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Abstract: The spike-triggered average (STA) and phase response curve characterize the response properties of sin-
gle neurons. A recent theoretical study proposed a method to estimate the phase response curve by means of linear
regression with Fourier basis functions. In this study, we propose a method to estimate the STA by means of sparse
linear regression with Fourier and polynomial basis functions. In the proposed method, we use sparse estimation with
L1 regularization to extract substantial basis functions for the STA. We show using simulated data that the proposed
method achieves more accurate estimation of the STA than the simple trial average used in conventional method.
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1. Introduction

Neurons are encoders that transform time series of inputs into
spikes. Spike-triggered analysis has been used extensively to esti-
mate the statistical properties of the time-varying inputs inducing
the spikes [1], [2], [3], [4], [5]. In particular, the spike-triggered
average (STA), first-order statistics of the spike-triggered analy-
sis, corresponds to an average of time series of inputs that induce
the spikes. The STA has been used in physiological experiments
to estimate receptive fields in neural systems [6], [7], [8].

To obtain the STA from experimental results, we need to ob-
serve a spike train from a specific neuron and calculate an average
of time series of inputs that induce the spike train. In previous
studies, the STA has been calculated simply as a trial average
of inputs inducing a finite number of spikes [9]. However, the
number of observable spikes from a specific neuron is limited in
physiological experiments. Due to this limitation, the STA cal-
culated as the simple trial average is rather noisy, which makes it
difficult to obtain the true STA accurately.

A recent study proposed a method to estimate phase response
curve (PRC) by using linear regression with Fourier basis func-
tions [10]. The PRC is a periodic function that characterizes the
response properties of single neurons. This method has been
shown to accurately estimate the PRC from experimental data.
Since the STA is known to be proportional to a derivative of the
PRC [9], it would seem that the linear regression would be effec-
tive for estimating the STA as well as the PRC. However, the STA
would be a discontinuous function whereas the PRC is a periodic
continuous function. This would make it difficult to estimate the
STA using linear regression with only Fourier basis functions,
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and it is unclear what kinds of basis functions are appropriate to
estimate the STA by linear regression.

In this paper, we propose an algorithm to estimate the STA
based on sparse estimation by using L1 regularization [11], [12],
[13], [14]. In the proposed method, essential basis functions for
the STA are extracted automatically by means of sparse linear
regression using the L1 regularization. Appropriate basis func-
tions for estimating the STA are evaluated by applying the pro-
posed method to simulated data obtained using the Morris-Lecar
model [15]. We show using the simulated data that the proposed
method can estimate the STA more accurately than the conven-
tional method using the simple trial average.

2. Spike-Triggered Average

In this study, we propose an algorithm to estimate the
suprathreshold STA [9], [16]. The neuron is assumed to emit a
spike when a membrane potential of a neuron exceeds a firing
threshold Vth. We inject an input current I (t) into the neuron as

I (t) = I0 + ξ (t) , (1)

where I0 is a constant current and ξ (t) is a stochastic current
obeying the white Gaussian noise with the average 0 and the
variance σ2. The constant current I0 is set to be sufficiently
large to generate spikes without stochastic input ξ (t). As shown
in Fig. 1, we assume that the neuron generates spikes at time
tk (k = 1, 2, · · · ,K) by the constant and stochastic currents. The
STA, C0 (τ), is defined as

C0 (τ) = lim
K→∞

1
K

K∑
k=1

ξ (tk − τ) , (2)

where K indicates the number of spikes. ξ (tk − τ) represents the
stochastic current that comes τ before the k-th spike. Namely, the
STA is an average of the stochastic current ξ (tk − τ) preceding
spikes.

