
IPSJ Transactions on Computer Vision and Applications Vol.6 12–24 (Mar. 2014)

[DOI: 10.2197/ipsjtcva.6.12]

Research Paper

Tree-structured Mesoscopic Surface Characterization
for Kinematic Structure Estimation from 3D Video

TomoyukiMukasa1,a) Shohei Nobuhara1 Tony Tung1 TakashiMatsuyama1

Received: May 27, 2013, Accepted: December 16, 2013, Released: March 24, 2014

Abstract: This paper presents a new approach to estimate the kinematic structure underlying a sequence of 3D dy-
namic surfaces reconstructed from multi-view video. The key idea is a mesoscopic surface characterization with a
tree-structure constraint. Combined with different levels of surface characterizations, namely macroscopic and mi-
croscopic characterizations, our mesoscopic surface characterization can cope with shape estimation errors and global
topology changes of 3D surfaces from the real world to estimate kinematic structure. The macroscopic analysis fo-
cuses on global surface topology to perform temporal segmentation of 3D video sequence into topologically-coherent
sub-sequences. The microscopic analysis operates at the mesh structure level to provide temporally consistent mesh
structures using a surface alignment method on each of the topologically-coherent sub-sequences. Then, the meso-
scopic analysis extracts rigid parts from the preprocessed 3D video segments to establish partial kinematic structures,
and integrates them into a single unified kinematic model. Quantitative evaluations using synthesized and real data
demonstrate the performance of the proposed algorithm for kinematic structure estimation.
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1. Introduction

Nowadays 3D surface capture from multi-view videos, known
as 3D video [9], [12], [13], has become a popular technique in
computer vision and graphics communities. 3D video consists
of a temporal series of 3D surfaces reconstructed on a frame-by-
frame basis from multi-view videos of real-world objects. Unlike
motion-capture technique, 3D video can record the target surface
geometry and texture as-is, and realizes full-3D, free-viewpoint
rendering of the real scene.

In 3D video, captured surface meshes of different frames usu-
ally have different mesh structures, i.e., different number of ver-
tices and mesh connectivity. This fact indicates that no vertex-
to-vertex correspondence between different meshes is available
in general. Moreover 3D video can only capture surfaces that
are visible from cameras, i.e., the envelopes. That is, not only
the local mesh structure but the global surface topology also can
change through the entire 3D video sequence (Fig. 1).

On the other hand, once a time-invariant structure describing
the object motion is obtained, several applications of 3D video
will be possible, such as motion analysis of dance or sports
activities, kinematic editing of captured data, inter-frame mesh
data compression, etc. Based on these observations, this paper
is aimed at estimating a kinematic structure as a time-invariant
physical system underlying captured time-varying mesh struc-
tures (Fig. 2).

To achieve this goal, we propose a framework as follows. We
first segment the entire 3D surface mesh sequence into time in-
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Fig. 1 The global topology change of surface. Left is a genus-0 surface
while Right is a genus-1 due to the body contact.

Fig. 2 Estimated kinematic structures. Colored regions indicate rigid parts.
White areas denote non-rigid portions corresponding to joints (Left
data is courtesy of University of Surrey and INRIA. Right data is
courtesy of Computer Graphics Group at MIT).

tervals based on a macroscopic characterization in order to keep
the global topology unchanged in each interval. Next we apply
a temporal surface alignment method to produce time-coherent
mesh models for each interval based on a microscopic mesh char-
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acterization. These two steps enable us to extract time-invariant
body part candidates based on a mesoscopic mesh characteriza-
tion. Moreover candidates from each interval are integrated into a
unified tree-structured articulated model so as to describe the en-
tire 3D video sequence best. Here we assume that each rigid part
of the target shape can be represented by a generalized cylinder
model [11], and is connected to others via non-rigid joint parts to
form a single tree-structure.

The advantage of our approach is twofold. (1) It explicitly
manages global topology changes. (2) It can handle any num-
bers of articulated parts as long as they can be modeled by a
tree-structured generalized cylinders. For example, we can as-
sume that the proposed model is valid for vertebrate animals and
arthropods. This point is justified empirically by experimental
evaluation using non-human data as described later.

2. Related Work

Several existing methods have been proposed to acquire kine-
matic structures from 3D model sequences in the literature [2],
[6], [8], [19]. These methods can be categorized by their units
of motion description that here we refer to as “processing units.”
In Ref. [8], the processing unit is a voxel, and its motion is as-
sumed to be relatively small compared to that of the whole body.
With this modeling, it is difficult to discriminate motion derived
from rigid motion and small scale non-rigid motion. Hence this
approach cannot robustly estimate a kinematic structure of real-
world data containing a mixture of non-rigid motions and recon-
struction errors.

To solve this issue, Refs. [2], [6] and [19] proposed algorithms
utilizing higher level of motion descriptions, i.e., mesoscopic sur-
face characterizations, such as sub-surfaces and primitive vol-

Fig. 3 Overview of our algorithm.

ume. These descriptions acheive more robust modeling of sur-
face motions, but final results are not guaranteed to reflect the
global topology of the object. This is because their algorithms are
bottom-up oriented and have no constraints on building up kine-
matics structure. In addition, a deforming mesh with constant
mesh connectivity is given as input in Ref. [2] while our entire
framework can cope with temporally varying mesh connectivity.

Thus, this paper proposes an algorithm based on a mesoscopic
sub-surface modeling with an explicit top-down constraint which
connects sub-surfaces to form a tree structure which is expected
to be valid for regular animals including humans. The key differ-
ence compared to prior studies is the combination of top-down
constraint and bottom-up sub-surface motion estimation from
per-vertex surface motion flows.

3. Algorithm Overview

We introduce the following three-step approach (see Fig. 3) to
estimate the kinematic structure from 3D surface mesh sequence:
Step I: 3D mesh sequence segmentation by macroscopic mesh

characterization.
Step II: Time-coherent 3D mesh generation by microscopic

mesh characterization.
Step III: Kinematic structure estimation by mesoscopic mesh

characterization.
Step I is based on a global geodesic distance distribution (μ
histogram, described later) to identify time intervals where the
global topology of individual 3D surface mesh is unchanged.

Step II exploits this consistency to establish per-vertex micro-
scopic surface motion flows which enable a reference mesh model
to be aligned to other mesh surfaces in the interval.

Step III uses this microscopic motion information to estimate
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Fig. 4 Tree-structured generalized cylinders with cone and annulus repre-
sentation.

the underlying kinematic structure. The key idea here is to model
the object using generalized cylinders consisting of ring-shaped
sub-surfaces called annulus used as mesoscopic surface charac-
terization in our algorithm. By representing the articulated mo-
tion of the object by collections of rigid annuli motions, and en-
forcing them to form a tree-structure, this step models the object
surface motion by tree-structured generalized cylinders motion
(Fig. 4). Here, we call a cylinder as cone, and its apex as leaf.

In this modeling, the kinematic structure is provided as the esti-
mated tree structure. One challenge in this strategy is the fact that
the complete kinematic structure is not always estimated from a
single interval. Depending on the apparent object motion, each
interval will provide a different incomplete kinematic structure.
For example, if the object keeps its upper body static in an inter-
val, we have no clue about its kinematic structure from its motion
obviously.

Hence the main design factors on modeling the object kine-
matic structure by a tree-structured generalized cylinders are
twofold: (1) from which part of the tree should the estimation
starts, and (2) how to integrate incomplete kinematic structures
from different intervals into a unified one which can model all the
surfaces in different intervals.

In the following sections, we propose a leaf-oriented approach
which estimates the kinematic structure from the leaves to the
root, and integrates incomplete kinematic structures by leaves-to-
leaves matching. This is because leaves can be robustly estimated
at extremal points of 3D mesh surfaces as a result of macroscopic
and microscopic processings of Step I and Step II as shown later.

4. Step I: Macroscopic 3D Mesh Sequence
Segmentation

Let us denote a 3D surface mesh sequence by
M(t) = {V(t), E(t)} where V(t) and E(t) denote the set of
vertices and edges respectively at time t. We define a continuous
function μ: M(t) → R as the sum of geodesic distances from a
vertex to all the others:

μ(v) =
∑

u∈V(t)

g(v, u), (1)

where v, u ∈ V(t), and g(v, u) is the geodesic distance between v
and u. If the global surface topology changes, the distribution of μ
changes drastically because topological changes introduce or re-

Fig. 5 Correlations of μ histograms.

move shortest paths on M(t). On the other hand, since we define
μ as an integral over the surface, its distribution is robust to lo-
cal surface deformations caused by object motions or per-vertex
reconstruction errors (e.g., holes or surface glitches). Hence the
distribution of μ is only sensitive to the surface global topology
(which is related to the number of critical points, according to
the Morse theory [14]), and can be used as a macroscopic surface
characterization.

Based on this observation, we introduce the following correla-
tion coefficient index using covariance Cov and standard devia-
tion σ to measure surface-to-surface topological difference:

C(Hμ(t),Hμ(t + 1)) =
Cov(Hμ(t),Hμ(t + 1))
σ(Hμ(t))σ(Hμ(t + 1))

, (2)

where Hμ(t) denotes the histogram of μ distribution on M(t). We
use a fixed number of bins (100 in practice) in the histogram,
and normalize it. Figure 5 plots C(Hμ(t),Hμ(t)) and empirically
proves that this index captures well topological changes at sharp
drops of values. With this index, we subdivide the entire 3D mesh
sequence into intervals Ii = [tbegin

i , tend
i ] (i = 1, ...,N(I)) in each of

which the global mesh topology does not change.

5. Step II: Microscopic Time-coherent 3D
Mesh Generation

The second step is to estimate 3D motion flows in each Ii.
We have formulated this as a mesh alignment problem [4], [5],
[10], [20], [23]. In particular, we employ “tracking by defor-
mation” approach and utilize the geodesic mapping [20] for con-
straint of deformation. This strategy is particularly computation-
ally efficient as the μ distribution computed in Step I can be re-
used in the geodesic mapping.

According to the Morse theory [14], a continuous function μ
defined on a surface can characterize the surface topology us-
ing its critical points. Here, we use again the sum of geodesic
distance as μ to identify extremal surface points that coincide to
highly concave or convex regions [7], [21], [22].

By assuming that such highly convex regions correspond to
end-points of body parts, we utilize them as “leaves” of the tree-
structure to be estimated (Fig. 4). In addition, we can utilize them
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Fig. 6 Original input data and alignment results. Left: warm color indicates large deformation. Right:
temporally inconsistent mesh sequence (top) and aligned sequence after surface deformation with
fixed mesh geometry (bottom).

as coordinate origins of the geodesic mapping, since they are
consistent in intervals where global mesh topology is kept un-
changed.

In this step, we first find the leaves, i.e., the time-coherent crit-
ical point set which defines deformation invariant geodesic coor-
dinates in each interval. Then we choose a reference mesh for
each interval, and align it to other meshes in the same interval
according to the vertex-to-vertex matching based on geodesic co-
ordinates. As the result, we obtain time-coherent 3D meshes for
each interval, and this is equivalent to obtain 3D motion flows.

5.1 Leaf Detection
Tips of body extremities, e.g., fingertips, appear in μ(v) distri-

bution on the surface as local maxima. By assuming the frame
rate of 3D video is high enough for capturing the object’s mo-
tion, these points can be tracked based on Nearest Neighbor with
Euclidean distance over time in each interval Ii.

Leaves are defined as microscopic (local) surface feature points
v

lea f
n (t) ∈ L(t) at local maxima of μ(v) at each time frame t, and

L(t) (n = 1, ...,N(L(t))) as the set of leaves of tree shaped kine-
matic structure to be estimated. Here we introduce a function
ε(v, L) which returns a leaf vlea f

n ∈ L nearest to v in Euclidean
space. We then find a mapping Ft,t+1 between L(t) and L(t + 1) as
follows:

Ft,t+1 = { < vlea f
n ∈ L(t), vlea f

m ∈ L(t + 1) > |
v

lea f
n = ε(vlea f

m , L(t)),

v
lea f
m = ε(vlea f

n , L(t + 1)),

n(vlea f
n (t)) · n(vlea f

m (t + 1)) > 0}, (3)

where n(v) stands for the normal vector of v. We start the above
mapping from the first frame in Ii, and propagate the result frame
by frame to the last frame in Ii. As the result, we find fixed num-
ber of leaves Li in each interval Ii, and establish their correspon-
dences across frames in Ii.

5.2 Definition of Geodesic Coordinates by Leaves
As we have made correspondences between leaves vlea f

n over
frames in each interval Ii in the previous section, we can define
interval specific geodesic coordinate xgeo

i (v(t)) whose element is
the geodesic distances to the leaves as follows:

xgeo
i (v(t)) = (g(v(t), vlea f

1 (t)), ..., g(v(t), vlea f
N(L)(t))). (4)

Since the global topology does not change in Ii, the distance be-

tween each vertex v(t) ∈ V(t) and each of leaves vlea f
n (t) does

not change through Ii. Therefore geodesic coordinate is invariant
against mesh deformations in each interval Ii [20].

5.3 Time-coherent 3D Mesh Generation Based on Geodesic
Mapping

We choose a 3D video frame at the middle of each interval as
the reference mesh Mre f

i because it is likely to represent an aver-
age posture of the object in the interval and hence is likely to min-
imize the deformation artifacts. We then obtain a mesh sequence
M′t∈Ii

with time invariant surface mesh connectivity by deforming

Mre f
i to fit to all the other 3D mesh Mt∈Ii in the same interval.
We first establish per-vertex correspondence between succes-

sive frames f geo
t→t+1 : v(t) ∈ V(t)→ v(t + 1) ∈ V(t + 1) by finding a

point v(t + 1) such that:

v(t + 1) = arg min
v′∈V(t+1)

(d(v(t), v′)), (5)

where d(v(t), v′) stands for the geodesic distance between vertices
in different frames in the same interval as follows:

d(v ∈ V(t1 ∈ Ii), v
′ ∈ V(t2 ∈ Ii)) = ||xgeo

i (v) − xgeo
i (v′)||. (6)

If we move each vertex of Mt∈Ii according to f geo
t→t+1, the lo-

cal mesh structure on Mt∈Ii will not be preserved because Eq. (5)
returns the geodesically nearest vertex without considering con-
nectivities among vertices.

To preserve the local mesh structures, we apply as-rigid-as-
possible (ARAP) deformation method [16] to Mre f

i using f geo
i→ j

as soft constraint. ARAP deformation preserves surface details
by keeping rigidities of each local area around vertex while the
whole mesh is deformed so as to satisfy the soft constraint. With
the combination of geodesic mapping and ARAP deformation,
we can align 3D mesh sequence Mt∈Ii by M′t∈Ii

in which mesh
topology and connectivity are guaranteed to be equal to the refer-
ence mesh Mre f

i (Fig. 6).

6. Step III: Mesoscopic Kinematic Structure
Estimation

Up to this point, we have segmented the sequence into inter-
vals using macroscopic surface characteristics, and found the per-
vertex surface motion flows in each interval using microscopic
surface features. We then extract the kinematic structure by the
following processes utilizing a mesoscopic mesh characteriza-
tion.
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Step III.i Estimation of kinematic cones on mesh surface
Step III.ii Recursive estimation of kinematic cylinders on mesh

surface
Step III.iii Reconstruction of kinematic structure

In Step III.i, we find cones on the 3D mesh such that each
of which includes a leaf, and segment each of them (Fig. 4) into
rigid or non-rigid areas. We call the segmented cone as “kine-
matic cone.”

In Step III.ii, we cut off the kinematic cones from the mesh
surface and define “kinematic cylinders” on the remaining area
until the entire mesh surface are segmented into rigid or non-rigid
areas.

In Step III.iii, we obtain partial kinematic structures from
kinematic cones and cylinders, then integrate them into a unified
kinematic structure valid through the entire sequence.

6.1 Step III.i: Kinematic Cone Estimation
We estimate the kinematic cone for each leaf by iterating the

following process:
Step III.i.a Mesoscopic surface characterization by cone and

annulus representation.
Step III.i.b Clustering annuli into kinematic cones.
Step III.i.c Temporal integration of kinematic cones.

Step III.i.a introduces a mesoscopic surface characterization:
cone and annulus representation of 3D surface. The annulus rep-
resentation is aimed at robustly managing small per-vertex mo-
tions and noises acquired in Step II.

Step III.i.b examines the rigidity of annuli, and cluster them
into sub-meshes corresponding to rigid body parts or joints that
form kinematic cones.

Step III.i.c matches and transfers non-rigid labels in kinematic
cones found independently in each interval.
6.1.1 Step III.i.a: Mesoscopic Surface Characterization

By assuming that the object has several body extremities each
of which can be represented by a generalized cylinder model con-
strained to form a tree structure, we introduce a mesoscopic sur-
face characterization with annulus and cone (Fig. 4). In Step II,
we have computed leaves that are local maxima of μ(v) corre-
sponding to tips of body extremities. We define a set of annuli for
each leaf. An annulus Ak

n is the ring-shaped sub-surface where the
geodesic distance from a leaf vlea f

n is within a range rk. Borders
between annuli corresponds to a disc in the generalized cylinder
model. A cone consists of a set of contiguous annuli and corre-
sponds to a generalized cylinder.

We partition the reference mesh Mre f
i in each time interval into

cones as a connected annuli. The partition of Mre f
i is transferred

to other 3D surface meshes {M′}i in the interval Ii automatically
as the mesh geometry is consistent in each interval.

After obtaining a consistent set of cones in each interval, we
match them across intervals and integrate them into a unique set
of cones consistent through the entire sequence.
6.1.1.1 Cone and Annulus Representation

For each leaf vlea f
n of Mre f

i (nlea f = 1, ...,N(L)), we define a
cone S cone

n consisting of annuli Ak
n independently. An annulus Ak

n

consists of connected vertices whose geodesic distances from a
leaf vlea f

n are within the range rk = [δg(k), δg(k + 1)), where δg is

Fig. 7 Cone and annulus partition. Black colored areas are not included in
a cone, each of other colors represents different annulus, and white
circles indicate leaves of each cone.

an heuristic geodesic width *1. A cone and its annuli are obtained
by the following processes simultaneously:
( 1 ) Partition Mre f into sub-surfaces {Bk

n}where the geodesic dis-
tance from a leaf vlea f

n is within the range rk.
( 2 ) In each Bk

n, we merge connected vertices into sub-surfaces.
( 3 ) Let S cone

n consist of B0
n.

( 4 ) Grow S cone
n by adding the adjacent sub-surface Bk

n until Bk+1
n

is disjoint.
At the end of the above process, we consider each of sub-surfaces
Bk

n in S cone
n as an annulus Ak

n. By applying this for each annu-
lus, we obtain cones corresponding to all the body extremities
(Fig. 7).

Note that a sub-surface Bk
n is not guaranteed to be a connected

sub-surface. If Bk+1
n is disjoint, it suggests that it partially covers

at least two body extremities, and Bk
n is located at their conjuga-

tion area. Therefore, as shown in Fig. 7, cones are overlapping
when the object is tree-shaped.
6.1.1.2 Cone Matching Across Intervals

We have assumed that the object consists of body extremities
that can be described as cones, and form a time invariant tree
shaped global structure. On the other hand, the global mesh topol-
ogy changes when the body extremities touch each other, e.g.,
when the subject puts his/her hand on the hip (Fig. 1).

The change of the global mesh topology affects whether each
body extremity appear as cone or not. That is, a cone found in
an interval can disappear in other intervals due to body contacts.
Hence, we collect cones appearing constantly through the entire
sequence, and map them to the mesh of other intervals in which
the cones are not observed.

We first match leaves and its corresponding cones across inter-
vals in the same manner as Section 5.1. Suppose we have found
cones {S cone

n }i (n = 1, ..., nmax
i )) in Ii, {S cone

m }i+1 (m = 1, ...mmax
i+1 )

in Ii+1, where Ii and Ii+1 are contiguous each other and their
bounding time frames are tend

i and tbegin
i+1 respectively. When nmax

i

and mmax
i+1 differs, here we suppose nmax

i > mmax
i+1 for convenience,

some of cones {S cone
n }surplus

i do not have corresponding cones in
{S cone

m }i+1. We map {S cone
n }surplus

i on the 3D mesh Mtbegin
i+1

as in the
following Section 6.1.1.4.
6.1.1.3 Erroneous Cone Rejection

Even if a cone S cone
n is matched to a cone S cone

m , the matching
is not reliable when the distance between their leaf positions is
longer than a threshold θ:

||vlea f
n (tend

i ) − vlea f
m (tbegin

i+1 )|| > θ. (7)

In this case, S cone
n or S cone

m should be an erroneous cone which
often appears when touching body parts bend at joints and form

*1 We employed 1/25th of max(g(v(tre f ), vlea f
n (tre f ))) in practice.
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a loop in global mesh topology (see center of Fig. 8). Notice that
the parameter θ should be determined based on the assumption
on the object motion, i.e., how far the body leaves can move in a
frame.

To reject the erroneous cone from S cone
n and S cone

m , we introduce
an assumption in which each rigid body has a bone inside along
its long axis direction because it is natural for the tree-shaped ob-
ject, e.g., most of animals (Fig. 9). Based on this assumption, an
erroneous cone must have less number of annuli inside. We count
the number of annuli in S cone

n and S cone
m , and reject the one with

less annuli. If two cones have a same number of annuli inside,
then we select the one in which μ ranges more widely. If the
ranges are equivalent, then we randomly select either of them.

By introducing this erroneous cone rejection mechanism, we
can be free from false sub-trees not corresponding to any body
extremities, and construct unique kinematic structure as we dis-
cuss later.

Fig. 8 Processing of erroneous cone. The erroneous cone consists of only
one annulus while the corresponding cone in the interval i has 12
annuli.

Fig. 9 Annuli with long axis and short axis.

Fig. 10 Kinematic cone and cylinder for each body extremity and body trunk. Colored and white regions
indicate rigid and non-rigid areas respectively. Black regions are out of range of cones.

6.1.1.4 Cone Consistency
As the result of the above two steps, we have obtained reliable

cones. However, some of them are not observed in intervals in
which global mesh topology is affected by contact of body ex-
tremities. For each body extremity S cone

n = (Vcone
n , Econe

n ) in Ii

such that it cannot be matched to any other cones in a contiguous
interval Ii+1, we find the corresponding area on the mesh in Ii+1

as follows:
( 1 ) make a mapping between U(tend

i ) = {V(tend
i )\Vcone

n (tend
i )} and

V(tbegin
i+1 ):

{<v j′ ∈V(tbegin
i+1 ), v j ∈Ui> |ε(v j′ ,Ui), n(v j′ ) · n(v j)>0}, (8)

( 2 ) make v j′ part of Ak
n ∈ S cone

n if v j′ is mapped onto v j in
Ak

n ∈ S cone
n (Fig. 8),

where ε(v,U) returns a vertex v j ∈ U nearest to v in Euclidean
space.

We obtain temporally consistent numbers of cones through the
entire sequence as the result of this step.
6.1.2 Step III.i.b: Annulus Clustering

We cluster annuli in each cone into rigid areas {S rigid
p } or non-

rigid areas {S non−rigid
q } to compose kinematic cone (Fig. 10). The

clustering starts from A0
n which contains the leaf vlea f

n and relies
on two criteria: “self-error” and “cast-error.”
6.1.2.1 Self-error

For each annulus Ak
n = (Vk

n (t), Ek
n), we can compute the rigid

motion Dt→t+1(Ak
n) = {Rt→t+1(Ak

n),Tt→t+1(Ak
n)} where Rt→t+1(Ak

n)
and Tt→t+1(Ak

n) denote the rotation and translation of Ak
n by mini-

mizing residual error e:

e(Vk
n (t),Vk

n (t + 1))

=
∑

v∈Vk
n (t)

||(Rt→t+1(Ak
n)v(t) + Tt→t+1(Ak

n)) − v(t + 1)||. (9)

We call the sum of this as “self-error” and denote it by esel f (Ak
n(t))

which shows the apparent non-rigidity of Ak
n.

6.1.2.2 Cast-error
The rigid motion of a sub-surface (an annulus or clustered an-
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nuli) S = (VS
n (t), ES

n ) adjacent to Ak
n is given by Dt→t+1(S ) =

{Rt→t+1(S ),Tt→t+1(S )}. We compute the residual error e for an
annulus Ak

n by assuming that Ak
n follows Dt→t+1(S ) and each ver-

tex v ∈ VS
n is moved to v′ ∈ V ′Sn :

e(Vk
n ,V

′k
n) =

∑

v∈VS
n

||(Rt→t+1(S )v + Tt→t+1(S )) − v′||. (10)

We call the sum of the residual errors as “cast-error” and denote
it by ecast

t→t+1(Ak
n):

6.1.2.3 Annulus Clustering Based on Merge-error
We cluster the annuli by examining the similarity between ad-

jacent sub-surfaces (an annulus or clustered annuli) based on the
self-error and the cast-error. We start the clustering from each
annulus A0

n which contains the leaf vlea f
n in each cone S cone

n inde-
pendently with assuming that A0

n is rigid.
Even if an annulus Ak

n follows the rigid motion of adjacent sub-
surface, its cast error will be augmented as its self error increases.
To elicit the effect of merging Ak

n to the adjacent sub-surface
from ecast

t→t+1(Ak
n) affected by esel f

t→t+1(Ak
n), we employ “merge-error”

which is the ratio of cast-error to self-error:

emerge
t→t+1(Ak

n) = ecast
t→t+1(Ak

n)/esel f
t→t+1(Ak

n), (11)

The closer emerge
t→t+1(Ak

n) to 1, the more the motion of Ak
n and its

adjacent sub-surface is assumed to be similar (See discussions
in Section 7.3 below). In other words, we merge an annulus to
the cluster in question if its non-rigidity is comparable to that of
the cluster. We merge Ak

n to its adjacent sub-surface only if the
merge-error emerge(Ak

n) averaged over Ii is smaller than a threshold
θr:

emerge(Ak
n) =

1

tend
i − tbegin

i + 1

∑

t∈Ii

emerge
t→t+1(Ak

n) < θr. (12)

If the average is greater than θr, we do not merge the annulus Ak
n

to any other annuli and restart the clustering from the adjacent
annulus Ak+1

n . Hence, annuli in non-rigid motion are not merged
to any others. Note that clustered sub-surfaces are not labeled as
rigid or non-rigid at this stage.

Even if an annulus Ak
n has low self-error value and seems to

follow its own rigid motion, we regard Ak
n as a part of a joint if its

motion is significantly different from each adjacent annulus Ak−1
n

and Ak+1
n . Based on this point of view, we examine the number of

annuli in each clustered sub-surfaces after the above clustering,
If the number of annuli in a clustered sub-surface is only one, we
label the sub-surface as a non-rigid area S non−rigid

q with other con-
tiguous non-rigid sub-surfaces, otherwise we label it as a rigid
area S rigid

p (Fig. 11). Now each cone is converted to kinematic
cone Ckinema

n consisting rigid and non-rigid areas (Fig. 10).
6.1.3 Step III.i.c: Temporal Integration of Kinematic Cones

Since we defined kinematic cones for each interval indepen-
dently, the number of kinematic cones and the partitions of them
are not consistent between intervals. In this section, we match
kinematic cones across intervals and integrate them to a consis-
tent set of kinematic cones.

Now we have kinematic cones {Ckinema
n } of each body extrem-

ity found in each interval. However, they are only reflecting the
motion in each interval, i.e., non-rigid areas (joints) can be found

Fig. 11 Clustering results at different thresholds: θr is empirically defined
so as to maximize the number of clustered sub-surfaces. In the
above example, we chose 1.2 for the threshold. (Data is courtesy of
University of Surrey.)

Fig. 12 Non-rigid label transfer in kinematic cones.

only in an interval in which the joints are in motion. Thus it is not
guaranteed that all kinematic cones share a same non-rigid and
rigid areas. We transfer non-rigid labels of annuli among corre-
sponding kinematic cones in different intervals to obtain a unique
kinematic structure K in the later section.

As we have already matched cones across intervals in Sec-
tion 6.1.1.4, each annulus in cone has corresponding annulus in
all the other intervals. For each set of matched cones, we trans-
fer all non-rigid labels of Ak

n in an interval to the annuli having
index k in all the other intervals (Fig. 12). This is because we as-
sume the object approximated by articulated rigid bodies in which
lengths and connectivities of bones are fixed.

This process returns the minimal but sufficient rigid and non-
rigid areas in kinematic cones (the upper half of Fig. 13), which
can describe the entire motions of body extremities through a se-
quence, as opposed to techniques which rely on prior knowledge
on the kinematic structure [23] which can be inaccurate or overde-
termined.

6.2 Step III.ii: Kinematic Cylinder Estimation
6.2.1 Undefined Area

The kinematic cones corresponding to body extremities in dif-
ferent intervals are made to share same rigid and non-rigid areas
in the previous steps. However, some rigid areas in the cones
can partially overlap (as described in Section 6.1.1.1), and some
areas on surface can remain without belonging to any cones (re-
maining area) at this step. We call the union of such overlapping
and remaining area as “undefined area.”

As we mentioned before, we assume that the object can be
modeled by a tree-shaped articulated rigid body. Therefore, over-
lapping areas indicate that branches of the kinematic structures
exist there, and the trunk of the tree-shaped object (e.g., body
trunk of human) is remaining to be defined as a set of bone or
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Fig. 13 Unique kinematic structure for entire 3D mesh sequence.

Fig. 14 Extensions of kinematic cones.

non-rigid area in the undefined area.
6.2.2 Cylinder and Annuli Representation

For each kinematic cone, we first cut off the overlapping rigid
area which are the most geodesically distant from each leaf of
the kinematic cone, because the area has any possibility to be the
part of a specific cone up to this point. We define a set of annuli in
the undefined area by the same manner as in previous steps (Sec-
tion 6.1.1.1 and Fig. 7) as the extention of each kineamtic cone
(Fig. 14).

Also considering that the most of animals has their trunk parts
as an extension of a body extremity, we take these extensions as
the candidates of partition on the undefined area.
6.2.3 Kinematic Cylinder and its Temporal Integration

Here, we again employ the assumption for reliable annulus par-
tition which we introduced in Section 6.1.1.3. We choose the
extension of the kinematic cone which has most wide-ranging
geodesic values inside, because it provide the longest, and there-
fore probable bone inside. We then cluster contiguous and con-
nected annuli of the chosen extension in the same manner as
Section 6.1.1 and 6.1.2 (Fig. 10), and call it kinematic cylinder.
Clustering results are transferred among intervals same as in Sec-

Fig. 15 Redundant bone rejection by minimum spanning tree.

tion 6.1.3, and finally we obtain a kinematic cylinder consistent
through the entire sequence.
6.2.4 Recursive Kinematic Cylinder Estimation

We run this kinematic cylinder acquisition process recursively
until all the area on the surface are defined with bone or non-rigid
area. Finally, we have a unique tree-structured set of kinematic
cones and cylinders {Ckinema

n } reflecting the underlying kinematic
motion through the entire sequence (the upper half of Fig. 13).

6.3 Step III.iii: Kinematic Structure Reconstruction
We reconstruct partial kinematic structures Kcone and Kcylinder

corresponding to each kinematic cone and cylinder in {Ckinema
n }

respectively. We then integrate them by defining bones among
them under the constraint of tree-structure.
6.3.1 Partial Kinematic Structure Reconstruction

In each kinematic cone, we first estimate joint positions by
computing the centroids of the non-rigid areas in each frame.
Then, we define bones as links between pair of joints whose cor-
responding non-rigid areas are adjacent to the rigid area. Con-
sequently, we have partial kinematic structure for each kinematic
cone and cylinder.
6.3.2 Integration of Partial Kinematic Structures

For each partial kinematic structure Kcylinder of kinematic
cylinder, we connect partial kinematic structure Kcone which cor-
responds to kinematic cone or cylinder is adjacent to the cylinder.
We first simply define bones between the joints pcylinder in Kcylinder

and joints pcone in Kcone if their corresponding non-rigid areas are
adjacent to each other or a same rigid area.

As a result, we can observe redundant bones at branch points
(left of Fig. 15). This is against the assumption that the object can
be approximated by tree-shaped articulated rigid body. We for-
mulate the deletion problem of the redundant bones as a minimal
spanning tree problem. We take the current kinematic structure as
a graph in which nodes and edges are corresponding to joints and
bones respectively. For each bone, we compute the length varia-
tion through the sequence, and assign the value to corresponding
edge as its weight. We find optimal topology by finding a mini-
mal spanning tree from the graph.

We then add bones between each of leaves and a joint of which
corresponding non-rigid area which is the geodesically nearest
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Table 1 Average computation time per frame for various sized datasets. Even though macroscopic and
microscopic steps are not needed for free sequence as it has fixed mesh geometry, we note their
computation time for comparison in brackets.

sequence vertices edges macroscopic microscopic mesoscopic total
free 4,284 8,564 (3.0sec) (18.3sec) 1.2sec 22.5sec

human around 13,000 around 27,000 60.7sec 125.1sec 4.0sec 190.0sec
head around 68,500 around 137,000 23.5min 47.6min 0.3min 71.4min

to the leaf. The length of the bones can vary in each frame at
this stage. We enforce fixed bone length constraints to the entire
skeleton through the sequence based on an existing method [1].
Finally we obtain a unique tree-shaped kinematic structure from
the entire sequence (Fig. 13).

7. Experiments

We evaluated the proposed method using synthesized and real
data (Fig. 2). The synthesized data are the human sequence and
the elephant-gallop sequence [18], and the real data are the free,
the lock, head [5], [17] and the crane sequence [23] representing
a real human performance.

The algorithm was implemented in C++ using an Intel Core-i7
2.3 GHz computer. The computation times for datasets of differ-
ent number of vertices are given in Table 1. These results indi-
cates the running time is roughly proportional to the square of the
number of vertices.

7.1 Quantitative Evaluation
We evaluated the proposed method from the quantitative point

of view using the human sequence. The human sequence contains
36 frames, and is reconstructed from multi-view video virtually
capturing a skeleton-based synthetic animation in which a human
model is waving its body extremities. Each of the reconstructed
3D meshes contains around 13,000 vertices and small noises on
the surfaces.

We then compared the ground truth and kinematic structure ex-
tracted from the human sequence by the proposed method. The
distance between the estimated and the ground truth positions of
each joint was less than 3% of the object’s height (1,500 mm)
with a small range of deviation: e.g., for the right knee, the av-
erage error was 27.2 mm (Fig. 16, Table 2). These results show
that our kinematic structure estimation is reasonably stable and
accurate.

In the Fig. 16, we can observe the all errors increasing around
the 12th frame for all joints. This is caused by the residual er-
ror of the deformation based on geodesic mapping (Section 5.3).
After the 12th frame, the right hand of human touches the body,
and the tip cannot be found in the mesh model hereafter. As the
result, geodesic mapping is destabilized as the dimension of the
geodesic coordinates is reduced, and the residual error of the de-
formation has increased.

7.2 Qualitative Evaluation
We performed qualitative evaluations of our mesoscopic char-

acterization for kinematic structure estimation using the elephant-

gallop (synthesized public dataset [18]), as well as, the free,
the lock, the crane and head sequences (real-world public
datasets [17], [23]).

Fig. 16 Estimation errors on synthesized data compared to ground truth.

Table 2 Averaged estimation errors and their deviations.

In the elephant-gallop sequence containing 49 frames, a syn-
thesized model of an elephant gallops. Every mesh shares a same
number of vertices (42,321), and their connectivities. The sur-
faces are relatively smooth but has folds at non-rigid areas. The
free and the lock sequence contains 500 frames and 250 frames
respectively, and consist of a subject wearing loose clothes and
performing a break dance. Both sequences are pre-processed by
Ref. [5] for purpose of comparison to Ref. [6] which is based on
Ref. [5], and have fixed mesh geometries. The free sequence con-
sists of 4,284 vertices and the lock sequence 5,301 vertices. The
crane sequence contains 175 frames, and consists of a subject
walking with his arms up and down. The data was a reconstruc-
tion result of Ref. [23] and has a fixed mesh geometry with 10,002
vertices. The head sequence contains 30 frames, and consists of
a subject performing a break dance. The mesh geometry is not
temporally coherent and has a varing number of vertices around
68,500 vertices. Surfaces of free, lock, crane and head are also
very smooth but has noises caused by both the surface reconstruc-
tion step and the tracking by deformation method.

Figures 17, 18 shows that we can obtain anatomically consis-
tent results for the free, lock, crane, head and the elephant-gallop

sequences. In the results for elephant-gallop, the hones are recog-
nized as erroneous cones based on the assumption we showed in
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Fig. 17 Temporally coherent rigid/non-rigid surface segmentation and estimated kinematic structure of a
synthesized public dataset.

Section 6.1.1.3, and merged to the nose and the head as they are
sharing same rigid motion. The results for free, lock, crane head

sequences show that our approach is robust to noisy real world
data, The other one for elephant-gallop sequence shows that pro-
posed method can be applied not only to human figure but also
to non-human objects that can be approximated by tree-shaped
articulated rigid bodies.

Compared with the state-of-the-art [6] (Fig. 19), our method
robustly estimate the kinematic structure embedded inside the
mesh while the result by Ref. [6] includes artifacts due to occa-
sional mis-fitting of rigid sub-surfaces on the leg as described in
Ref. [6] (See top-rihgt in Fig. 19). Moreover, our method explic-
itly estimates non-rigid areas which allow us to reconstruct the
kinematic structure as shown in Fig. 18 while Ref. [6] remains at
the level of surface segmentation.

We also tested the proposed method with a challenging data,
i.e., the head sequence, in which global toporogy vary (Fig. 20).
The result proves that our method can estimate a consistent body-
parts segmentation throughout frames in comparison with another
state-of-the-art method [3].

7.3 Discussions
Our algorithm is based on the distribution of μ which is the

sum of geodesic distance on the surface. Due to this integral op-
eration over the surface, it is robust to random deformations of
the surface due to noise [22]. Figure 21 shows results using the
ground truth sequence (left) and a synthesized sequence by intro-
ducing Gaussian noise ofσ = 1 and zero mean into the vertices of
the ground truth (right). While the surface on the right is highly
noisy, the estimated body-parts are fairly equivalent to the left.
Hence we can conclude that our method is robust against noise
on the 3D surfaces.

However, the distribution of μ can be largely affected once a
hole on the surface which changes the topological structure is in-
troduced during the 3D shape reconstruction process, because it
changes the geodesic distance on the surface drastically. Since
such holes can typically introduced by pixel-level misdetections
of the multi-view silhouettes for the shape-from-silhouette pro-
cess, we can eliminate such failure cases by applying hole-fillings

to the silhouettes in practice. This point is justified by the fact
that our method could estimate reasonable kinematic structures
for real datasets (Fig. 18).

In some of the real world data such as free and lock sequence,
as the result of the subject wearing loose cloth, there exist the ex-
tra bone (Fig. 18, the left leg of free and lock). This is because the
cloth is sliding along the long axis direction of a bone inside, and
such freely-drifting portion appeared as an extra apparent rigid
part, since it could not be described by the original leg motion. In
the result of free sequence, we can see extra bones, one around
the right knee and another near by the left hip joint. From this
observation, it can be said that our method prefer the surface with
less sliding along the long axis direction of embed bones as input
mesh even though the algorithm is robust to non-rigid motion and
noise. Otherwise, if the 3D shape capture is accurate enough and
the wrinkles and drifts of clothing are well modeled in the mesh
structure, we can expect the geodesic distance is well preserved
among different frames, and hence our method will work.

In the annulus clustering step, we assumed that the closer
emerge(Ak

n) to 1, the more the motion of Ak
n and its adjacent sub-

surface is similar. In fact having comparable self and cast er-
rors is a necessary but not a sufficient condition to conclude that
Ak

n and S follow a similar rigid motion, since completely differ-
ent rigid motions can return a similar error in some degenerated
cases. While merging Ak

n to S in such cases results in making the
joint between them to disappear, we here simply assume such de-
generated cases are less likely to happen, and can be ignored. Our
evaluations demonstrate this assumption is valid in bibpractice.
Also, we used an empirically-determined threshold θr. Learning
or estimating an optimal θr automatically is a part of our future
work.

Although we have introduced a lost cone recovering mecha-
nism in Section 6.1.1.4, we still have localization ambiguity in
the kinematic structure when a non-rigid area or a tip is invisible
in the reconstructed 3D mesh. In Fig. 22, a leaf corresponding
to the right hand is found in interval Ii, but has no corresponding
vertex on surface mesh in interval Ii+1. In this case, we localize
every part of the kinematic structure in interval Ii, but cannot fix
the posture of right hand in interval Ii+1.
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Fig. 18 Temporally coherent rigid/non-rigid surface segmentation and estimated kinematic structure of
real-world public datasets.
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Fig. 20 Segmentation results for head sequence by an existing method (left, from Arcila et al. [3], c©2013
Elsevier B.V.) and the proposed method (right). Notice that the estimated kinematic structure is
not shown in our results, in order to make the images are comparable with the ones in Ref. [3].
Please refer to Fig. 18 for our results with the kinematic structure.

Fig. 19 Segmentation results for crane sequence by an existing method (top,
from Franco and Boyer [6], c©2011 IEEE) and the proposed method
(bottom). Notice that the estimated kinematic structure is not shown
in our results, in order to make the images are comparable with the
ones in Ref. [6]. Please refer to Fig. 18 for our results with the kine-
matic structure.

Fig. 21 Segmentation results for original data and one with artificial noise.

8. Conclusion

In this paper, we proposed a new method for acquiring kine-
matic structure of 3D dynamic surface using tree-structured
mesoscopic surface characterization based on cones and annuli

Fig. 22 Localization ambiguity in the kinematic structure in some intervals.

modeling. We proved that our method can estimate the kinematic
structure even for real human data with loose cloth deforming
non-rigidity.

As we discussed in the last section, the obtained kinematic
structure can have localization ambiguities in some intervals. To
eliminate the ambiguities, we can apply existing tracking by de-
formation methods [15], [23] using the obtained kinematic struc-
ture as the constraint in future work.
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