
Privacy-Aware Gateway to Prevent Privacy Leaks
from Smart Devices

Ahmad Bazzi1,a) Yoshikuni Onozato2,b) Yuta Kiriyama3,c)

Abstract: Smart devices are becoming an integral part of our daily life due to the various applications they can run.
One recent study evaluated around 4000 applications and found out that more than one fifth of the evaluated applica-
tions leak phone identifiers such as IMEI and phone number [17]. Many users would consider this as an invasion of
their privacy; however, they are either unaware of the stealthy activities of certain installed applications or they don’t
know how to prevent it. Similarly many companies have strict policies regarding leaking any data found on corporate
phones and tend to reject most applications for this reason. We propose using a modified privacy-aware gateway that
can block privacy leaks from the connected phones. We setup a working installation and get successful results with
various applications; any phone identifiers are removed from the sent packets. Using this solution we can improve
users’ privacy without consuming the computing resources of the smart devices.

1. Introduction
Google encourages mobile software developers to create di↵er-

ent kinds of applications for Android devices where application
categories range from finance to games. When a user chooses an
application and clicks on the install button, he is faced with the set
of required “App permissions” that he must accept before down-
loading and installing the selected application. The user must ex-
plicitly accept the required permissions to install an application
as shown in Fig. 1. Although some applications don’t require
any special permissions, many apps require “Network communi-
cation: Full network access.” Some applications go a step fur-
ther and require access to “Phone calls: Read phone status and
identity.” This permission allows the application to access unique
identifiers such as [20]:
IMEI International Mobile Equipment Identity
MEID Mobile Equipment IDentifier
ESN Electronic Serial Number
IMSI International Mobile Subscriber Identity
Consequently combining the above two permissions would give
an application the ability to send unique identifiers of the smart
device through the Internet. More examples can be found in [1].

On the other hand, the requested permissions might be incom-
prehensible for some users to understand, so they just click the
“accept” button. In fact, research by Kelly et al. showed that al-

1 Graduate School of Engineering, Gunma University, 1–5–1 Tenjin-cho,
Kiryu, Gunma 376–8515, Japan

2 Division of Electronics and Informatics, Faculty of Science and Tech-
nology, Gunma University, 1–5–1 Tenjin-cho, Kiryu, Gunma 376–8515,
Japan

3 Graduate School of Science and Engineering, Gunma University, 1–5–1
Tenjin-cho, Kiryu, Gunma 376–8515, Japan

a) ahmad@nztl.cs.gunma-u.ac.jp
b) onozato@cs.gunma-u.ac.jp
c) kiriyama@nztl.cs.gunma-u.ac.jp

though permissions displays are read, they are generally not un-
derstood which prevents users from making fully-informed de-
cisions [12]. It is also worth noting that in one lab experiment,
Kelly et al. found that presenting the privacy permissions in a
more comprehensible manner while the user is making her deci-
sion, and not after, allowed the users to make choices that better
protect their privacy [13].

Moreover, research suggests that the timing of showing the pri-
vacy permissions a↵ects the users’ decision. In other words, the
user might decide di↵erently if she was presented with the re-
quired App permissions while making her choice. Hence the user
might tend to ignore the required permissions as they appear af-
ter the user has already decided to download an application and
clicked the “install” button [6].

The required App permissions show one side of the situation,
the other side can be understood by considering the “privacy pol-
icy” that might be provided by the application vendor. Generally
speaking, professional companies tend to provide a privacy policy
specifying the user data that their application collects. However,
such privacy policies tend to be ignored and left unread by most
users. A privacy policy might explicitly state that the application
uploads uniquely identifying information of the user to a remote
server. Yet, without spending enough time to read the privacy
policy, the user would never know what the application does with
her data. Even if a user is willing to fully read the privacy policy,
the obligation to provide a privacy policy depends on the laws of
every country. Hence, several companies and application vendors
don’t o↵er any privacy policy and give themselves the right to
leak any data they want, and even increase the data they access
without even notifying the user — as long as the App permissions
have not changed.

Even with the absence of a proper privacy policy, the permis-
sion to access the Internet is not necessarily malicious. An ap-

�%(#&ॹ �-0�,32.)�!"'$উ�1/��*��+

�������������������
�������������������	���� ���

Fig. 1 AppPermissions

plication might need Internet access to retrieve certain data from
Internet, such as email messages, maps or search results. It might
also need Internet access to show advertisements in the case of
free ad-supported applications and ad networks are not always
privacy-invasive. In the age of cloud services, there might be nu-
merous other reasons to access the Internet, such as backup to
cloud based storage, etc. To know what data an application might
collect, a user needs to refer to the privacy policy.

