TR 2
IN—T9 27 &2y NI =T P—ERIS iR
20114E1LA10H, 11H

GN Workshop 2011
The Eighth Workshop on Groupware and Network Services

Adapting search engine for organization
using Adaptive Search Framework

PAPON YONGPISANPOP, ! PASSAKORN PHANNACHITTA, !
Masao Onirat! and Kenicur MaTsumoTof!

Recently people has relied on the utilize of web search engines to learn how
to accomplish tasks, solve problems and gain information. But in the orga-
nization, using just the major search engines such as Google, Yahoo or Bing
sometimes the search results are too various and not much relevance to the
organization’s related topic. In this paper, we propose a framework called
Adaptive Search Framework. It can learn from the users’ provided information
and adapt itself to choose the more relevant and important web pages that are
the in-organization’s related topics. We also propose a search results re-ranking
algorithm. The algorithm gives score based on the importance and popularity
inside the organizations. Our preliminary results show that Adaptive Search
Framework can learn and return more topic-relevant results to the organization
at the top ranks. It helps users save much time in searching for an intended
web page.

1. Introduction

In many organizations, employees are using search engines to
learn how to accomplish the tasks, solve problems and gain in-
formation. There are a lot of conventional search engines for us
to use, such as Google, Bing, Yahoo, etc. The existed problem
is these major search engines return search results based on the
relevance scores reflected on the popularity of the majority peo-
ple in the world. But those results are too various and seems to
be irrelevant to the topics inside the organization. So we think
of what if there is an additional search engine’s layer which can

11 Nara Institute of Science and Technology

learn from what users have searched and adapt itself to return
the top-rank results that are more relevant to the organization
topic without modifying the conventional search engine itself.

In this work we propose Adaptive Search framework. It is a
framework designed to implement on the top of normal search
engines. It allows the search engine to adapt itself to the orga-
nization. It learn from the user-provided information to return
more relevant results to the organization’s interested topics.

2. Background

2.1 Web Search Engines

Web search engine searches web pages from a specified keyword
and returns a list of the keyword-relevant webpages. Typically,
Web
crawling 2. Indexing and 3. Searching. Crawling and Indexing
are operated alternately in a cycle. At the beginning of a cycle,
a Web crawler retrieves all the web pages’ contents and stores
them as files in a proper format (i.e. Stanford WebBase format).
Next, each web page is parsed into a plain text format and sent to

a web search engine operates in the following order: 1.

an indexer to be analyzed. Web indexer then extracts each term
and create the index database. (for example, terms are extracted
from the titles, headings, or special fields called meta tags). The
purpose of indexing is to allow information to be looked up as
quickly as possible. The cycle ends here and the index database
will serve the users’ queries as a snapshot of the whole web page
set. The web crawler then start the operation again for the next
cycle, and the index database will be updated next time at the
end of the cycle.

2.2 Search results clustering

Search results annotation and clustering are the key solution in
this paper. The proposed of the utilize of search result cluster-
ing is to group the web pages search result into the same cate-

GN Workshop 2011
The Eighth Workshop on Groupware and Network Services

TR 2
IN—T9 27 &2y NI =T P—ERIS iR
20114E1LH10H, 11H

gory. Since some keyword may return a high degree in variation,
for example the keyword ”Apache” can return a set of link to
Apache tribe, Apache helicopter, Apache software foundation,
etc. Grouping them into a category would make users easier in
finding their needed web pages.

There are several number of search result clustering tools i.e.
Apache Carrot?, Vivisimo, and IBM Mapuccino. In this research
we applied the use of Apache Carrot?. It is an open-source library
augmented with a set of supporting applications. They make us
able to build a search results clustering engine simply without
a limitation in any term of uses. Such an engine will organize
your search results into topics, fully automatically and without
external knowledge such as taxonomies or pre-classified content.
Since Carrot? is an online-mode cluster, using it for clustering
needed only url, title, and snippet fields. It may be lack of content
for achieving a high accuracy clustering result.

Adaptive Search Framework

 —————
Browser Extension
Google
_______________________ o wen | B
search [+— vy @)
Meta Search
ri
] |

Re-ranking
oy Algorithm

Fig.1 Model for architectural design

3. Adaptive Search Framework

Adaptive Search framework is implemented on the top of search
engines. It collects data (bookmarks, clicked, links, categories)
when users search and interact with web browser. Every time
users search on Adaptive Search Framework, the information pro-
vided helps the framework understand what users are trying to
do. The more users search, the more framework can learn. It use
that information to adapt the experience so users spend less time
searching and accomplish what users want to do.

