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Abstract: In this paper we construct and analyze a crowdsourcing-based bug detection model in which strategic play-
ers select code and compete in bug detection contests. We model the contests as all-pay auctions, and our focus is on
addressing the low efficiency problem in bug detection by division strategy. Our study shows that the division strategy
can control two features of the bug detection contest, in terms of the expected reward classes and the scales of skill lev-
els, by intentionally assembling players with particular skill distribution in one division. In this way, division strategy
is able to determine the players’ strategic behaviors on code selection, and thus improve the bug detection efficiency.
We analyze the division strategy characterized by skill mixing degree and skill similarity degree and find an explicit
correspondence between the division strategy and the bug detection efficiency. Based on our simulation results, we
verified that the skill mixing degree, serving as determinant factor of division strategy, controls the trend of the bug
detection efficiency, and skill similarity degree plays an important role in indicating the shape of the bug detection
efficiency.
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1. Introduction

Crowdsourcing is an online, distributed problem-solving and
web-based business model that has emerged in recent years [3],
and it is now admired as one of the most lucrative paradigm of
leveraging the collective intelligence of crowds. This very suc-
cess is dependent on the diversity of crowds, not only the diver-
sity of opinion and skill, but also the diversity of role played by
the crowds in crowdsourcing process.

Common crowdsourcing process proceeds in three phases: (i) a
task is announced, usually with its requirements, reward and time
period; (ii) crowds work effortfully to compete to provide the best
solution; (iii) all of the solutions are examined, a subset of solu-
tions are selected, and the corresponding users are granted the
rewards. Although the crowd’s primary role is as task solvers in
the second phase, they become more and more important in the
solution examination phase in a wide variety of tasks, work as
solution examiners to help screening or picking out the best so-
lutions. For example, Stack Overflow, which is a Q&A site for
programmers, introduced a voting system to help valuable pieces
of technical knowledge to become more visible [14]. Specifically,
users earn rights to examine the contents of posts (questions and
answers) of others and vote on the posts if they are considered to
be especially useful and appropriate. Upvote on a post helps it to
be more visible — appear in the front of the post list. Another
example is Threadless, which grants its community members to
score the designs of t-shirts submitted by other members [4].
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In this paper, we explore the model for crowdsourcing soft-
ware development process, where the crowdsourcing-based bug

detection is imported as a solution examination phase. Specifi-
cally, we model this process as a two-stage process in which the
crowds who selected the same programming problem announced
by crowdsourcing center (i) in the submission stage, work as
coders independently, and submit their unique pieces of program
codes to the crowdsourcing center and (ii) in the bug detection
stage, are presented all of the codes have been submitted to the
center, select one piece of them and work as bug detectors. Each
piece of code is endowed with reward and has a single chance
to be proved incorrect. Hence, reward is granted to the bug de-
tector who becomes the first one to provide the test case which
can prove his selected code to be incorrect. For instance, the
algorithm competition on TopCoder.com includes coding stage,
where crowds are presented with the same programming problem
and are supposed to submit their own codes within limited time,
and challenge stage, where each of the users has a chance to chal-
lenge the functionality of the codes from others. A successful
challenge results in a 50-point reward for challenging user [13].

We are of the opinion that this bug detection process have some
strong advantages. Above all, it is a crowdsourcing-based pro-
cess that can eliminate the false codes and retain the true ones
more efficiently and economically than employing a small num-
ber of experts to test the large number of codes. Secondly, bug
detection by going through others’ programs could be beneficial
to the programmers since it gives them a chance to learn from
others for skill improvement. In contrast, crowds fail to improve
in crowdsourcing without such processes [20].

In spite of the above mentioned advantage, the crowdsourcing-
based bug detection paradigm has inherent weakness in term of
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the distribution of codes that have been selected to be debugged.
Because of the various degrees of the codes’ qualities, crowds in-
cline to congest on the ones with relatively low qualities that give
them high probabilities of successful bug detection, which leaves
a substantial part of unchecked solutions and leads to redundant
examination on the other part. From the efficiency standpoint,
adopting the perspective of a principal with the goal to identify
maximum number of incorrect codes, we view the uneven distri-
bution of debugged codes as low efficiency.