Although the definition of the STA, C0 (τ), assumes an infinite
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Fig. 1 A schematic diagram of the spike-triggered average (STA). We in-
ject an input current I (t) into the neuron where I (t) consists of the
constant current I0 and the stochastic current ξ (t) and the neuron gen-
erates spikes at time {tk}. The STA is defined as the average of the
stochastic current ξ (tk − τ) preceding the spike time tk by the interval
τ.

number of spikes, we cannot obtain an infinite number of spikes
in physiological experiments. The STA is therefore calculated ap-
proximately with a finite number of spikes K obtained from ex-
perimental and numerical data. We show an example of the STA
calculated as the trial average with the finite number of spikes in
Fig. 2 (a). We found that the STA calculated as the trial average is
noisy, and thus it is difficult to calculate the STA accurately using
the conventional method based on the trial average. Hereafter, we
call the STA calculated by the trial average with the finite number
of spikes simply the STA data.

3. Proposed Method

In this section, we propose an algorithm to estimate the STA
with linear regression based on L1 regularization in order to ac-
curately estimate the true STA from noisy STA data.

3.1 Sparse Estimation of the STA Based on L1 Regulariza-
tion

In this study, we propose an algorithm to estimate the true STA,
C0 (τ), from the STA data by using linear regression with basis
functions. We consider a situation in which we obtain the STA
data with N points {(τ1,C (τ1)) , · · · , (τN ,C (τN))} by physiologi-
cal experiments. Each value of the STA data, C (τi), is assumed
to consist of the true STA, C0 (τi), and noise.

The true STA, C0 (τ), is assumed to be expressed by a linear
combination of basis functions

{
f j (τ)

}
, as

C0 (τ) = a1 f1 (τ) + · · · + aM fM (τ)

=

M∑
j=1

a j f j (τ) , (3)

Fig. 2 Examples of STA data obtained by the type I Morris-Lecar model.
(a) STA data in the case in which the number of spikes, K, is 103.
The STA data is noisy if the number of spikes, K, is small. (b) STA
data in the case in which the number of spikes, K, is 106. The STA
data converges to the true STA if the number of spikes, K, is suffi-
ciently large. The true STA can be a discontinuous periodic function
since C0(0) is not equal to C0(T ), as shown in (b). Here the firing
period T is set to be 1.

where M is the number of basis functions and {a1, · · · , aM} are
real coefficients. We consider a linear regression problem to
determine the coefficients {a1, · · · , aM} based on the STA data
{(τ1,C (τ1)) , · · · , (τN ,C (τN))} in order to obtain the regression
model of the STA.

If we use an excessive number of basis functions in the linear
regression, we run the risk of overfitting, which would result in
a failed estimation of the true STA since the regression model is
strongly influenced by the noise in such cases. Thus, we need to
extract only essential basis functions to estimate the STA accu-
rately.

In this study, we introduce L1 regularization [11], [12], [13],
[14] in order to extract essential basis functions automatically
based on the STA data. The L1 regularization is defined to deter-
mine the coefficients {a1, · · · , aM} so as to minimize the following
objective function:

E (a1, · · · , aM) =
N∑

i=1

(C (τi) −C0 (τi))
2 +

M∑
j=1

λ j

∣∣∣a j

∣∣∣
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=

N∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝C (τi) −
M∑
j=1

a j f j (τi)

⎞⎟⎟⎟⎟⎟⎟⎠
2

+

M∑
j=1

λ j

∣∣∣a j

∣∣∣ . (4)

Here, λ j are assumed to be positive constants. The first term of
the objective function E represents a discrepancy between the re-
gression model and the STA data. The second term is a penalty
term that prevents absolute values of coefficients from increas-
ing. By this penalty term, the coefficients

{
a j

}
for redundant basis

functions are likely to be exactly zero. Thus, essential basis func-
tions can be extracted using the L1 regularization, and the model
selection can be realized automatically. This kind of estimation
using Eq. (4) is called sparse estimation.

3.2 Design of Basis Functions and Regularization Weights
The accuracy of the regression in Eq. (3) is determined by

what kinds of functions we prepare for redundant basis functions
{ f1(τ), · · · , fM(τ)}. Fourier basis functions were used in the linear
regression of the phase response curve (PRC) in a previous study
by Galán et al. [10]. The PRC describes a phase shift induced by
perturbation given to a periodically firing neuron and character-
izes the response properties of single neurons. Since the PRC is
a periodic function, the previous study [10] used the Fourier basis
functions.