3.1 Architecture

In figure 1 shows the design architecture of Adaptive Search
Framework. The framework is separated into 3 layers. The top
layer is an interface. Users use it to search and obtain the results
just as the normal search engines. we decide to develop browser
extensions to support users to organize search results. The pur-
pose of server layer is to return relevant results that related to
the keyword and also related to the topics in organization . This
layer communicates with outside search engines by send keyword
that users input and obtain the results. Once we have the re-
sults, we use carrot? to cluster the results to categories. Then
we use the categories to search in the database to find if there
is any webpages that related to the categories. After, we return
the results back to users, we will store webpages and tags which
users interact with. The job layer is scheduled to calculate score
for users and web page by using data from the database.

3.2 Data Flow

To explain our framework data flow, we break down the user
interaction into three cases: searching, clicking a result link, and
bookmarking a page. Each case is illustrated in figure 3.2.

3.2.1 Searching

For the first searching case in figure 2(a). After a user pass a

GN Workshop 2011 TR
The Eighth Workshop on Groupware and Network Services IN—T 27 &y NI =P —E AR
20114E11 A 10H, 11H

Search Engine
ul API Carrot?

Tag Category
ing

Mapping Mappi Up;;le
H Top N results: W
Query : "java" N @ T;
G, (@ E@
@) Tl
'i T . T —
------------ Vti|t; € C.T
l T/ =T/Uti =t eC,T
T =
i € B8 7 i K |
th v ("T_* E
N
— | @
(o] =
|@ v wowmeer
" W.T

(a) Searching data flow

Search Engine Tag Category
ul o

carror? Mapping Mapping Updte

Cick :
“www java.com® : w;
ur w, user u ~ (o1, W0 etickemt RN
w € Q7 T >
N

VI U, Wi)elick+1 (uyw;) - E
* "www java.com"
o category : programming”) E

|

% url wy, user u, category Cy

(b) Clicking the search result and bookmarking data flow

Fig.2 Proposed Framework’s Data Flow

query ¢ from the search interface, the query will be sent through
the conventional search engine API, and the top n result will re-
turn. Let W denotes a returned top n search result web composed
with wi,ws, ..., w,. We send the set W to Carrot?> API and then
each of w;’s clustering labels will be returned. We called these as

tags. We denote T} as a set of tags corresponded to w;. At this
step, we check each of w; if it has been stored in our database.
The storing condition will be explained later. Case a w; has been
stored in our database, all the tags t|t € T; will be update to the
stored wj as T]. That is T = T;UT;. Then all t|t € T; will be up-
dated to each category C, in C,T where C, is the corresponded
category to t;. At last, we store T} in our database.

Case that the w; has not been stored in the database, it will
be processed for the suggestion feature. First we union all the T}
into T (T' = |J} T;) and list all C,, which are corresponded to ¢;
into CT (CT = J} C,T|3t; € C,T). If we do reverse mapping
in this step, we will obtained 7" whose all the ¢; are in CT. We
then reverse map again form 7”7 and get a set of web page W’
who contains at least one t; corresponded to CT'.

For instant, we have already collected all the suggested web
page in the database. We need to combined the some records
from current search result set (W) in to the suggested web page
set (W'). Since we have precessed T, we can map each t’ into
W and obtain the suggestible web page list from W.

At last we composed a recommended web page set W’ from
wy [e W' uUWw)|T! € CT) , and we render W as the original
search result from the conventional search engine.

3.3 Clicking a Result Link

After a user click a search result link, we will pass the url of
the clicked link w; and the user’s identity agrument u to the
framework. If w; has never been clicked from any user, it won’t
be in the database. In this case we will initial the number of clicks
as 1 and then store the user-click w; in the database as a tuple
(u,w;). We also store the corresponded tags T; to the database.
Case that w; is already existed. we just increase the total click
of tuple (u,w;) by one, and then store it back to the database.

GN Workshop 2011
The Eighth Workshop on Groupware and Network Services

TR 2
IN—T9 27 &2y NI =T P—ERIS iR
20114E1LA10H, 11H

3.3.1 Bookmarking a Web Page

For the latest usage case; bookmarking a web page, we assumed
that all the bookmarked web page must be clicked through from
our search framework user interface. Then we need not to check
the existent of w;. Parameters in this bookmark case are the
w;, u, and the bookmark category C,. At first we bind u with
w; and store (u,w;) as a bookmark record. If C, has just been
created right before user bookmarked, we have to store it in the
database at first. We then map all T;, which is corresponded to
the bookmark page w; to C, as C, T, and store all of them in the
database.