The goal of this paper is to mitigate the uneven distribution
problem to improve the crowdsourcing-based bug detection from
an efficiency standpoint. To achieve this goal, we encounter the
challenge of balancing the freedom and restriction on code selec-
tion. It is noteworthy that crowdsourcing provides the policy of
maximum freedom of task selection, which encourages crowds
to solve the tasks based on their own preferences and thus be-
comes indispensable for the crowdsourcing’s prosperity. Because
of that, the traditional assignment problem [12], which has been
well studied to solve the problem of assigning a given set of work-
ers with varying preferences to a given set of jobs in such a way
that, maximum efficiency can be achieved, is not appropriate to
be used in crowdsourcing situation.

By contrast, division strategy is considered to be highly effec-
tive. The basic idea of division strategy is to control the crowds’
skill distribution in each division by strategically dividing the
crowds with different skills into divisions, and restrict code se-
lection in the division, i.e., the crowds can only select from the
codes produced by the crowds in the same division. By doing
this, we are able to guide the crowds to select from the codes
with more appropriate levels of qualities that corresponding to
their skill levels. Therefore, the division strategy can be reliable
to work out a more uniform distribution of debugged codes and
thus an improvement in bug detection efficiency.

We construct the paper as follows. In Section 3, we model the
bug detection contest as all-pay auction, and rigorously analyze
the relationship between strategic code selection behaviors and
the offered rewards. In Section 4, we present the basic idea of the
division strategy and explore two key features in efficient division
strategy. In Section 5, we conduct the simulation which verifies
the effectiveness of division strategy on bug detection efficiency.
Finally, Section 6 concludes our results, discusses the limitation
of our model and suggests potential topics for future research.

2. Related Work

There has recently been work on addressing the efficiency
problem of crowdsourcing where the crowdsourcing-based con-
tests are modeled as all-pay auctions, a well-studied mechanism
that is frequently employed in the contest literature [2]. To date,
most previous research has focused on the crowdsourcing con-
tests with the format that the principal only benefits from the sub-
mission with the highest bid (i.e., the solution with the highest
quality), with the aim of optimizing the quality of the best sub-
mission [1], [7], [11].

Instead of suffering the loss of submissions provided by non-
winners, our research takes the full advantage of all-pay auction,
with the goal of optimizing the sum of qualities for the prin-

cipal, in connection to bug detection, the total number of de-
bugged codes. Moldovanu and Sela [17] study the contest model
with multiple prizes for the sum-of-qualities objective. Another
work [18] proposed by them studies both the highest quality sub-
mission objective and the sum of qualities objective in a multi-
stage contest model. Minor [16] studies the incentive design for
contest with heterogeneous players to elicit the maximum of the
sum of qualities. In contrast, Cavallo and Jain [6] consider the
crowdsourcing from a social planner’s perspective that seeks to
maximize social welfare.

The empirical research shows the evidence that both mone-
tary reward and non-monetary reward, taking the form of repu-
tation points, provide incentive for crowds to submit high quality
solutions [15], [20]. DiPalantino and Vojnovic [9] theoretically
demonstrate that qualities of submissions are logarithmically in-
creasing as a function of the offered reward. Those results moti-
vate the reward allocation design in crowdsourcing contests for
improving efficiency. Particularly, contest with multiple prizes

becomes an effective way to maximize the sum of effort invest-
ment [5], [8], [17], [19]. In addition, contest architecture design

is also used for improving contest efficiency. A contest archi-
tecture specifies a multi-stage contest in which players are split
among several sub-contests whose winners compete against each
others. Optimal structure and reward allocation are studied in a
sheer amount of literatures [10], [18].

Our work differs from both of the above methods mainly in
the following two aspects. 1) Instead of considering one contest
with multiple rewards, our bug detection model is more akin to
a collection of separate contests and each contest has one single
reward. 2) Instead of allocating multiple prizes to the winners, we
indirectly control the rewards of a set of contests using division
strategy. A notably relevant work is Ref. [9].