As applications access the Internet, it is generally di�cult to
know what data are being sent or when. The application might be
sending anything from usage statistics to Internet browser history,
depending on the access permissions it has. To face these chal-
lenges, some automated way is necessary to protect the common
user who wants to enjoy and benefit from the available applica-
tions without delving into the technical details.

The contribution of this paper can be summarized as follows:
(1) We propose using a proxy gateway server that utilizes Man-

in-the-Middle attack as a solution to prevent the leaking of
private data from smart devices.

(2) We implement a working prototype to confirm the feasibility
of this approach.

Throughout this paper, we focus on Android mobile phones be-
cause Android is open source and can be installed on a wide va-
riety of devices, including computer virtual machines. However,
the proposed techniques should equally apply to smart devices
using other operating systems.

Furthermore, we focus in this paper on the leaking of private
data related to smart devices, but the proposed solution can be
equally used to prevent the leaking of any type of confidential or
private information. One example would be preventing children
from exposing their home address or any identifying information
on the Internet, not only from a smart device but also from a com-
puter. The general architecture remains the same using a gateway

proxy capable of modifying the passing packets.
This paper is organized as follows. After mentioning the cur-

rent problems with application permissions in this Introduction,
we discuss the threats facing smart device users in Section 2. In
Section 3, we present the current approaches to face the diverse
threats against smart devices and related works and solutions. We
follow this by presenting our proposed solution in Section 4. We
discuss the implementation of our proposed solution in Section 5
and evaluate its advantages and limitations in Section 6. Finally
we write our conclusion in Section 7.

2. Threats
Threats against mobile phones can be divided into three types:

Malware Malware applications include viruses, Trojans and
worms. As the name conveys, the intent of such applica-
tions is malicious and might include damaging the device,
spying and stealing user information, sending premium-rate
SMS for the profit of the malware author, joining a botnet
among other illegal purposes. By the mid of 2013, Kasper-
sky Lab has identified more than 100,000 unique malware
samples consisting of 629 families [9]. Moreover, mobile
malware is now increasing at a rate faster than ever.

Grayware Grayware is defined as “applications that have an-
noying, undesirable, or undisclosed behavior” [25]. A mo-
bile application in this category might collect di↵erent infor-
mation on the user such as the e-mail address, phone num-
ber, device IMEI, etc. It is also possible that its behavior
is within the legal bounds through a careful wording of its
privacy policy [8].

Personal Spyware These are applications that target clients
who wish to spy on other people [8]. Clients range from
police forces to spouses, where common objectives include
tracking the target’s location and spying on his text messages
and phone calls.

To better understand the privacy invasion through common
general applications, we need to recognize the widespread of ap-
plications that leak unique phone identifiers. Rastogi et al. eval-
uated 3,968 applications from Google Play and identified more
than 21% applications that leak phone identifiers, such as IMEI
and phone number and more than 5% that leaked the location of
the user [17].It is worth mentioning that in an earlier study by The
Wall Street Journal, 56 of 101 popular applications for iPhone
and Android transmitted uniquely identifying information with-
out users’ awareness [24]. Both of these studies targeted general
applications. Next, we refer to research regarding malware sam-
ples.

Felt et al. analyze the incentives behind 46 malware applica-
tions related to Android, iOS and Symbian. The authors no-
tice that 61% of the studied malware samples steal user informa-
tion [8]. Similarly, after analyzing 1,500 malicious applications,
Spreitzenbarth found out that nearly 57% attempt to steal per-
sonal information such as IMEI, address book entries, location,
etc. [21].

The separation between legitimate applications and malicious
ones becomes more complicated when some malware authors
steal legitimate applications and repackage them after attaching

�%(#&ॹ �-0�,32.)�!"'$উ�1/��*��+

�������������������
�������������������	���� ���

malicious payload [27]. By providing the useful functionality of
benign applications, it is even trickier to discover them by the av-
erage user. As a matter of fact, Zhou and Jiang observed that 86%
of their 1260 studied malware samples are legitimate applications
repackaged with malicious payloads [28].

One might think that the requested App permissions can re-
veal the programmer’s intentions. However, in some cases, the
application author might mistakenly request a permission that he
neither needs nor uses. Stevens et al. analyzed around 10,000
free Android applications from popular markets and observed that
“the popularity of a permission is strongly associated with its mis-
use” [23]; in other words, some application authors are inclined
to request a permission because it is popular, not because their
application really requires it. The misuse of a permission can be
a security risk especially if the application is vulnerable.