3.4 Re-ranking Algorithm

The re-ranking algorithm is derived from Kleinberg’s HITS al-
gorithm®. In this algorithm, to calculate the authority of weight
of a web page p, the sum of hub values of all pages ¢ pointing to
p and the sum of weights of all users r visited p are combined
to form the final authority weight of p. The hub weight is simi-
larly calculated. The weight of user r is calculated by summing
up authority and hub weight of all pages he has visited or book-
marked. Then the weights of web pages and users reinforce each
other in an iterative way according to our second assumption. In
the algorithm, 3 is the parameter to adjust if the system needs
to weight more score on when the users clicks on the page. and
« is the parameter to adjust if bookmark is more importance to
give more weight score to the user.

a(p) = BE,ophl@)+ (1= AL, ulr)
hp) = B3,.,000)+(1-B) 5, ,ulr)
ur) = a2, +3,,h0)

+(1=8) (s aw) + 2, h(2))

4. Experiments

4.1 Experimental Setup

We conducted experiments in order to answer two questions to
solve the problem of variety and irrelevant results that returned
from search engines: (1) Does the framework will be able to sug-
gest results more related to the topic inside organization and (2)
Does Re-ranking algorithm re-rank webpages based on the im-
portance inside organization. The experiment were implemented
on top of 2 major search engines which are Google and Bing. We
deployed it in the server inside our Software Engineering labo-
ratory in Nara Institute of Science and Technology.We let our
members inside the laboratory use it. We used the data from the
database to find the results and answers the questions.

4.2 Experimental Results

4.2.1 Suggestion results related to the topic inside or-

ganization

As it described in section 3.2, Adaptive Search Framework will
be able to suggest the webpages that related to keyword and the
topics inside organization. In this experiment, we use “java” as
a query. The results in table 2 shows the comparison of the web-
pages that returned between our search engine that implemented
our framework and normal search engines. We can assume that
the webpages that return from our framework are related to java
and also related to Software Engineering laboratory more than
the webpages that returned from normal search engines. The rea-
son is because those webpages has been analyzed by the majority
of members inside the laboratory. From the results, it can be
proved that the framework will be able to return more relevant
results to the keyword and topics based on the popularity in the
organization.

TR 2
IN—T9 27 &2y NI =T P—ERIS iR
20114E1LH10H, 11H

GN Workshop 2011
The Eighth Workshop on Groupware and Network Services

Fig.3 The interaction between users and webpages.

1 0.071 | www.javaranch.com
7] 0.068 | www.vogella.de/articles/Eclipse/. ..
2 | 0.479 | en.wikipedia.org /wiki/JavaBean
42 | 0.037 | junit.sourceforge.net /doc/faq/faq.htm
4 | 0.037 | www.echow.com/how-5347487 -resolve-language-stack-
overflow-error.html
Table Score and rank of top 5 webpages that related to “java” by using

our re-ranking algorithm.

4.2.2 Re-rank webpages based on the importance in-
side organization

We use data described in figure 3 to re-calculate score for the
webpages inside Software Engineering Lab based on the popular-
ity of webpages. There are 2 users that search for “java” which
are user A and B. The blue dashed line is represented when the
users click on the webpages. The black bold line is represented
when the users bookmark the webpages. The results from table 1
shows the top 5 webpages which have the highest score among the
“java” category. As you can see that www.javaranch.com (ID=1)

Adaptive Search Google

www.javaranch.com www.java.com/getjava
www.vogella.de/articles/Eclipse/ar..| www.java.com
en.wikipedia.org/JavaBean en.wikipedia.org/wiki/Java-(progranj
ming-language)
junit.sourceforge.net/doc/faq/.... www.java.net
www.ehow.com/how-5347487- resolv¢- www.oracle.com/technetwork/java...
language-stack-over....
Table 2 Comparison top 5 results between Adaptive Search and Google

is the first rank because it has been bookmarked by 2 users and
it also has been clicked several times.