3. Preliminaries

3.1 Bug Detection Model
It is natural to view the competitive nature of the bug detec-

tion stage as a contest, i.e., crowds who selected the same piece
of code for bug detection compete among themselves for the re-
ward. We model the contest as an all-pay auction, and consider
an highest-bid-wins single-item all-pay auction, in which bidders
simultaneously submit sealed bids for an item. All bidders forfeit
their bids. The auctioneer awards the item to the bidder with the
highest bid, and keeps all the bids.

In the connection to the bug detection contest, the item is the
reward, the bids are the actions of bug detection (e.g., construct-
ing test cases), and the sealed value of the bids is the efforts ex-
erted in the bug detection. Specifically, we consider the bug de-
tection stage as a game in which each player, i.e., the bug detector,
selects a contest, i.e., a unique piece of code, exerts effort and in
each contest the player with the highest effort wins the contest.
In the event of a tie, a winner is selected uniformly at random
among the highest bidders. Consider there are N players. Associ-
ated with each player i is his skill parameter, vi, where vi ∈ (0, 1] is
drawn from a non-decreasing distribution function F(v) indepen-
dently of the skills of the other players. Player i’s skill is higher
than player j’s if vi > v j.
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The players can be naturally partitioned into K (K ≥ 2)
classes, from low skill to high skill, according to the skill classes
�θ = (θ0, θ1, . . . , θK), θ0 = 0 < θ1 < · · · < θK = 1. Thus the k-th
class contains the players with k-th lowest skills, v ∈ (θk−1, θk].
Let Nk be the number of players in class k, then we must have∑K

k=1 Nk = N.
Let R denote the reward for first successful bug detection for

any of the codes, and the value of the reward is common knowl-
edge. However, simply treating the rewards as the same fails to
capture the quality difference of codes written by players with
different levels of skills, since it is generally acknowledged that
there are variations in individual programming performance. One
reasonable assumption is that the codes produced by low-skill
coders are those with higher probabilities of incorrectness than
those produced by high-skill coders. It is implied that the skill pa-
rameter vi stands for both coding and debugging skills of player
i. Based on this assumption, we furthermore endow each piece
of code with a weight coefficient according to its quality, which
is positively correlated with the player’s skill. Specifically, the
codes produced by player from k-th class are associated with
weight βk ∈ [0, 1]. Intuitively, for each piece of code, the as-
sociated weight can be viewed as its probability of having bugs,
we have β1 > β2 > · · · > βK . The expected rewards for successful
bug detection for the codes produced by k-th class of players can
be calculated as ERk = βk · R. That is, for K classes of codes
produced by K classes of players, we have K classes of rewards,−−→ER = (ER1, . . . , ERK), where ER1 > ER2 > · · · > ERK , thus, the
bug detection contests are naturally partitioned into K classes,
which taking on one of these values as its reward.

3.2 Contest Selection
Proposition 1. (Proposition 3.1 and 4.1 [9]). There exist a

unique symmetric equilibrium to the bug detection contest game.

Theorem 1. (Theorem 4.2 [9]). In the equilibrium, players select

unique code as given in the following.

1. Skill levels. Players are partitioned over L skill levels. A skill

level l corresponds to the interval of skill values [vl+1, vl), where

F(vl) = 1 − N[1,l]

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 − ER
1

N−1

l

H[1,l](
−−→ER)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , for l = 1, . . . , L (1)

where H[1,l](
−−→ER) =

(∑l
k=1

Nk

N[1,l]
ER
− 1

N−1

k

)−1
and N[1,l] =

∑l
k=1 Nl.

2. Code selection vs. skill level. A player of skill v selects a

particular contest/code of class j with probability π j(v) given by

π j(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ER
− 1

N−1
j∑l

k=1 Nk ER
− 1

N−1
k

, for j = 1, . . . , l

0, for j = l + 1, . . . ,K.