3. Current Solutions and Related Works
3.1 Permission-Related Solutions

The current literature considers the problem of privacy and
grayware from di↵erent angles. One approach is to fix issues
related to permissions. Because the current Android permission
system does not provide unambiguous comprehensive informa-
tion about the permissions required by the application, Rosen et
al. propose a di↵erent approach in presenting the necessary per-
missions so that users can make better informed decisions [19].
To achieve this, first they map API calls to application behavior
types to create a knowledge base. Next, they use this knowledge
base to create application behavior profiles. As a result, a user can
use this generated profile to make an informed decision whether
to install and use the application in question.

Using a di↵erent approach, Jeon et al. present an application
market system that insert instrumentation codes in each applica-
tion in order to give the users complete control over an applica-
tion’s behavior. Although the proposed system does not require
any modification of the Android OS kernel, the user can monitor
and control what an application can access [11].

3.2 Client-Side Anti-Malware Solutions
The anti-virus software is another approach especially that

some privacy invading applications fall into malware category.
Anti-virus technologies include signature detection, heuristic de-
tection and emulation; however, signature detection remains the
fundamental technology in commercial solutions. Based on a reg-
ularly updated database, a mobile anti-virus application can de-
tect and block malicious applications. The anti-virus company
constantly searches for new malicious applications to update its
database. However, an anti-virus cannot detect malicious appli-
cations that has not been encountered before and included in its
database. Moreover, if the application has stated in its privacy
policy that it will access and upload certain private data, the ap-
plication would not be classified as a malicious application or
spyware.

The most popular approach to protect one’s mobile device is
through an anti-virus application. In fact, Benenson et al. observe
that 38% of the 506 surveyed Android phone users have an anti-
virus scanner installed [3]. The anti-virus might be pre-installed

by the manufacturer or the user might have taken steps to install
the anti-virus himself.

Venugopal suggests using signature based detection to create
a virus scanning system for mobile devices [26]. The main chal-
lenge is the limited resources of mobile devices, hence Venugopal
proposes di↵erent methods to improve memory usage and scan-
ning speeds to conserve the battery power and memory of the mo-
bile device. Bose et al. propose detecting malicious applications
using behavioral detection [4]. Behavioral detection relies on ob-
serving the run-time behavior of an application, such as API calls
and file accesses, and then comparing it against normal or abnor-
mal behavior profile. Using Support Vector Machines (SVM) as a
machine learning classifier, they achieve 96% detection accuracy.

Due to the limited resources of mobile devices, a mobile anti-
virus applications is not necessarily as e�cient as desktop anti-
virus solutions. Rastogi et al. tested the e↵ectiveness of cur-
rent Android anti-malware applications against common malware
transformations. They noticed that current solutions fail against
common malware evasion and obfuscation techniques [18].

3.3 Server-side Anti-Malware Solutions
As smart devices su↵er from limited computing power com-

pared to current computers, some researchers suggest moving the
scanning tasks to a cloud service. Jarabek et al. propose using a
cloud-based anti-malware system [10]. By moving the resource
intensive tasks to the cloud, the user can reserve his device stor-
age, processing power and battery.

As a shift from client anti-virus applications, in February 2012
and to help combat malware in the o�cial Android application
market, Google announced a new service codenamed Bouncer
that provides automated scanning of Android applications avail-
able through Google Play [14]. A scanning service integrated
with the application market such as Google’s Bouncer [14] would
eliminate the urgent need to install an anti-virus application on
one’s smart device.

Rastogi et al. propose a framework to analyze Android appli-
cations using automated dynamic analysis [17]. In order to de-
tect both malware and grayware, the authors use several detection
techniques including taint-tracing using TaintDroid [7], sensitive
API monitoring and kernel-level system call monitoring. Spre-
itzenbarth et al. combine automated static and dynamic analyses,
in addition to monitoring and logging calls to native APIs, i.e. not
Java, in order to automatically analyze Android applications [22].

