. Note that an individual can join only one team
at once. Thus, if a task is allocated when the individual belongs to
another team, that task is discarded, and the team is not formed.

4. Proposed Learning and Allocation Methods

4.1 Reinforcement Learning based on Observed Delay
First, we describe how Q-values are calculated at any state of

the agents. In the previous study [2], [12], the Q-value of action a

at state s is adjusted by the following well-known iterative update
function.

Q(s, a)← Q(s, a) + α[r(s, a) + γmax
a′

Q(s′, a′) − Q(s, a)],

(3)

where s′ is the next state after taking action a, α is the learning
rate, and γ is the discount factor. The next action a′, state s′,
and their associated values of Q(s′, a′) are involved for all child
agents, but it is not feasible that the agent always knows this in-
formation since it resides in lower-layer agents and changes fre-
quently.

We propose modifying the reinforcement learning so that it
does not use the information in neighboring agents. Instead, it
uses the communication delay. In Eq. (3), the concept of delayed
reward reflects the discount of the expected reward in the future in
accordance with the number of actions until the reward is actually
given. Thus, we use the communication delay, that is, delayed
notifications of task completion:

Q(s, a)← Q(s, a) + α[uWβ
obsm

W (d) − Q(s, a)], (4)

where β is the discount factor and m is the manager calculating
the Q-values. uW (=

∑
ti∈W ui) is the reward when the team for

all subtasks in W is successfully formed. Note that even if all
subtasks in W (⊂ Ti) are allocated, all subtasks in Ti may not
succeed in forming the team. In this case, no agents can earn the
utilities, so all of the rewards are zero. Because the observed de-
lay, obsm

W (d), means the lag time between the time sending a team
formation request for W and the time of the arrival of the massage
notifying team formation, it includes the time required to process
the allocated subtasks in individuals. We should mention that the
immediate reward, r(s, a), in Eq. (3) is omitted in Eq. (4) because
r(s, a) � 0 only when the agent is one of the lowest managers in
the hierarchy.

4.2 State Representation
To improve the efficiency of Q-learning, we simplify the

agents’ states by abstraction. This abstraction is almost iden-
tical to that in Refs. [2] and [12]. We describe the state of
an agent by the requested subtasks W ⊂ Ti. This means that
managers make their decisions in accordance with the combina-
tion of the required resources and utilities; thus, the state is ex-
pressed by the pair (uW , rW

1 , r
W
2 , · · · , r

W
q ), where uW is the sum of

the expected utilities of W and rW
j is the j-th resource required

for W. Then, the elements of the state are abstracted by using
pairs of three-level ratings, high, normal, and low, for resources
and utilities so as to reduce the number of states. For example,
(uW , rW

1 , r
W
2 ) = (high, normal, low) indicates the state in which the

requested task requires a normal amount of the first resource and
a low amount of the second resource (q = 2), and the expected
utility is high. Note that agents do not refer to the internal states
and the associated policies in the upper- and lower-layer agents.

4.3 Task Allocation Process with Learning
First, we describe how an assigned task is divided into a num-

ber of subsets of subtasks and how they are allocated to agents
(managers or individuals) at the next lower level of the organiza-
tion by using the resource information given in advance. Then,
we extend this method by incorporating it with the resource esti-
mation method for unknown environments. This is explained in
the next subsection.

When manager m is given a set of subtasks W by the parent
or the environment, it identifies the learning state s in accordance
with the required resources. Then, m selects action a by using
the roulette selection in accordance with the third power of the
Q-values for s. Action a indicates to which agent the subtasks
are allocated. The selected agent is denoted by i. Manager m

chooses a number of subtasks Wi from W, so that for 1 ≤ k ≤ m,
the following condition is satisfied.

D(i,Wi) ≤ δ (5)

Therefore, Wi will be done within δ steps. Then, W is set to
W \Wi. If W � ∅, m selects the other actions for W and repeats
this process until W = ∅.