(2)

for v ∈ [vl+1, vl).
Remark. In item 1, Eq. (1) shows that the intervals of skill

levels is determined by the players’ skill classes and the number
of players of each skill class. It is worthwhile to note that, ac-
cording to Eq. (1), in the equilibrium, two players in the same
skill class could be partitioned into different skill levels, and one
skill level could be constituted by the players from more than one
skill classes. Item 2 shows that, in the equilibrium, a player of

Fig. 1 Contest selection behavior in equilibrium. Players are partitioned
into 4 skill levels. A player of skill level 3 selects the contests that
provide the 3rd highest expected rewards with the largest probability.

skill level l selects a contest that provides one of l highest re-
wards with probability given by Eq. (2). Specifically, the player
with skill level l selects contest that provides the corresponding
expected reward, that is, the l-th highest reward, with the highest
probability, and those that provides larger expected rewards are
selected with lower probabilities.

Figure 1 provides an illustration of the contest selection behav-
ior for K = 4 and L = 4. The thickness of the arrows indicates the
probability that a player selects that particular contest. A player
of skill level 3 will select the contests that offer one of 3 highest
expected rewards. Moreover, she selects contests that offer the
3rd highest expected reward with the largest probability, and that
offer the highest expected reward with the smallest probability.

4. Bug Detection Efficiency Based on Division
Strategy

Aimed at identifying the key features of division strategy that
determine the bug detection efficiency, we explore division strate-
gies in two dimensions — horizontal and vertical. For the hor-
izontal comparison, we explore the skill mixing degree, which
varies from none — separating, assembles agents with same skill
class in the same division, to very high — mixing, assembles
agents with various skill classes in one division. Based on the
example study, we make our first appealing conjecture as follows.
− Skill mixing degree is the most significant feature of the effi-

cient division strategy. Specifically, bug detection efficiency
is positively related to the skill mixing degree;

Although the skill mixing degree controls the trend of the bug
detection efficiency, such a relationship between skill mixing de-
gree and bug detection efficiency is not a one-to-one correspon-
dence. It inspires us to explore the feature that can differentiate
the division strategies wherein the same skill mixing degree leads
to different bug detection efficiencies. For this vertical analysis,
we propose the concept of skill similarity degree which represents
the closeness of players’ skills in value. Based on the example
study, we make our second appealing conjecture as follows.
− Skill similarity degree plays a subordinate role. Specifically,

for the situations wherein the same skill mixing degree leads
to different bug detection efficiencies, high skill similarity
degree indicates high level of bug detection efficiency.

We arrange this section as follows. First we formally construct
the definitions for skill mixing degree, skill similarity degree and
bug detection efficiency. Then we conduct an example study. At
first, we compare the bug detection efficiencies on different skill
mixing degrees, which indicates that the bug detection efficiency
increases along with the increase in skill mixing degree. Sec-
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ondly, the comparison among the situations wherein the same
skill mixing degree leads to different bug detection efficiencies
indicates us that high bug detection efficiency also depends on
high skill similarity degree. Finally, weighted average of skill
mixing degree and skill similarity degree is constructed for eval-
uating their relative importance.

4.1 Division Strategy
Definition 1. The skill mixing degree is defined as the sum of the

degrees of the skill mixing of all divisions, as follows

M =
I∑

i=1

Mi (3)

where I is the number of divisions, and

Mi =

∏
k∈Γi

Nik∑
k∈Γi

N2
ik

(4)

where Γi = {k : Nik > 0, k ∈ {1, . . . ,K}}, and Nik is the number of

the players of k-th skill class in division i.

Definition 2. The skill similarity degree is defined as the sum of

the degrees of the skill similarity of all divisions, as follows

S =
I∑

i=1

S i (5)

where I is the number of divisions, and

S i = 1 −
√√√

1
Ni − 1

Ni−1∑
k=1

(vk − vk+1)2 (6)

where Ni is the number of the players in division i, and the all

players’ skills are sorted in non-decreasing order, i.e., v1 ≤ v2 ≤
· · · ≤ vNi .

In order to clarify the efficacy of the division strategy, let’s first
consider the problem of uneven distribution of debugged codes in
bug detection contests without division strategy, which is reduced
to the situation wherein all players are assembled in the unique di-
vision. When players of highest skill class and lowest skill class
are assembled in the same division, according to Eq. (2), players
with highest skills will exclusively select the codes produced by
the lowest-skill player which offer the highest expected rewards.
Consequently, in order to avoid competing with the players hav-
ing higher skills, players with lowest skills would probably select
the codes with the highest qualities. Moreover, due to their low
skills, they can hardly catch the bugs in those codes. This results
in low efficiency, from the principal’s point of view, although
codes produced by low-skill player would be examined, those
produced by high-skill players are left unchecked or checked su-
perficially due to the debuggers’ limited skills. In addition, from
the player’s point of view, it leads to significant inequality and
harms the benefits gained by low-skill players.