In table 2 shows the comparison between results that come
from search engine that implemented Adaptive Search Frame-
work which is using inside our laboratory and normal search en-
gines(Google). There are some webpages that we could not see
them in the very first top rank when you are trying to search it
in the normal search engine. The reason is because they are more
related to the topics in organization and also has been analyzed
by users.

5. Discussion

In the research paper called ”Learn from Web Search Logs to
Organize Search results”!® has shown the comparison between
the cluster-based method and log-based method. The cluster-
based method has to rely on the keywords extracted from the
snippets to construct the tag for each cluster. The log-based
method use the center of each star cluster'® as the label for the
corresponding cluster.

From the table 3, the log-based method gives more readable and
more specific labels because it generates labels based on users’
queries. But in general, when we apply our framework into the

GN Workshop 2011
The Eighth Workshop on Groupware and Network Services

TR 2
IN—T9x7 &2y NI =7 P—ERBIS iR
20114E1LH10H, 11H

Log-based method

jaguar animal

aguar auto accessories

aguar cats aguar, panthera, cats

aguar repair aguar, services, boston

able 3 Label comparison between Log-based method and Cluster-based
method

Cluster-based method
jaguar, auto, accessories
aguar, type, prices

organization, we cannot gather all the members search log data
to create a structure information for the framework to learn from.
The framework will have to learn a bit by bit from the users and
when we gain enough web search logs from the members, we will
also cluster our links in the organization by using that web search
log together with the clustering engine which we believe it will
be more accurate to give us the label of webpages.

6. Concluding Remarks

In this paper, we studied the way to improve search engine to
return search results those are more relevant and important to the
topics in organization. We created a framework that can be learn
from the data provided by users in the organizations. Integrated
Adaptive Search Framework into search engines and use it inside
the organization could benefit both users and organization. Users
will save a lot of time searching and will be able to get search
results those are relevance to the organization. Also organization
will be able to sustain the web information legacy. In the future,
we would develop a collaborative search function that allow users
to collaborate with others while helping searching in the same
topic. and also we would optimize the re-ranking algorithm and
explore more sophisticated features to improve our framework.

Acknowledgments This research is conducted as part of
the Next Generation IT Program, Grant-in-aid for Young Sci-
entists (B), 22700033, 2011, and Grant-in-Aid for Scientific Re-

search (B), 23300009, 2011 by the Ministry of Education, Culture,
Sports, Science and Technology, Japan.

References

1) Eugene Agichtein, Eric Brill, and Susan Dumais. Improving web
search ranking by incorporating user behavior information. In
Proc of SIGIR 06, pages 19-26, 2006.

2) Shenghua Bao, Guirong Xue, Xiaoyuan Wu, Yong Yu, Ben Fei,
and Zhong Su. Optimizing web search using social annotations.
In Proc of WWW?’07, pages 501-510, New York, USA, 2007.

3) Claudio Carpineto, Stanislaw Osiriski, Giovanni Romano, and
Dawid Weiss. A survey of web clustering engines. ACM Com-
put. Surv., 41:17:1-17:38, July 2009.

4) JonM. Kleinberg. Authoritative sources in a hyperlinked envi-
ronment. J. ACM, 46:604-632, September 1999.

5) Dan Morris, Meredith RingelMorris, and Gina Venolia. Search-
bar: a search-centric web history for task resumption and informa-
tion re-finding. In Proc of CHI ’08, pages 1207-1216, 2008.

6) MeredithRingel Morris and Eric Horvitz. Searchtogether: an in-
terface for collaborative web search. In Proc of UIST 07, pages
3-12, 2007.

7) Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael
Moricz. Analysis of a very large web search engine query log.
SIGIR Forum, 33:6-12, September 1999.

8) Kazunari Sugiyama, Kenji Hatano, and Masatoshi Yoshikawa.
Adaptive web search based on user profile constructed without
any effort from users. In Proc of WWW 04, pages 675-684, 2004.

9) Jidong Wang, Zheng Chen, LiTao, Wei-Ying Ma, and Liu Wenyin.
Ranking user’s relevance to a topic through link analysis on web
logs. In Proc of WIDM 02, pages 49-54, 2002.

10) Xuanhui Wang and ChengXiang Zhai. Learn from web search
logs to organize search results. In Proc of the SIGIR 07, pages
87-94, 2007.

11) Papon Yongpisanpop, Masao Ohira, and Ken-ichi Matsumoto.
Community search: a collaborative searching web application with
a user ranking system. In Proc of OCSC’11, pages 378-386, 2011.