3.4 Firewall Solutions
Although an anti-virus application is the most widely adopted

solution to combat malware, some users rely on a firewall ap-
plication as well. A firewall allows the user to specify which
application can access the Internet and which one cannot. In gen-
eral, a firewall cannot be installed and used until the Android de-
vice has been “rooted.” Rooting a device means that the user has
“root” access to its OS, i.e. maximum access permissions. Sim-
ilarly an iOS device needs to be “jailbroken” in order to install
a proper firewall. Although this gives the user complete control
over the device, it can also be a security risk as some vendor up-
dates would fail to install or the user might avoid them in order

�%(#&ॹ �-0�,32.)�!"'$উ�1/��*��+

�������������������
�������������������	���� ���

Fig. 2 Smart Device A connects to an access point in order to access the
Internet and communicate with Server B.

not to lose his privileged access to the system.
There have been recent attempts to create firewall applications

that can be setup on Android devices that have not been rooted.
This is achieved by creating a dummy tunnel and requiring all
tra�c to be directed through it. Usually this can give the user the
ability to specify which applications can pass through this tun-
nel and hence access the Internet. Currently, this seems to be the
only potential option to use a firewall without rooting one’s smart
device.

The other limitation is that a firewall would allow or block traf-
fic either based on di↵erent criteria, such as the source application
and the destination IP address. In other words, if an application
needs Internet access permissions for legitimate reasons, it will
be allowed and this would give it the chance to abuse this permis-
sion. A basic firewall has no way of ensuring that an application
is not violating the user’s privacy and uploading confidential data.

Nadji et al. use a di↵erent approach. Instead of relying on the
devices alone, they propose an infrastructure built on the cooper-
ation between network sensors and smart devices. They design
and implement a prototype, which automatically identifies mali-
cious tra�c through the network sensors and can automatically
respond by initiating the proper action via an on-device protected
application [15].

In our proposed solution, we rely on specially configured gate-
way that modifies passing network packets containing identify-
ing information, such as email address, serial number, etc. and
replaces these values with dummy information. Moreover, the
proposed gateway can be configured to block access to certain
malicious servers to help improve the user’s privacy.

4. Proposed Solution
We propose using a wireless gateway with transparent proxy

that can prevent the leaking of the user’s private information. Un-
like regular or caching proxy servers, a transparent proxy does
not require any client configuration. It mediates certain client re-
quests —such as requests to ports 21 or 80— automatically. It is
labeled transparent because the client does not need to know that
there is a proxy handling its requests.

Before discussing the network topology with the proposed so-
lution, let’s consider the general case of a smart device accessing
the Internet through a wireless access point as shown in Fig. 2.
The smart device connects to an available access point which will
route its requests and sends them over the Internet. Smart Device
A can consequently communicate with Server B.

In our proposed solution, a transparent proxy needs to be setup
as part of the wireless gateway. In other words, Smart Device A

Fig. 3 Smart device connects to the Internet through the Access Point/Gate-
way Proxy M. Gateway Proxy M is a transparent proxy that performs
a Man-in-the-Middle attack and accesses the Internet on A’s behalf.

needs to pass through Gateway Proxy M in order to access the In-
ternet and communicate with Server B as shown in Fig. 3. From
the client (Smart Device A) point of view, Internet access should
appear identical to the case shown in Fig. 2.

This gateway proxy must be able to provide Internet access
to the connecting nodes. Moreover, it must be able to prevent
the leaking of any confidential information the uniquely identi-
fies the client. This necessitates that Gateway Proxy M intercepts
and performs a Man-in-the-Middle (MITM) attack against all the
tra�c from Smart Device A. Using MITM, Gateway Proxy M
can modify the packets before sending them to the target, Server
B.

4.1 Man in the Middle Attack
MITM is an attack where one party (M) impersonates another

party A as A attempts to communicate with B. There are several
variations of this attack depending on the underlying technologies
such as networking protocols and authentication mechanisms. In
our case A tries to initiate connection with B, but M intercepts this
connection as shown in Fig. 3. It appears to A that it is communi-
cating with B directly, when it is in fact communicating with M.
M, on the other hand, sends the payloads of the original packets
to B, with the ability to make modifications as necessary. Simi-
larly, B thinks that it is communicating with A directly when in
fact it is communicating with M. Similarly, M sends the payloads
of the original packets to A.

This kind of MITM attack is necessary for Gateway Proxy M to
protect A from leaking identifying information. In particular, be-
fore resending the packet payloads to B, M needs to scan for any
private information and replace them with dummy values. Conse-
quently A won’t be able to leak uniquely identifying information;
in other words, the smart device won’t be able to send its IMEI or
serial number, for instance, to B using a clear text channel such
as HTTP.