By applying the division strategy, we can mitigate the uneven
distribution of the checked codes and the inequality by restrict-
ing the players to select the codes with more appropriate levels
of rewards. Specifically, in our bug detection model, we divide N

players into I divisions, and restrict the contest selection in the di-
visions, i.e., the players can only select from the codes produced

by the players in the same division. By intentionally assembling
players with particular skills classes in one division, the principal
can control the essential features of the collection of contests in
the division, in terms of expected reward classes and the scales
of skill levels, which, according to Eqs.(1) and (2), determine the
players’ strategic behaviors on code selection. For instance, when
the players of highest skill class and those of lowest skill class are
partitioned into different division, the former are restricted to se-
lect the codes produced by the players with higher skill classes
instead of the lowest skill class.

In the division, the expected reward class is the most signif-
icant determinant of the players’ strategic behaviors on code se-
lection, and there’s one-to-one correspondence between it and the
composition of players’ skill classes, in terms of the number of
the skill classes and the number of players in each skill class.
Hence, the concept of skill mixing degree has been constructed
for distinguishing the division strategies varying in compositions
of players’ skill classes, and becomes the most important factor
in our bug detection model.

Moreover, it is worthwhile to note that, the exchange of two
players belong to two different divisions can bring different ef-
fects on the skill mixing degree and skill similarity degree.
Specifically, if the two players in two divisions has similar skill
values but belong to different skill classes (since the skill values
for players are continuous, two players with similar skill values
could be in two adjacent but different skill classes.), the exchange
of these two player will cause small similarity degree changes in
both divisions, but a relatively large change in mixing degree. It is
reasonable based on the definitions given by Eqs. (4) and (6) that
skill mixing degree concerns the number of players in different
skill classes, but the skill similarity degree concerns the specific
value of the players skills. In the same way, we can deduce that if
there’s a large difference between the skill values of two players
in two divisions and belong to different skill classes, the exchange
of them will cause relatively small change in mixing degree, but
a large change in similarity degree.

4.2 Bug Detection Efficiency
Definition 3. The bug detection efficiency is defined as the sum

of the bug detection efficiency of all divisions, as follows

E =
I∑

i=1

Ei (7)

where Ei is the efficiency of the i-th division, which is defined as

Ei =

1∑
n=L

n∑
m=L

R · βm · Nim · πL−m+1(vL−n+1)
∫ vL−n+1

vL−n+2

vdv. (8)

where

− R: the reward;

− βm: the weight coefficient endowed to m-th class of codes,

representing its probability of having bugs;

− Nim: the number of players of m-th skill class in division i;

− πL−m+1(vL−n+1): the probability for a player with skill level

L − n + 1 to select a particular code of class L − m + 1;

− [vL−n+2, vL−n+1): the interval of skill level L − n + 1.

Remark. The integrals of the skill parameter imply another
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Table 1 An example of bug detection efficiency increases with the skill mixing degree of division
strategy.

reasonable assumption that the player’s skill of coding is propor-
tional to her skill of bug detection. Therefore, the skill with a
player can be viewed as her probability of successful bug detec-
tion. Then π · v can be understood as the probability of one piece
code to be selected and successfully proved to be flawed by a
player with skill v, and β ·N is the number of incorrect codes pro-
duced by the player in the same division. Hence, when the reward
is normalized to 1, the efficiency of bug detection defined above
can be understood as the expected number of codes proved to be
flawed in all divisions.