After allocating Wi to the lower-level agent i, m waits for the
completion or failure message from i. This waiting time corre-
sponds to the observed delay obsm

Wi
(d) that is used to revise the

Q-values in Eq. (4).

4.4 Task Allocation Process with Learning and Resource Es-
timation

Since no agents have resource information in other agents in an
unknown environment, manager agents use the estimated amount
of resources that child agents manage or have. The estimation
method is described in Section 4.5.

The learning process is almost identical to that described in the
previous section except that they both sometimes allocate tasks
randomly for exploring resources. Suppose that manager m has
selected its child agent i. Then, m chooses a number of subtasks,
Wi, from W by using the estimated amount of resources in i so
that the following condition is satisfied for 1 ≤ k ≤ m.
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D(i,Wi) ≤ 1. (6)

Note that δ is not used in this condition. The details will be de-
scribed in Section 4.5. However, when an individual has been
requested the set of subtasks W that cannot complete within δ
steps, it reports the failure to do W to the upper manager. Since
the estimated amount of resources are small in the beginning of
learning (actually, the initial value of the estimated resource is 0,
as described below), no subtasks may be allocated, so in this case,
Wi = ∅. Then, with the small probability ε or when Wi = ∅, m

randomly selects a subtask t ∈ W \W1 and adds t to Wi.
This trial for exploration by adding one subtask is necessary to

estimate the amount of resources. Then, W is set to W \Wi, and
this process is repeated until W = ∅. After all child agents are
selected by roulette selection, some subtasks may still remain in
W. In this case, each subtask in W is randomly added to Wi.

4.5 Resource Estimation during Task Allocation
Each agent has the estimated amount of resources of its child

agents i ∈ A. This is denoted by Eri = {eri
1, eri

2, . . . , eri
p}, and

we initially define eri
k = 0 for 1 ≤ ∀k ≤ p. When the allocated

subtasks, Wi, has been successfully allocated, that is, the message
indicating successful task allocation has arrived, the estimated re-
sources are updated as follows.

eri
k = max(eri

k, r
Wi

k ). (7)

However, if it fails to allocate Wi, Eri is left unchanged. This
is because even if i manages or has sufficient resources for do-
ing Wi, it may be busy doing the tasks allocated previously. In
addition, because the amount of resources managed by agents de-
crease when links are eliminated, managers have to reduce their
estimated resources. This is described in Section 4.6.2.

To be more precise, eri is not the estimated amount of resources
in i but is the estimated amount of resources required by subtasks
that i can accept. Individuals accept the given subtasks if Eq. (5)
is fulfilled. Therefore, i can accept them with a number of steps
required for processing them. However, managers do not know
the number of hop counts to individuals, so they cannot identify
the actual processing time. Instead, we estimate the resources
of tasks that can be accepted by each of the child agents. Thus,
managers use Eq. (6) for allocations.

4.6 Reorganization Method
Along with the progress of learning, managers allocate the sets

of subtasks to particular child managers and individuals. How-
ever, this emergent behavior through learning may develop bi-
ased task allocations; that is, both busy and non-busy agents co-
exist, resulting in inefficient utilization of resources under man-
agers due to the mismatch between the patterns of resource usage
and the deployment of individuals in the initial network. There-
fore, a number of links to individuals are added or eliminated to
resolve such situations.
4.6.1 Link Generation Process

The link generation process is initiated by root manager RM.
The RM makes inquiries to all the individuals about the numbers
of processed (sub)tasks along the hierarchical links. It then iden-
tifies the busiest individual lbusy and most inactive individual linact

that reported the highest and lowest numbers of processed sub-
tasks, respectively. Then, RM requests the manager mbusy that is
located at the directly upper level of lbusy to make a new link to
linact. When lbusy has multiple managers, RM selects the manager
whose managing resources is the maximal among them because
this manager may be allocated more subtasks by learning in its
parent agent. If the link from mbusy to linact already exists, nothing
occurs.