To initiate an encrypted connection over HTTP, A starts by re-
questing B’s certificate. B replies to A with its certificate, and
consequently A can use an encrypted connection, HTTPS, to
communicate with B. In the case of encrypted connections such
as HTTPS, M’s role become slightly more complicated. As A
requests B’s certificate, M must generate a suitable “fake” certifi-
cate pretending that it is coming from B and send it to A. Gen-
erally speaking, A will consider the certificate as untrusted as it
won’t be signed by a trusted authority known to A. The target of
our experiment is not to conduct an MITM attack, but rather to
allow M to monitor and modify A’s tra�c. Hence, in order to
make A accept certificates signed by M, we need to make A trust

�&)$'ॹ! .1�-43/*�"#(%উ�20��+��,

�������	��������������������������������
�� ���

the certificate used by M for signing. This can be achieved by
installing M’s certificate as trusted on Smart Device A. Similarly,
A will think that it is communicating directly with B when it is
communicating with M, and B will think that it is communicating
directly with A when it is communicating with M. Similarly, M
should prevent the leaking of A’s uniquely identifying informa-
tion by modifying packets sent to B as necessary.

4.2 Characteristics of the Gateway Proxy
Once M is able to intercept and modify all the tra�c from A,

both clear text and encrypted, M will be able to prevent certain
private data from leaving A. In brief, M must possess the follow-
ing characteristics:
(1) To prevent privacy leaks, Gateway Proxy M needs to have

knowledge of the private information of the users’ devices,
such as IMEI, phone number, email address, contacts, ad-
dress book, etc. Consequently M can scan the packets for
related privacy leaks and modify the packet payloads as nec-
essary.

(2) The gateway must be able to monitor encrypted connections,
in particular SSL-based connections such as HTTPS. This
necessitates that the gateway performs MITM attack against
all passing connections as mentioned in Section 4.1.

(3) The gateway must be able to replace any private data with
dummy data in order to protect the privacy of the connect-
ing user. In other words, M will be resending all packets
with new IP and TCP headers and occasionally modified
payloads.

(4) For added security, M must be able to block connections, at
least to IP addresses that are known to be malicious. M can
configured to firewall all connections to black listed servers.

The exact security/privacy policy would depend on the user or
the company. In our experiments, we decided that our aim is to
achieve the following results:
(1) Allow all data to be sent to trusted servers.
(2) Prevent information leaking by blocking packets containing

private data from being sent to servers that have are not in
the trusted listed.

(3) Prevent applications from accessing any server on the “black
list” and block all packets destined to them.

This is summarized in Table 1.

Table 1 Example rules to be enforced by the gateway proxy

Source Rule
Trusted Servers Allow all tra�c
Unknown Block packets with private or confidential information
Known Malicious Block all tra�c

5. Solution Implementation
We wanted to test the feasibility of our solution so we imple-

mented Gateway Proxy M using Mallory, a transparent TCP and
UDP proxy [2]. Mallory is originally created to aid in mobile ap-
plication testing. It runs as a transparent proxy server with MITM
capabilities to intercept tra�c and modify them in real-time.

Fig. 4 Smart Device A is setup as an Android VM. It does not notice any
transparent proxy intercepting its tra�c and appears to be accessing
the Internet normally.

Fig. 5 Smart Device A is setup as an Android VM, and Mallory is setup on a
Debian GNU/Linux VM. Android VM is connected to Mallory VM
through VirtualBox’s Internal Network. Mallory VM is also con-
nected to the Internet using NAT (or Bridged NIC) via VirtualBox.
Android VM can access the Internet only through Mallory VM. Mal-
lory VM will in turn perform MITM on the passing tra�c.

Mallory can be setup on a notebook —or PC with wireless net-
work cared— to function as a wireless gateway. However, to fa-
cilitate testing and experimentation, we used virtualization and
setup Mallory as a virtual machine (VM). Using VirtualBox [16]
on a Windows 7 PC, we setup two virtual machines:
• Android 4.1.1 VM
• Debian GNU/Linux VM that runs Mallory
It appears to the smart device (Android VM) that it is accessing

the Internet directly as shown in Fig. 4. However, all tra�c must
pass through Mallory VM (Gateway Proxy M) in order for the
tra�c to be intercepted. Consequently, we configured Mallory
VM with two virtual network cards, one card is connected to the
Internet through a Bridged Adapter or NAT (Network Address
Translation) provided by VirtualBox. The other adapter is con-
nected to VirtualBox’s Internal Network like the Android VM so
that they can communicate with each other. All tra�c from An-
droid VM will pass through Mallory VM in order to access the
Internet as shown in Fig. 5. Hence, Mallory VM functions as the
proxy gateway to the Android VM.