4.3 Example Study: Key Factors in Efficient Division Strat-
egy

In Table 1, we consider a two-division situation wherein
eight players who are endowed with skills v1, v2, · · · , v8 = 0.1,
0.2, · · · , 0.8, belong to two skill classes, (0, 0.4] and (0.4, 0.8].
The two classes of codes produced by low-skill players and high-
skill players are, without loss of generality, endowed with spe-
cific values, R1 = 0.8 and R2 = 0.4, respectively. We initial-
ize the two divisions with equal number of players. In Division
Strategy I, two classes of players are completely separated into
two divisions, which leads to the minimum skill mixing degree
M1 = 0.5. In the equilibrium, players in both divisions are parti-
tioned into only one skill level (L1 1 = L1 2 = 1). Therefore, in
Division 1 1, players have equal probability for selecting among
the four high-reward contests.

Consider the common case in which 1) players in high-skill
level select contests with high rewards and players in low-skill
level select those provide low rewards, 2) the “congestion prob-
lem” — more than one players compete on the same piece of code
— is minimized. Thus, in Division 1 1 no players is supposed to
compete on any of the contests, and each piece of code is de-
bugged by a unique player. By contrast, the situation is different
in division 2 1 brought by Division Strategy II, where players are
partitioned into two skill levels in the equilibrium. There’s one
player (v = 0.7) in the high-skill level, who is also the only one
can select from three high-reward contests. The other three play-
ers of low-skill level have to compete for the only contest with
low reward R2. Player with the highest skill (v = 0.3) wins the
reward.

The horizontal comparison among the outcomes under differ-

Table 2 Efficiency increases with the skill similarity degree.

ent division strategies demonstrates our first conjecture, that bug
detection efficiency is positively related to the skill mixing de-
gree. Specifically,skill mixing degrees of Division Strategy I, II,
III are M1 = 0.5, M2 = 0.6, M3 = 1, and the corresponding bug
detection efficiency are E1 = 1.84, E2 = 1.92, E3 = 2.16.

In Table 2, we re-initialize the player allocation in Division
Strategy II. By exchanging two players with skills v = 0.7 and
v = 0.8, the bug detection efficiency decreases to E2 A = 1.48
(< E2 = 1.92), without any change to the skill mixing degree
(M2 A = M2 = 0.6). By contrast, the change of player allocation
in Division Strategy III leads to contrary outcome. By exchang-
ing the high-skill-class players in two divisions, the bug detection
efficiency increases to E3 A = 2.24 (> E3 = 2.16), with the same
skill mixing degree (M3 A = M3 = 1).

The one-to-many correspondence between skill mixing degree
and bug detection efficiency inspires us to do the vertical compar-
ison by checking the skill similarity degree of division strategies
with the same skill mixing degree. For the Division Strategy II
and II A, with the same skill mixing degree (M2 A = M2 = 0.6),
II A with lower skill similarity degree (S 2 A = 1.6 < S 2 = 1.62)
works out lower bug detection efficiency (E2 A = 1.48 < E2 =

1.92). For the Division Strategy III and III A, with the same skill
mixing degree equals to 1, the increase in skill similarity degree
of III A (S 3 A = 1.8 > S 3 = 1.6) leads to a higher bug detection
efficiency (E3 A = 2.24 > E3 = 2.16). This vertical compar-
ison demonstrates our second conjecture that for the situations
wherein the same skill mixing degree leads to different bug detec-
tion efficiencies, high skill similarity degree indicates high level
of bug detection efficiency.

Based on the above analysis, we go one step further by incorpo-
rating the relative importance relation of skill mixing degree and
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Fig. 2 Relative importance of two key factors of efficient division strategy.
Shape of weighted average ((M + 0.9S )/2) over skill mixing degree
and skill similarity degree is consistent with that of bug detection
efficiency (E).

skill similarity degree. Using weighted average to combine these
two determinant factors allows to consider their relative impor-
tance in division strategy for bug detection efficiency. Figure 2
visualizes the shape of the value of the weighted averages over the
skill mixing degrees and skill similarity degrees ((M + 0.9S )/2)
given in the example. By weighting skill mixing degree and skill
similarity degree with coefficients 1 and 0.9 respectively, the av-
erage weight of skill mixing degree and skill similarity degree
is demonstrated to be consistent with the shape of bug detection
efficiency. Although, 0.9 is just an instance for the weight on
skill similarity degree, one can easily find that once the coeffi-
cient given to skill similarity degree is equal or larger than the
one of skill mixing degree, the weighted average becomes dif-
ferent from the bug detection efficiency. The values of weight
demostrate that skill mixing degree plays a more important role
than skill similarity in the bug detecttion efficiency.