To avoid having too many parent agents, we also introduce the
upper bound L, which is a positive integer and limits the number
of links from managers to an individual. Hence, if linact already
has L links, the link request is ignored. Note that when the link
from mbusy to lbusy is added, mbusy has to prepare Erlbusy to estimate
the amount of resources in lbusy.
4.6.2 Link Elimination

link elimination is an essential procedure for maintaining ef-
ficient organizational structure. Particularly, in the unknown en-
vironment, subtasks may irrelevantly be allocated in the begin-
ning of resource estimation due to inaccurate information, so a
number of meaningless links may be added. Thus, the link elim-
ination is mandatory to adjust the structure of the agent network.
In addition, after agents acquire accurate resource information,
adding a new link is likely to result in another allocation pattern
in the agent network. It is also probable that the distribution of
service requests changes. Hence, a number of existing links be-
tween agents may fall into disuse. This prevents adding a really
required link into the agent network.

For manager ∀m at the directly upper level of individual l, l

stores the numbers of tasks allocated by m for a certain period of
time. This number is denoted by Nl(m). Suppose that Nl(mmin) is
the lowest number and is much less than (K% of) the maximum
number of Nl(m). In this case, mmin seldom works as the manager
of l. Then, if l has two or more links from managers, l eliminates
the link from mmin.

After a link is eliminated, mmin and its upper-level mangers
must modify the amounts of the estimated resources as fol-
lows. First, mmin eliminates the resources estimated for l, Erl =

{erl
i , . . . , erl

p} and informs the parent agent that the managed re-
sources have been lowered with the data of Erl. This process is
iterated until reaching the RM.

We call the method without the resource estimation proposed
in Section 4.3 the task allocation with link generation and

elimination (TALGE), and TALGE with the resource estima-
tion proposed in this Section 4.4 is called the extended TALGE

(eTALGE).

5. Experimental Evaluations

We conducted three experiments to evaluate our method. In
the first and second experiments, we evaluate TALGE for the en-
vironment where all agents have resource information in other
agents, and we compare its performance with those of the method
proposed in Ref. [12] and a random method in which managers
select the lower managers/individuals randomly. The method in
Ref. [12] was called adaptive team formation with reorganiza-

tion (ATFR) in their paper. We also measure the performance of
TALGE without link elimination, so this is called task allocation
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with (only) link generation (TALG), in order to investigate the
effect of link elimination on the entire performance.

To simplify the graphs shown below, we omit the results of
the method proposed in Ref. [2], but it is already known that
ATFR is more efficient [12]. Note that the reorganization in ATFR
is based on the amounts of unused resources for each individ-
ual, although our method is based on the number of processed
(sub)tasks. The Q values in ATFR are calculated in accordance
with Eq. (3), which assumes that the Q values in child agents are
always available at no cost. We also set the number of resources
p to 2 for the sake of simplicity.

In the third experiment, we compare the performance of the
eTALGE with TALGE and TALG and eTALGE without link
elimination (this is called the extended TALG (eTALG)).

5.1 Experimental Environment
In the first experiment (Exp. 1), to investigate whether effective

task allocation can be realized, we prepared four types of individ-
uals in accordance with their amounts of resources:
• Type 1: cr0 and cr1 are selected from the interval [1, 5].
• Type 2: cr0 and cr1 are selected from the interval [8, 12].
• Type 3: cr0 is selected from [1, 5], and cr1 is done from

[10, 30].
• Type 4: cr0 is selected from [10, 30], and cr1 is done from

[1, 5].
Note that crk is a positive integer and is selected randomly from
the specified interval. The agents of types 1 and 2 have rela-
tively balanced resources, although their amounts are different,
and those of types 3 and 4 are biased to a specific resource.