In order to allow the MITM capability provided by Mallory to
function smoothly, we imported the certificate used by Mallory
into our Android VM and trusted it. This way the applications
will not issue any warning or fail to initiate an encrypted connec-
tion based on an untrusted certificate authority.

We looked up the IMEI and serial number of our Android VM
and created the necessary rules on Mallory to replace these pri-
vate data with dummy values. By monitoring the tra�c, it was
clear that any application trying to leak private information was
rendered unsuccessful due to the setup of the gateway proxy.

As an example, consider Fig. 6 which shows TCP

�%(#&ॹ �-0�,32.)�!"'$উ�1/��*��+

�������������������
�������������������	���� ���

Fig. 6 Example TCP stream that leaks the device ID to an advertisement
server

stream viewed in Wireshark*1. At the end of this stream,
we notice how this application posted the device ID
vbox86tp d0243eaa0162b345 to a remote server. By con-
figuring the gateway proxy to replace the device ID, we prevent
the application from tracking the user. Preventing such leaks is
feasible provided that a list of all the identifying details of the
related smart devices is prepared in advance.

6. Solution Evaluation
The proposed solution helps prevent applications from leaking

private information to untrusted servers and from uniquely iden-
tifying the user based on IMEI, email address and similar data.
However, for the system to work, the users are expected to trust
the gateway proxy and its administrators as much as they would
trust the remote server they are communicating with. Hence, we
expect this solution to be useful in the following two scenarios:
Corporate Network Companies are very careful about data

leaking, such as employees’ business contacts. In such a
network, the corporate employees have to trust the admin-
istrators of this gateway proxy. Although this might be un-
favorable for some employees, trusting the company IT ad-
ministrators is unavoidable. For example, most email servers
give the system administrators in charge the ability to access
and read the employees’ emails; however, ethics and code of
conduct would prevent them from abusing their privileges.
Likewise, although the proposed solution requires an addi-
tional level of trust, we think that it is still feasible to use.

Home Network A home user might implement such a solution
for his personal use and possibly share it with other family
members. Similarly, trusting the administrator of the device
with one’s private information is a required condition.

This solution cannot be used when trust cannot be established,
such as public spots.

*1
http://www.wireshark.org/

6.1 Advantages
• Our proposed solution can successfully block all privacy

leaks that are sent in clear text and encrypted format over
HTTP and HTTPS respectively.

• The firewall can e�ciently block access to chosen IP ad-
dresses. Alternatively, it can be configured to block access
to all servers except specific exceptions.

• The firewall, along with the privacy leaking prevention com-
ponent, runs on a separate machine and therefore does not
consume the limited resources of the smart device.

• An ideal usage for this system includes a company that aims
to prevent the employees’ devices from leaking private or
confidential information.

6.2 Limitations
• The gateway intercepts all encrypted tra�c and hence it can

gain access to a variety of secret data, such as login user-
names and passwords of the users. As mentioned, this ne-
cessitates that the users trust the gateway and the party ad-
ministering it. This solution can protect users’ privacy only
if they can trust it and its administrator(s).

• For successful MITM attacks, users must trust the certificate
used by the proxy. Currently, the most e�cient way would
be by importing the certificate into their devices.

• As already mentioned, this solution is not suitable, in its cur-
rent form, for general spots: one reason is that users’ pass-
words would be exposed, another reason is that a manual
installation of a fake certificate is necessary.

• Users cannot change system settings. If a user needs to send
private information, such as phone number or e-mail address,
to an untrusted server, the gateway administrator needs to
make the required changes. In a corporate network, a pri-
vacy policy might be necessary to minimize such cases.

• The proposed solution blocks privacy leaks over WiFi net-
works; however, it cannot prevent leaks over other net-
works, such as Internet over 3G or EDGE. Blocking infor-
mation over cellular networks would require a modified fem-
tocell [5].

• The proposed solution can intercept encrypted connections
using standard SSL; however, it cannot intercept or read data
encrypted using a di↵erent technique, such as DES, before
sending.

7. Conclusion
In this paper we proposed a method to prevent smart devices

from leaking uniquely identifying information by using a spe-
cially configured proxy gateway. The proxy gateway needs to
launch MITM attack against all tra�c in order to monitor and
modify network packets in real-time as deemed necessary. The
aim is to replace the private data —such as IMEI, serial number,
phone number, etc.— with dummy data to protect the privacy of
the user. We setup a prototype using Mallory proxy on a Linux
gateway and confirmed the feasibility of this solution.