5. Simulation and Analysis

In this section, we experimentally evaluate the performance of
the division strategies with different skill mixing degrees and skill
similarity degrees. First, we randomly generate N players with
different skills. Second, we divide them into I divisions in the
way that it initials the division strategy with the lowest skill mix-
ing degree. Without loss of generality, we suppose each division
contains the same number of players, i.e., N/I. Based on our
model, bug detection efficiency of each division can be computed.
Third, by strategically changing the allocation of players, we de-
velop a new division strategy with higher skill mixing degree. By
repeatedly conducting the second and the third steps, we can then
investigate the conjectures given in the above section.

5.1 Setting
We explore the above two features in three environments.
Linear skill distribution function. Suppose the skills of play-

ers are uniformly distributed on the unit interval [0, 1], we as-
sume the skill distribution function as linear, i.e., Flinear(v) = v,
v ∈ [0, 1].

Concave skill distribution function. In the situation where the
contests attract a lot of players with low skills rather than high
skill — for example, a relatively new crowdsourcing platform

Table 3 Summary of parameters.

Parameter Symbol Value
No. of Players N 200
Skill of Players v (0, 1]
No. of Skill Classes K 4
No. of Divisions I 4
Thresholds of Skill Classes �θ (0, 0.25, 0.5, 0.75, 1)
Weight Coefficients �β (0.8, 0.6, 0.4, 0.2)

or the early stages in the multi-stage sequential-elimination con-
tests [10] — we assume the skill distribution function as concave
function which is a normal distribution with mean μ and vari-
ance σ2 > 0, i.e., Fconcave(v) = Φ((v − μ)/σ), where Φ(x) =

1√
2x

∫ x

−∞ e−(t2/2)dt.
Convex skill distribution function. By contrast, in the situation

where the contest attracts more high-skill players than low-skill
players — for example, the crowdsourcing contests with mini-
mum skill requirement — we assume the skill distribution func-
tion as convex function which, without loss of generality, can be
the following power function: Fconvex(v) = vα, α > 1.

Parameters used in simulation are presented in Table 3. 200
players of 4 skill classes are equally divided into 4 divisions. As
the weight coefficients show, we don’t guarantee the high-quality
codes have no bugs, and not all of the low-quality codes are in-
correct. We normalize the reward to 1, and we also normalize the
simulation results, including bug detection efficiency, skill mix-
ing degree and skill similarity degree in order to compare the ef-
fect of different division strategies.

5.2 Results and Discussion
Bug detection efficiency of division strategies with different

skill mixing degree are investigated under three kinds of skill dis-
tributions. Besides the common case, we also simulate the code
selection behavior strictly in accordance with Theorem 1.

First, we can easily confirm the conjecture that the bug detec-
tion efficiency increases with the skill mixing degree, for all of the
three types of skill distributions. In Fig. 3, (a.1) presents the lin-
ear skill distribution with mean skill value 0.7, and (a.2) shows the
mean efficiency of bug detection versus the skill mixing degree.
The linear regression on the bug detection efficiencies indicates
an increasing trend for bug detection efficiency through the whole
interval of skill mixing degree. Figure 4 (a.2) and Fig. 5 (a.2) lead
to the same conclusion under both concave skill distribution and
convex skill distribution. It is noticeable that, the increase in bug
detection efficiency under concave skill distribution situation is
particularly remarkable comparing to the situations of linear and
convex skill distributions. Specifically, for the concave skill dis-
tribution situation, Fig. 4 (a.2) shows the increase in the efficiency
is about 0.2 (from 0.6 to 0.8), which is larger than those of the sit-
uations for linear skill distributions (Fig. 3 (a.2)) and convex skill
distributions (Fig. 5 (a.2)), wherein the increases in the efficiency
is about 0.1 (from 0.8 to 0.9, 0.6 to 0.7, respectively). The rea-
son is easy to understand that for the concave skill distribution,
with a low mean skill equaling to 0.2782, the number of potential
bugs in all codes is higher than that under both linear and con-
vex skill distribution. In Fig. 3 (b.1), Fig. 4 (b.1) and Fig. 5 (b.1)
we investigate the mean efficiency versus the skill mixing degree
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Fig. 3 Linear skill distribution. Bug detection efficiency increases with the skill mixing degree, and
shaped as skill similarity degree. The red lines are linear regressions.