Four types of subtasks are also defined in a similar way. For ex-
ample, if the subtask t = 〈u, r0, r1〉 is of type 1, then r0 and r1 are
randomly selected from interval [1, 5] when it is generated. We
assume that utility u is identical to the sum of resources because
the aim of our research is to allocate (sub)tasks effectively. This
also means that we can simplify the expression of a learning state
that depends on only the required resources (rW

1 , r
W
2 , · · · , r

W
q ).

In Exp. 1, the initial agent network structure was identical to
that in Fig. 1. Four individuals of each type (a total of sixteen indi-
vidual agents) were generated and deployed randomly to the leaf
nodes. A task consisted of three to five subtasks (the numbers are
randomly determined when it is generated), then two tasks were
given to the RM every step. The communication delay parameter
d was set to 1, so any communication between adjacent agents
took one step. We set the deadline of processing δ to 10. To up-
date Q values, we set α = 0.001 and β = 0.9. The link generation
process was invoked with a probability of 1/1,000, and the link
elimination process was done with a probability of 1/3,000 in a
step. Parameter L, which is the upper bound of the number of
links from managers to each individual was set to 3. The exper-
imental results shown below are the average values of 100 trials.
In each trial, the earned utilities were stored every 100 steps and
plotted in graphs. The experiments stopped at 60,000 steps be-
cause it seemed that the results became invariant after that.

5.2 Evaluation of Efficiency
Figure 2 plots the utilities earned by using TALG, TALGE,

Fig. 2 Utilities earned every 100 steps.

Table 1 Structure of resulting agent network in TALG.

30,000 steps 80,000 steps
m7 → (5, 15), 0, 3, 4, 14 m7 → (5, 15), 0, 3, 4, 8, 13, 14
m8 → (0, 14), 2, 7, 9, 12 m8 → (0, 14), 2, 5, 7, 8, 9, 10, 12
m9 → (11, 12), 1, 6, 8 m9 → (11, 12), 1, 2, 3, 6, 8
m10 → (7, 9) m10 → (7, 9), 1, 10, 13, 15
m11 → (3, 8), 11, 15 m11 → (3, 8), 4, 6, 9, 11, 15
m12 → (2, 4) m12 → (2, 4), 5, 6, 11, 15
m13 → (6, 10), 5, 13 m13 → (6, 10), 3, 5, 13
m14 → (1, 13), 10 m14 → (1, 13), 6, 7, 10, 11

Table 2 Hierarchical structure of resulting agent network in TALGE.

30,000 steps 80,000 steps
m7 → (5, 15) m7 → (5, 15), 0, 2, 8, 11, 13, 14
m8 → (0, 14), 4, 6, 8, 10, 11 m8 → (0), 4, 6, 10, 11
m9 → (12), 1, 2, 3, 13 m9 → (12), 1, 3
m10 → (7, 9) m10 → (7, 9)
m11 → 6 m11 → 6
m12 → (4) m12 → 4
m13 → 8, 12 m13 → (10)
m14 → (13) m14 → 8

ATFR, and random methods *1. This figure shows that the utili-
ties earned by TALG(E) are much larger than those earned by us-
ing the ATFR method and the random method. The utility earned
at 80,000 steps by using TALG was approximately 30.3% higher
and was approximately 38.2% higher than that of ATFR by using
TALGE. Furthermore, TALGE outperformed TALG after suffi-
cient learning time, although the learning speed in TALGE was
slightly slow. Therefore, this result indicates that the combination
of link generation and link elimination in accordance with the
usages is required to improve the overall efficiency of the agent
network.