Acknowledgments The authors would like to thank the
anonymous reviewers for their valuable comments and sugges-
tions that helped us improve this paper.

�%(#&ॹ �-0�,32.)�!"'$উ�1/��*��+

�������������������
�������������������	���� ���

References
[1] Ahmed, N.: Use Permissions to Secure Your Pri-

vate Data from Android Apps, (online), available from
hhttp://techpp.com/2010/07/30/android-apps-permissions-secure-
private-data/i (2010).

[2] Allen, J. and Umadas, R.: Network Stream Debugging with Mallory
(2010).

[3] Benenson, Z., Gassmann, F. and Reinfelder, L.: Android and iOS
Users’ Di↵erences concerning Security and Privacy, CHI ’13 Ex-
tended Abstracts on Human Factors in Computing Systems - CHI EA
’13, New York, New York, USA, ACM Press, pp. 817–822 (online),
DOI: 10.1145/2468356.2468502 (2013).

[4] Bose, A., Hu, X., Shin, K. G. and Park, T.: Behavioral Detection
of Malware on Mobile Handsets, Proceeding of the 6th International
Conference on Mobile Systems, Applications, and Services - MobiSys
’08, New York, New York, USA, ACM Press, pp. 225–238 (online),
DOI: 10.1145/1378600.1378626 (2008).

[5] Davido↵, S., Harrison, D., Price, R., Fretheim, S.: Do-It-
Yourself Cellular Intrusion Detection System, LMG Security, pp. 1–
77 (online), available from hhttp://lmgsecurity.com/whitepapers/DIY-
Cellular-IDS 2013-08-01.pdfi (2013).

[6] Egelman, S., Tsai, J., Cranor, L. F. and Acquisti, A.: Timing Is
Everything? The E↵ects of Timing and Placement of Online Pri-
vacy Indicators, Proceedings of the 27th International Conference
on Human Factors in Computing Systems - CHI 09, CHI ’09, New
York, New York, USA, ACM Press, pp. 319–328 (online), DOI:
10.1145/1518701.1518752 (2009).

[7] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., McDaniel,
P. and Sheth, A. N.: TaintDroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on Smartphones., 9th
USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI ’10, Vancouver, BC, Canada, (online), available from
hhttp://static.usenix.org/events/osdi10/tech/full papers/Enck.pdfi
(2010).

[8] Felt, A. P., Finifter, M., Chin, E., Hanna, S. and Wagner, D.: A Survey
of Mobile Malware in the Wild, Proceedings of the 1st ACM workshop
on Security and Privacy in Smartphones and Mobile Devices - SPSM
’11, New York, New York, USA, ACM Press, pp. 3–14 (online), DOI:
10.1145/2046614.2046618 (2011).

[9] Funk, C. and Maslennikov, D.: IT Threat Evolution: Q2 2013, Tech-
nical report, Kaspersky Lab (2013).

[10] Jarabek, C., Barrera, D. and Aycock, J.: ThinAV: Truly Lightweight
Mobile Cloud-based Anti-malware, Proceedings of the 28th An-
nual Computer Security Applications Conference - ACSAC ’12, New
York, New York, USA, ACM Press, pp. 209–218 (online), DOI:
10.1145/2420950.2420983 (2012).

[11] Jeon, C., Kim, W., Kim, B. and Cho, Y.: Enhancing Security En-
forcement on Unmodified Android, Proceedings of the 28th An-
nual ACM Symposium on Applied Computing - SAC ’13, New
York, New York, USA, ACM Press, pp. 1655–1656 (online), DOI:
10.1145/2480362.2480672 (2013).

[12] Kelley, P. G., Consolvo, S., Cranor, L. F., Jung, J., Sadeh, N. and
Wetherall, D.: A Conundrum of Permissions: Installing Applica-
tions on an Android Smartphone, Financial Cryptography and Data
Security (Blyth, J., Dietrich, S. and Camp, L., eds.), Vol. 7398,
Springer Berlin Heidelberg, pp. 68–79 (online), DOI: 10.1007/978-
3-642-34638-5 6 (2012).

[13] Kelley, P. G., Cranor, L. F. and Sadeh, N.: Privacy as Part of the
App Decision-Making Process, Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems - CHI ’13, New
York, New York, USA, ACM Press, pp. 3393–3402 (online), DOI:
10.1145/2470654.2466466 (2013).