Fig. 4 Concave skill distribution. Bug detection efficiency increases with the skill mixing degree, and
shaped as skill similarity degree. The red lines are linear regressions.

Fig. 5 Convex skill distribution. Bug detection efficiency increases with the skill mixing degree, and
shaped as skill similarity degree. The red lines are linear regressions.

in common case. The conjecture that bug detection efficiency is
positively related to the skill mixing degree is also hold under
three types of skill distributions in this case.

Secondly, we illustrate the mean skill similarity degree versus
the skill mixing degree in Figs. 3–5 (b.2). As we initialize the di-
visions with the lowest skill mixing degree at the very beginning
by allocating the players of the same skill class in the same di-
vision, the skill similarity degree is set to be high at first. Then
by exchanging a small number of players in different skill classes
among divisions, the skill similarity degree decreases dramati-
cally along with a slight increase in skill mixing degree. As the
exchanging process continues, the numbers of the players in dif-
ferent skill classes become closer, which makes the mean of skill
similarity degree rebound gradually. Comparing to the skill sim-

ilarity degree, the corresponding bug detection efficiency in the
common case shapes up in a consistent way. This consistence
confirms our conjecture that for the situations wherein the same
skill mixing degree leads to different bug detection efficiencies,
high skill similarity degree indicates high level of bug detection
efficiency.

Furthermore, we present the bug detection efficiency versus
skill similarity degree under the same skill mixing degree (by
simply choosing the median value of efficiency for illustration) in
Fig. 3 (c.1)(c.2), Fig. 4 (c.1)(c.2) and Fig. 5 (c.1)(c.2). They show
that in common case, as we conjectured, the efficiency increases
with the skill similarity degree. However, it is unlikely that this
conjecture holds in the simulation which may due to the random
selection on contests. Finally, contrary to the bug detection ef-
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ficiency, the linear regression lines on the mean skill similarity
degree versus skill mixing degree (Fig. 3 (b.2), Fig. 4 (b.2) and
Fig. 5 (b.2)) show that the skill similarity degree decreases along
with the increase in skill mixing degree. However, this does not
reverse the increasing trend of bug detection efficiency, which in-
dicates that skill mixing degree controls the trend, and skill simi-
larity degree indicates the shape.

6. Conclusion

In this paper we have presented and analyzed a crowdsourcing-
based bug detection model in which strategic players select code
and compete in bug detection contests. Our focus is on address-
ing the low efficiency problem in bug detection. Our study shows
that by intentionally assembling players with particular skill dis-
tribution in one division and limiting the code selection and bug
detection contests in the division, the division strategy, to some
extent, can control the essential features of the contests, in terms
of expected reward classes and the scales of skill levels, which
determine the players’ strategic behaviors on code selection. By
exploring key factors of division strategy, we conclude that skill
mixing degree, serving as determinant factor, controls the trend
of the bug detection efficiency, specifically, high degree of skill
mixing leads to high level of bug detection efficiency, and skill
similarity degree plays an important role in indicating the shape
of the bug detection efficiency.

Nonetheless, we have noted that although skill distribution as
skill mixing degree and skill similarity degree is the main deter-
minant of player strategic behavior on code selection, it is not the
only factor that can influence the bug detection efficiency. Fu-
ture work could consider the impact of the size and the number
of the divisions, and how they might affect the bug detection ef-
ficiency. In addition, one limitation on the assignment of codes’
rewards in the proposed model also could be considered in future
research. Aiming at finding as many incorrect codes as possible,
we construct expected rewards from the player’s point of view to
differentiate the qualities of codes and apply the relationship be-
tween reward and player’s strategic behavior to encourage more
appropriate code selection behavior. However, for other situa-
tions wherein the principal requires guarantee of high quality on
codes produced by high-skill agents, the rewards assigned to the
codes produced by high-skill players should be higher than those
provided by low-skill players.
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