Tables 1 and 2 shows the resulting agents network after 30,000
and after 80,000 steps in TALG and TALGE in a certain trial
among 100 trials. This trial was selected randomly and was not
special. In these tables, mi indicates the manager, and the inte-
ger n after the arrow indicates the individual (this is denoted by
in), as shown in Fig. 1. The arrow indicates the direct links be-
tween them. For example, m11 has links to individuals, i3, i8, i11

*1 The experimental results shown in Fig. 2 are slightly different from those
in Ref. [17]. In the previous experiments, we ignored the time for pro-
cessing the given subtasks since it focused only on whether team forma-
tion succeeded or not. In this paper, we assume that the agent cannot join
another team before completion of the given subtasks; this led to slightly
lower performance in earning utilities.
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Table 3 Numbers of links generated and eliminated in TALG(E) in Exp. 1.

Period TALG TALGE
(step) Generated Links Generated Links Eliminated Links

˜10,000 6.48 7.2 4.04
˜20,000 6.76 7.48 5.78
˜30,000 6.38 7.22 5.88
˜40,000 5.88 6.24 5.6
˜50,000 4.74 6.36 5.4
˜60,000 3.64 5.48 5.5
˜70,000 0.3 0.64 0
˜80,000 0 0 0

Total 34.18 40.62 32.2

and, i15 at the 30,000th step in Table 1. The numbers in paren-
theses mean the individuals that exist in the initial states. Table 3
lists the average number of links generated and eliminated every
10,000 steps in TALG(E). Note that the link elimination process
is called at a probability of 1/3,000, but it is possible that multiple
links are eliminated simultaneously. However, only one link is
added in the link generation process.

In TALGE, the link generation and elimination still worked till
60,000 steps (see Table 3). Because the learned data for the elim-
inated links were also eliminated, its learning was slower. How-
ever, links were only added in TALG, and the learned results were
still usable (of course, further learning was required), although
some links became useless. Thus, the learning in TALG con-
verged faster before 30,000 steps as shown in Fig. 2. However, the
unnecessary links prevented converging with a better control by
learning; actually, the efficiency at the end in TALGE was higher.
From Tables 1 and 2, the numbers of links to individuals at the
80,000th step were 54 in TALG and 22 in TALGE (initially, it
was 16). Another observation is that some eliminated links were
sometimes restored, as shown in Table 2. For example, the links
from m13 to i6 and i10 were eliminated at the 30,000th step, but
the link from m10 to i10 came back at the 80,000th step. However,
this kind of link restoration (or oscillation) did not occur after
this; actually, links became stable after 70,000 steps.

5.3 Environmental Change
The distributions of types of required tasks may change in In-

ternet services. The purpose of the second experiment (Exp. 2)
was to examine whether our proposed method can adapt to the
change in the required task types and whether the combination
of link generation and elimination processes can contribute to the
overall performance of the agent network. For this purpose, we
considered the situations in which the tasks whose required re-
sources are biased are given to the agent network whose indi-
vidual agents also have the biased resources. Then, we tried to
change the pattern of required tasks over time.

In Exp. 2, we prepared the following types of individuals:
• Type 3: (aforementioned)
• Type 4: (aforementioned)
• Type 5: cr0 is selected from [1, 5], and cr1 is done from

[8, 12].
• Type 6: cr0 is selected from [8, 12], and cr1 is done from

[1, 5].
As with Exp. 1, four agents of each type were generated and
randomly placed on the leaves of the network shown in Fig. 1.

Fig. 3 Utilities earned in changing environment.

Table 4 Structures of agent networks in TALG (Exp. 2).

30,000 steps 80,000 steps
m7 → (5, 15), 2, 11 m7 → (5, 15), 2, 11
m8 → (0, 14), 3, 4, 6, 7, 8, 10, 12, 13 m8 → (0, 14), 3, 4, 6, 7, 8, 10, 12, 13
m9 → (11, 12), 1, 2, 6, 9, 13, 15 m9 → (11, 12), 1, 2, 6, 9, 13, 15
m10 → (7, 9), 1, 11 m10 → (7, 9), 1, 11
m11 → (3, 8) m11 → (3, 8), 1
m12 → (2, 4), 1, 11 m12 → (2, 4), 1, 9, 11
m13 → (6, 10), 11 m13 → (6, 10), 1, 11
m14 → (1, 13), 0, 10, 11 m14 → (1, 13), 0, 10, 11

Table 5 Structures of agent networks in TALGE (Exp. 2).

30,000 steps 80,000 steps
m7 → (5, 15) m7 → (5, 15)
m8 → (0, 14), 1, 2, 3, 8, 12, 13 m8 → (0, 14), 1, 2, 3, 8, 12, 13
m9 → (11), 4, 7, 9, 10 m9 → (11), 4, 6, 7, 9, 10, 15
m10 → (7, 9), 6, 10 m10 → 6
m11 → 4, 13 m11 → 4
m12 → (4) m12 → (4)
m13 → (10) m13 → (6)
m14 → 4 m14 → 4

Similarly, we defined four types (Types 3 to 6) of subtasks, and
two tasks consisting of 3 to 5 subtasks were generated every step.
However, all subtasks belong to Type 3 or 5 during 0 to 30,000
steps and after 30,000 steps, all subtasks belonged to Types 4 or
6. Other parameters were identical to those in Exp. 1.

Figure 3 shows the utilities earned over time in the changing
environment. Tables 4 and 5 list the links between managers and
individuals at the 30,000th and 80,000th steps. Figure 3 indicates
that although the utilities slightly lowered when the environment
changed, TALG and TALGE could quickly recover performance.

We see from Tables 4 and 5 that the organizational structures
changed more in TALGE than in TALG. Elimination of less used
links can encourage the reorganization of the agent network to
adapt to the new situation. However, having too many links in
TALG prevents the reorganization process. In fact, if we com-
pare the ratios of earned utilities of TALG with those of TALGE
in Exps. 1 and 2, TALGE exhibited a ratio of earned utilities ap-
proximately 6.0% higher than did TALG in Exp. 1 but 12.9%
higher in Exp. 2. This suggests that the combination of link elim-
ination and generation drove reorganization in accordance with
the resources that individuals have. We believe that this is an
important characteristic because the actual systems in an open
environment are constantly changing.
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Fig. 4 Utilities earned every 100 steps.

Table 6 Hierarchical structures in eTALG.

30,000 steps 80,000 steps
m7 → (5, 15), 0, 1, 2, 4, 6 m7 → (5, 15), 0, 1, 2, 4, 6, 8, 9, 10

10, 14 12, 13, 14
m8 → (0, 14), 4, 5, 6, 7, 13 m8 → (0, 14), 4, 5, 6, 7, 10, 13
m9 → (11, 12), 3, 8 m9 → (11, 12), 2, 3, 7, 8, 9
m10 → (7, 9), 2, 10 m10 → (7, 9), 1, 2, 3, 5, 6, 10, 11, 12
m11 → (3, 8) m11 → (3, 8), 15
m12 → (2, 4), 13 m12 → (2, 4), 0, 13, 14
m13 → (6, 10), 1, 13, 15 m13 → (6, 10), 1, 9, 13, 15
m14 → (1, 13) m14 → (1, 13)

5.4 Task Allocation with Resource Estimation
In the third experiment (Exp. 3), we evaluated eTALG(E),

which is the learning-based task allocation with reorganization
and resource estimation. The experimental settings were identi-
cal to those in Exp. 1. Parameter ε used in the resource estimation
was set to 0.01, and parameter K for link elimination defined in
Section 4.6.2 was set to 10 (%). The results are shown in Fig. 4,
which plots the utilities earned by using eTALG(E), TALG(E),
and the random method.

This figure shows that the utility earned at 80,000 steps by us-
ing eTALG was 8.09% lower than that by using TALG, and that
by using eTALGE was 1.59% lower than that using TALGE, al-
though those earned by eTALG and eTALGE were much larger
than those earned with the random method. Furthermore, eTALG
seemed to become gradually lower after 30,000 steps.

The slightly lower performance of eTALGE originated from
the resource estimation method, but it was slightly higher than
we expected. Parameter ε was 0.01, but all agents in the hier-
archical structure tried to allocate one extra task with this prob-
ability for the sake of resource estimation. If the depth of the
hierarchy is 4 and each agent may have multiple child agents, we
can easily expect that the possibility of failure of team formation
will increase about 5–10% for the exploration of learning after
sufficient steps. Furthermore, managers are likely to select child
agents with higher Q values to add an extra subtask. This may re-
sult in the failure of task allocation, so their Q values were made
to be lowered, although the influence on efficiency was not high.
We believe that if we lower ε in accordance with the time steps,
the performance deterioration may become smaller.

Tables 6 and 7 express the resulting agent network after 30,000
and 80,000 steps with eTALG(E) in a certain trial among 100 tri-
als. If we compare Table 6 with Table 1, it is clear that eTALG

Table 7 Hierarchical structures in eTALGE.

30,000 steps 80,000 steps
m7 → (5, 15), 3, 6, 10 m7 → (5, 15), 1, 3, 4, 6, 10
m8 → (0, 14), 2, 13 m8 → (0, 14), 2, 13
m9 → (11, 12), 4 m9 → (11, 12), 1, 8
m10 → (7, 9) m10 → (7, 9)
m11 → (8) m11 → 4
m12 → 1, 8 m12 → 1, 3
m13 → (10) m13 → 13
m14 → 0 m14 → (1, 13)

Table 8 Numbers of links generated and eliminated in eTALG and
eTALGE.

Period eTALG eTALGE
(step) Generated Links Generated Links Eliminated Links

˜10,000 7.78 7.96 4.1
˜20,000 7.9 7.46 5.32
˜30,000 6.76 6.62 5.54
˜40,000 6.36 6.28 5.32
˜50,000 5.58 5.88 5.4
˜60,000 5.62 5.58 5.0
˜70,000 0.56 0.48 0
˜80,000 0 0 0

Total 40.56 40.26 30.68

generated many more links to individuals than did TALG. How-
ever, as shown in Table 7, the numbers of links were quite low
in eTALGE because eTALGE could eliminate unnecessary links
that might be generated in the beginning of the experimental
steps.

To more clearly identify how actively the agent networks are
reorganized, we retained the numbers of links generated and elim-
inated per 10,000 steps; these data are shown in Table 8. If we
compare it with Table 3, these tables show that the numbers of
links generated with TALG and eTALG were 34.18 and 40.56.
Because, at first, the estimated resources were not accurate and
revised frequently, unnecessary links were generated. Further-
more, since no links were eliminated with eTALG and TALG,
they still remained at the 80,000th step, and this lowered the
efficiency of the task allocation. In comparison, eTALGE and
TALGE generated and eliminated similar numbers of links; the
difference was approximately ten on average. Particularly, we
have to note that, at first, the estimated resources were inaccurate
and generated unnecessary links in unknown environments, but
eTALGE was able to eliminate them quickly after the accuracy
was improved. This restricted the redundant links. Actually, only
seven links increased in eTALGE from the initial state to the final
state at 80,000th step in the trial instance as shown in Table 7.

6. Discussion

Our experimental results indicate that the ATFR method pro-
posed in Ref. [12] is less effective for team formation in our ex-
perimental setup. This is the problem of ATFR mentioned in
Section 1. In ATFR, the busiest and most inactive individuals
are identified on the basis of the amount of unused resources in
a certain period of time, although TALG and TAGLE refer to the
numbers of processed tasks. This inefficiency was caused by two
facts. First, any individual can belong to only one team at the
same time (this assumption is quite common in team formation
problems). Second, because the number of tasks an individual
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takes simultaneously is limited due to the first fact, the amount
of unused resources in an individual with high crk is likely to be
large, so it is identified as an inactive agent. Therefore, even when
a new link is added, the individual may not be able to accept the
task because it already has; thus, the team formation fails. In ad-
dition, the individual with high crk is frequently identified as still
inactive. Thus, no new link is generated because the link already
exists. This resulted in less and slow reorganization.

Figures 2 and 3 show that the learning speed in TALGE was
lower than that in TALG. We think that the link elimination pro-
cess stimulates the generation of new links and vice versa. There-
fore, the organizational structure frequently changes in the first
half of the learning time, and this change makes the learning re-
sults so far partially invalid. Therefore, the active organizational
change results in more effective agent networks after all.

TALGE provides effective team formation, and clearly link
elimination contributes to this effectiveness. We can consider a
number of reasons. First, if managers have many links, the num-
ber of possible actions also becomes large, so the learning effi-
ciency becomes low. Second, Q-values of important links may be
made lower by unnecessary links, which have relatively lower Q
values. Suppose that a manager has a link whose Q value is low.
Though the probability is low, tasks may be allocated to individ-
ual i via this link. Agent i also has another link whose Q value is
relatively high and receives a task via this link. However, i can-
not accept this second task because it already has another task.
In this case, the Q value of the important link lowers; thus, the
learning is confused by unnecessary links. Finally, of course, the
number of links from a manager is limited by the upper bound
L. These facts prevent adding a new link in TALG. Actually,
Table 4 indicates that reorganization was performed only a few
times in TALG. However, TALGE, which has the link elimina-
tion process, can improve the overall effectiveness of the agent
network.

The utilities earned for eTALG gradually lowered after 30,000
steps, as shown in Fig. 4. We can consider a number of reasons for
this phenomenon. First, if managers have many links, the number
of possible actions also becomes large, so the learning efficiency
becomes low. Second, Q-values of important links may be made
to be lowered by unnecessary links which have relatively lower
Q values. For example, let us assume that a manager has a link
to individual l, whose Q value is low. Although the probability is
not high, it sometimes allocates subtasks to l via this link for the
exploration of learning. However, l also has another high Q-value
(very important) link. If l received subtasks via the important link
after receiving subtasks via the unnecessary link, l cannot accept
the task request, and thus, the Q value of the important link will
lower. This confuses the learning process. This suggests that the
link elimination was essential for improving the learning results

Finally, we have to say that the influence on the resource esti-
mation by link elimination was insignificant. Table 8 shows that
no links were eliminated after 60,000 steps, and this was identical
to the cases with TALGE shown in Table 3.

We think that our proposed method is applicable to a num-
ber of systems with hierarchical structures. First, Abdallah and
Lesser proposed the distributed information gathering system in

the grid-computing environment using their methods [3]. We
think our method can also be used in their system and the sim-
ilar applications. Other systems to which our method may be
applicable are, for example, the smart sensor network system in
which a number of Web-based sensor nodes, field servers, and
manager nodes are hierarchically connected to provide concrete
views from field sensor data [7], the hierarchical intrusion detec-
tion system for secure network environments including ad hoc
networks [6], and the hierarchical middleware compositions on
a multi-domain platform in grid and cloud computing environ-
ments [13].

7. Conclusion

In this paper, we proposed two learning-based task allocation
methods for use in tree-structure agent networks. The first one
is TALGE withch is task allocation with reorganization method
in known environments, meaning that all resource information in
other agents is available. We also extend this method as eTALGE
for unknown environments by incorporating it with resource es-
timation. We experimentally showed that these methods outper-
formed the conventional method in this type of network.

Some studies, such as Refs. [1], [5], assumed that agent net-
works do not have a hierarchical structure. We think this assump-
tion is important because the structures of a number of existing
systems are not hierarchical. For example, it is known that the In-
ternet has a scale-free structure with high cluster coefficients [4].
We will extend our method for other agent network structures. In
addition, we need to apply our method to a large-scale MAS.
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