Ermentrout et al. analytically showed that the STA is propor-
tional to a derivative of the PRC [9]. Therefore, we consider a
regression of the STA using the Fourier basis functions as well
as the PRC. Since a derivative of a continuous function is not al-
ways continuous, the STA, which is proportional to a derivative of
the PRC, can be discontinuous. Actually, as shown in Fig. 2 (b),
the STA can be discontinuous since C0(0) is not equal to C0(T ).
If we perform a regression of the STA using only Fourier basis
functions, it is expected that high-frequency components of the
Fourier basis functions are needed to express the discontinuity
of the STA, even when the true STA may not include the high-
frequency components.

In this study, we used the Fourier basis functions and polyno-
mial basis functions in order to express the discontinuity of the
STA, as

C0 (τ) =a1 +

Df∑
k=1

a(k+1) cos (2kπτ)

+

Df∑
k=1

a(k+Df+1) sin (2kπτ)

+

Dp∑
k=1

a(k+2Df+1)τ
k, (5)

where the firing period T is set to be 1. Df and Dp are the max-
imum order of the Fourier and polynomial basis functions, re-
spectively. Here, it is unclear which order of the Fourier and
polynomial basis functions are needed in advance. We perform
sparse regression using a sufficiently large number of the Fourier
and polynomial basis functions by setting the maximum order of
each kind of basis functions Df and Dp to be sufficiently large.

The sparse estimation is conducted using the L1 regularization to
extract only essential basis functions for the STA.

The regularization weights λ j in Eq. (4) should be determined
in order to perform the L1 regularization. Absolute values of the
coefficients for high-frequency components of the Fourier basis
functions are expected to be relatively small in the true STA. On
the other hand, noise contains large high-frequency components.
In this study, we propose a method that strongly penalizes ex-
traction of high-frequency components of Fourier basis functions.
For this purpose, we set the regularization weights λ j as

λ j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
( j − 1) λ

(
if 2 ≤ j ≤ Df + 1

)
(

j − Df − 1
)
λ

(
if Df + 2 ≤ j ≤ 2Df + 1

)
λ (otherwise) ,

(6)

where λ is a positive constant. In Eq. (6), the regularization
weights are set to be proportional to the frequency of the Fourier
basis functions. Namely, the regularization weight λ j for k-th or-
der Fourier basis functions cos(2πkτ) and sin(2πkτ) is set to be
λ j = kλ. The constant λ is determined so as to minimize a gener-
alization error calculated by a cross-validation method.

4. Results

In this section, we apply the proposed algorithm to STA data
obtained by simulation using a neuron model.

4.1 Morris-Lecar Model
In this study, we used the Morris-Lecar model as a neuron

model [15], [17]. In this model, the dynamics of the membrane
potential V (t) obey the following differential equation:

C
dV (t)

dt
= − ḡCam∞ (V (t)) (V (t) − VCa)

− ḡKw (t) (V (t) − VK) − ḡL (V (t) − VL)

+ I (t) . (7)

Here, Eq. (7) describes the relationship between ion currents
and the membrane potential. We describe further details of the
Morris-Lecar model in the Appendix.

Neurons are classified into type I and II neurons according to
their firing properties [16], [17], [18]. The Morris-Lecar model
can mimic both types by using appropriate parameter settings.
We show the difference in firing properties between the two in
Fig. 3. For both type I and II neurons, a neuron fires periodically
if it receives a sufficiently large constant current I0. Firing fre-
quency of the type I neuron is continuous, as shown in Fig. 3 (a),
whereas that of the type II neuron changes discontinuously, as
shown in Fig. 3 (b). We apply the proposed method to the STA
data of both type I and II obtained by the Morris-Lecar model.

4.2 Settings of Numerical Simulations and Sparse Estima-
tion

The STA data is numerically obtained by the Morris-Lecar
model with the constant and stochastic currents I(t) = I0 + ξ(t).
The constant current I0 is set to be sufficiently large to gener-
ate spikes periodically without stochastic current. We apply the
sparse estimation algorithm to the STA data. In this section, the
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Fig. 3 Firing properties of neurons. Firing frequency of type I neuron is
continuous whereas that of type II neuron is discontinuous.

estimation of the STA is performed in two ways. The first case
is the proposed method, in which the regularization weights λ j

are assumed as in Eq. (6). In the second case, the regularization
weights λ j are set to be constant λ. The value of λ is determined
by using 10-fold cross-validation.

We use the STA data calculated using the number of spikes
102, 103, 104, and 105 in type I neuron and the STA data calcu-
lated using the number of spikes 103, 104, 105, and 106 in type
II neuron. The maximum order of the Fourier basis functions Df

and that of the polynomial basis functions Dp are set to be suf-
ficiently large as Df = 25 and Dp = 50, results of the proposed
method are found to be robust for sufficiently large values of Df

and Dp (data not shown).

4.3 Results of the Proposed Method
In this section, we show the results of the proposed method.

Namely, we perform sparse estimation with the regularization
weights λ j obeying Eq. (6). The solid line in Fig. 4 (a) shows
the regression model estimated by the proposed method. Here,
the proposed method is applied to the STA data calculated using
the number of spikes K = 103. We find that the discontinuity
C(0) � C(T ) is expressed in the regression model estimated by
the proposed method. From Table 1 (a), we also find that one
polynomial basis function is extracted in addition to Fourier ba-
sis functions. Furthermore, the low-frequency components of the

Fig. 4 Results of the proposed method applied to noisy STA data that were
obtained using the Morris-Lecar model. (a) Results for type I neu-
ron. (b) Results for type II neuron. Dots represent the noisy STA
data calculated by using the small number of spikes (K = 103 for
type I neuron and K = 105 for type II neuron). The solid line shows
a regression model of the STA estimated from the noisy STA data by
using the proposed method while the dashed line shows less noisy
STA data calculated by using a sufficiently large number of spikes
(K = 106 for type I neuron and K = 107 for type II neuron).

Table 1 The number of the basis functions extracted by the proposed
method, and the number of all basis functions. Top row shows the
number of spikes K used to calculate the STA data. Middle row
shows the number of both Fourier and polynomial basis functions.
Bottom row shows the number of the polynomial functions only.

K 102 103 104 105

No. extracted / All 3/101 7/101 9/101 25/101

(polynomial) 1/50 1/50 4/50 3/50

(a) Results for type I neuron.

K 103 104 105 106

No. extracted / All 0/101 3/101 6/101 9/101

(polynomial) 0/50 1/50 1/50 2/50

(b) Results for type II neuron.

Fourier basis functions are extracted by strongly penalizing high-
frequency components. As discussed above, we see that essential
basis functions of the STA are extracted and the model selection
is accurately realized by the proposed sparse estimation. Fig-
ure 4 (b) and Table 1 (b) show estimated results for type II neuron.
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Fig. 5 Generalization error in the proposed method. The proposed method
was applied to the STA data obtained by simulation using the Morris-
Lecar model. (a) The generalization error in type I neuron. (b) The
generalization error in type II neuron. The horizontal axis represents
the number of spikes, K, and the vertical axis represents the general-
ization error. Even when the number of spikes used in the proposed
method was only ten percent of that used in the conventional method,
the proposed method had a similar performance to the conventional
method.

We find that essential basis functions of the STA are extracted in
the case of type II neuron as in the case of type I neuron.

Next, we evaluate the discrepancy between the conventional
method using the simple trial average and the proposed method.
We evaluate the generalization error calculated by the root mean
square error between the target STA data and the regression
model. The target STA data corresponds to the STA data with
the sufficiently large number of spikes. The number of spikes of
the target STA data is set to be K = 106 for type I neuron and
K = 107 for type II neuron.

As shown in Fig. 5, the discrepancy of the proposed method
using the STA data with the number of spikes K is similar to that
of the conventional method using the STA data with the number
of spikes 10K. From these results, we find that even when the
number of spikes used in the proposed method is only ten percent
of that used in the conventional method, the proposed method had
a similar performance to the conventional method.

Fig. 6 Results of L1 regularization in the case when λ j = λ. (a) Results
for type I neuron. (b) Results for type II neuron. Dots represent the
noisy STA data calculated by using the small number of spikes. A
solid line is the regression model of the STA estimated by L1 regu-
larization from the noisy STA data. A dashed line represents the less
noisy STA data calculated by using the sufficiently large number of
spikes.

Table 2 The number of extracted basis functions in the case of λ j = λ, and
the number of all basis functions.

K 102 103 104 105

No. extracted / All 1/101 16/101 27/101 44/101

(polynomial) 0/50 0/50 1/50 5/50

(a) Results for type I neuron.

K 103 104 105 106

No. extracted / All 4/101 19/101 19/101 47/101

(polynomial) 0/50 1/50 1/50 1/50

(b) Results for type II neuron.

4.4 Case of Constant Regularization Weights
In this section, we consider a case in which all the regulariza-

tion weights λ j for both Fourier and polynomial basis functions
are constant value λ, not dependent on j. We show the results
of this case in Fig. 6 and Table 2. As shown in Fig. 6, the high-
frequency components of the Fourier basis functions are extracted
due to noise in the STA data, and the regression model is too
wavy. The polynomial functions are difficult to extract, as shown
in Table 2, since the discontinuity, C(0) � C(T ), is intended to be
expressed by the high-frequency components of the Fourier basis
functions, not the polynomial basis functions. Thus, we fail to
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extract only low-frequency components and the regression model
is strongly influenced by the noise.

As discussed above, the proposed method is effective for esti-
mating the true STA from the experimental STA data in the case
of Section 4.3. On the other hand, it is difficult to extract impor-
tant components in the case of Section 4.4.

5. Conclusion

In this paper, we proposed an algorithm to estimate the STA
using linear regression with the L1 regularization. We introduced
sparse estimation using L1 regularization to estimate the STA and
employed Fourier basis functions and polynomial basis functions
in the linear regression. Using simulated data obtained by the
Morris-Lecar model, we have shown that extraction of the basis
functions with high generalization performance can be achieved
by penalizing the extraction of high-frequency components of the
Fourier basis functions. We have also shown that even when the
number of spikes used in the proposed method is only ten percent
of that used in the conventional method, the proposed method has
a similar performance to the conventional method.
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Appendix

A.1 Morris-Lecar Model

The Morris-Lecar model is a system obeying the following
equation:

C
dV (t)

dt
= −ḡCam∞ (V (t)) (V (t) − VCa)

− ḡKw (t) (V (t) − VK)

− ḡL (V (t) − VL) + I (t) , (A.1)

dw (t)
dt
= φ
w∞ (V (t)) − w (t)
τw (V (t))

, (A.2)

m∞ (V (t)) = 0.5

{
1 + tanh

(
V (t) − V1

V2

)}
, (A.3)

w∞ (V (t)) = 0.5

{
1 + tanh

(
V (t) − V3

V4

)}
, (A.4)

τw (V (t)) =
1

cosh
(

V(t)−V3
2V4

) . (A.5)

The variable, V (t), represents the membrane potential of a neu-
ron and w (t) is a gate variable of potassium. VCa, Vk and VL are
the reversal potentials of calcium, potassium, and leak channel,
respectively. ḡCa, ḡK , and ḡL represent the maximum value of
channel conductance. C is a membrane capacitance. The param-
eters are set as shown in Table A·1.

Table A·1 Parameters of the Morris-Lecar model.

V1 V2 V3 V4 ḡCa ḡK ḡL

type I −1.2 18 12 17.4 4.0 8.0 2
type II −1.2 18 2 30 4.4 8.0 2

VCa VK VL C φ Vth I0 σ

type I 120 −84 −60 20 0.04 −13.3 41 5
type II 120 −84 −60 20 1/15 −11.0 90 10
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