[14] Lockheimer, H.: Android and Security (2012).
[15] Nadji, Y., Gi�n, J. and Traynor, P.: Automated Remote Repair for

Mobile Malware, Proceedings of the 27th Annual Computer Security
Applications Conference - ACSAC ’11, New York, New York, USA,
ACM Press, pp. 413–422 (online), DOI: 10.1145/2076732.2076791
(2011).

[16] Oracle Corporation: Oracle VirtualBox, (online), available from
hhttp://www.virtualbox.org/i.

[17] Rastogi, V., Chen, Y. and Enck, W.: AppsPlayground: Automatic Se-
curity Analysis of Smartphone Applications, Proceedings of the Third
ACM Conference on Data and Application Security and Privacy - CO-
DASPY ’13, New York, New York, USA, ACM Press, pp. 209–220
(online), DOI: 10.1145/2435349.2435379 (2013).

[18] Rastogi, V., Chen, Y. and Jiang, X.: DroidChameleon: Evalu-
ating Android Anti-malware against Transformation Attacks, Pro-
ceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security - ASIA CCS ’13, New
York, New York, USA, ACM Press, pp. 329–334 (online), DOI:
10.1145/2484313.2484355 (2013).

[19] Rosen, S., Qian, Z. and Mao, Z. M.: AppProfiler: A Flexible
Method of Exposing Privacy-Related Behavior in Android Applica-
tions to End Users, Proceedings of the Third ACM Conference on
Data and Application Security and Privacy - CODASPY ’13, New
York, New York, USA, ACM Press, pp. 221–232 (online), DOI:
10.1145/2435349.2435380 (2013).

[20] Samsung: How to retrieve the Device Unique
ID from android device, (online), available from
hhttp://developer.samsung.com/android/technical-docs/How-to-
retrieve-the-Device-Unique-ID-from-android-devicei (2011).

[21] Spreitzenbarth, M.: The Evil Inside a Droid An-
droid Malware: Past, Present and Future, First Interna-
tional Baltic Conference on Network Security & Foren-
sics, pp. 41–65 (online), available from hhttp://basoti.uni-
rostock.de/fileadmin/becker/basoti/basoti12/Tagungsband BaSoTI20
12 Inhalt.pdfi (2012).

[22] Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T. and Ho↵mann,
J.: Mobile-Sandbox: Having a Deeper Look into Android Applica-
tions, Proceedings of the 28th Annual ACM Symposium on Applied
Computing - SAC ’13, New York, New York, USA, ACM Press, pp.
1808–1815 (online), DOI: 10.1145/2480362.2480701 (2013).

[23] Stevens, R., Ganz, J., Filkov, V., Devanbu, P. and Chen, H.: Asking
for (and about) Permissions Used by Android Apps, Proceedings of
the 10th Working Conference on Mining Software Repositories, San
Francisco, CA, USA, IEEE Press, pp. 31–40 (online), available from
hhttp://dl.acm.org/citation.cfm?id=2487085.2487093i (2013).

[24] Thurm, S. and Kane, Y. I.: Your Apps Are Watch-
ing You: A WSJ Investigation finds that iPhone and
Android apps are breaching the privacy of smartphone
users, The Wall Street Journal, (online), available from
hhttp://online.wsj.com/article/SB100014240527487046940045760200
83703574602.htmli (2010).

[25] Trend Micro: Generic Grayware, (online), available from
hhttp://about-threats.trendmicro.com/us/archive/grayware/GENERIC
GRAYWAREi (2007).

[26] Venugopal, D.: An E�cient Signature Representation and Matching
Method for Mobile Devices, Proceedings of the 2nd Annual Interna-
tional Workshop on Wireless Internet - WICON ’06, New York, New
York, USA, ACM Press, (online), DOI: 10.1145/1234161.1234177
(2006).

[27] Zhou, W., Zhou, Y., Grace, M., Jiang, X. and Zou, S.: Fast, Scalable
Detection of ”Piggybacked” Mobile Applications, Proceedings of the
Third ACM Conference on Data and Application Security and Privacy
- CODASPY ’13, New York, New York, USA, ACM Press, pp. 185–
195 (online), DOI: 10.1145/2435349.2435377 (2013).

[28] Zhou, Y. and Jiang, X.: Dissecting Android Malware: Characteriza-
tion and Evolution, 2012 IEEE Symposium on Security and Privacy,
IEEE, pp. 95–109 (online), DOI: 10.1109/SP.2012.16 (2012).

�&)$'ॹ! .1�-43/*�"#(%উ�20��+��,

�������	��������������������������������
�� ���

