Vol. 48 No. 4

IPSJ Journal

Regular Paper

Duality between Call-by-value Reductions and
Call-by-name Reductions

DAISUKE KIMURA'

Wadler proposed the dual calculus, which corresponds to classical sequent calculus LK,
and studied the relationship between the Ap-calculus and the dual calculus as equational
systems to explain the duality between call-by-value and call-by-name in a purely syntactical
way. Wadler left an open question whether one can obtain similar results by replacing the
equations with reductions. This paper gives one answer to his question. We first refine
the Ap-calculus as reduction systems by reformulating sum types and omitting problematic
reduction rules that are not simulated by reductions of the dual calculus. Secondly, we give
translations between the call-by-name Ap-calculus and the call-by-name dual calculus, and
show that they preserve the call-by-name reductions. We also show that the compositions
of these translations become identity maps up to the call-by-name reductions. We also give
translations for the call-by-value systems, and show that they satisfy properties similar to
the call-by-name translations. Thirdly, we introduce translations between the call-by-value
Ap-calculus and the call-by-name one by composing the above translations with duality on
the dual calculus. We finally obtain results corresponding to Wadler’s, but our results are

Apr. 2007

based on reductions.

1. Introduction

The Curry-Howard correspondence for
classical logic

In the last twenty years, a lot of work has
been done to extend the Curry-Howard cor-
respondence to classical logic. Felleisen® in-
troduced the C operator to model call/cc,
Griffin® observed that the type of call/cc
corresponds to Peirce’s Law and extended
the Curry-Howard correspondence to classical
logic. In this line, the Ap-calculus introduced
by Parigot 7 is well known. This calculus cor-
responds to classical natural deduction and has
a simple structure, sufficient expressive power,
and nice computational properties such as con-
fluency and strong normalization. Later, a call-
by-value (CBV) variant of the Au-calculus was
proposed by Ong and Stewart).

Duality

The call-by-name and call-by-value strategies
have been well studied as evaluation strate-
gies of programming languages. Filinski®) sug-
gested that duality between call-by-name and
call-by-value is clarified by two notions of pro-
grams and continuations. Selinger ?) gave cate-
gorical semantics of the call-by-name and call-
by-value Ap-calculi and explained Filinski’s du-

1 Department of Informatics, The Graduate Univer-
sity for Advanced Studies/National Institute of In-
formatics

1721

ality in terms of categorical duality.

Wadler’s dual calculus and open
question

Wadler 1910 proposed the dual calculus,
which corresponds to Gentzen’s classical se-
quent calculus LK. LK is an appropriate for-
mulation of classical logic that clearly expresses
the duality that exists inside classical logic.
The main feature of the dual calculus is that
it has both terms and continuations as primi-
tives. The computational meaning of the du-
ality of classical logic is expressed in the dual
calculus by the duality of terms and continua-
tions. In the dual calculus, call-by-name and
call-by-value strategies become dual strategies.

Wadler 'V introduced the translation from
the Ap-calculus into the dual calculus, and its
inverse translation from the dual calculus into
the Ap-calculus. He showed that these trans-
lations form an equational correspondence, as
defined by Sabry and Felleisen ®. Moreover, he
gave the translation from the Ap-calculus into
itself by composing the above translations with
duality on the dual calculus. This translation
satisfies the following properties.

— It takes call-by-value equalities into call-by-

value equalities, and vice versa.
— It is an involution up to call-by-value/call-
by-name equality.

In other words, he explained Filinski’s duality
in a purely syntactical way. However, the Au-
calculus and the dual calculus adopted in his

1722 IPSJ Journal

paper were equational systems, and his results
are based on equalities. This is because some
rules of the Ap-calculus are not simulated by
reductions of the dual calculus, and it is also
problematic to introduce some rules, such as
(n)-rules, as reductions. But when we discuss
whether duality between call-by-value and call-
by-name also holds as a computational proce-
dure, we should consider reductions. In fact,
Wadler noted an open question in his paper
whether one can replace the equations of his pa-
per with reductions, and extend the properties
with equations to properties with reductions.
Our purpose, problems, and solutions
Our purpose in this paper is to answer his ques-
tion. We encounter problems when we try to
obtain refined results by replacing the equations
of his paper with reductions. These problems
are grouped in the following three cases.
Problem 1 ({)-rules
To simulate (¢)-rule under Wadler’s translation
(—)*, we need (Or)-reductions of the dual cal-
culus in both directions. We give a typical ex-
ample of this problem.

((pa.[y)Az[aly)2)*
= (([z-(y o a)]not *7).ae(2@p))

:?BR) (((y o (2@0)))]noto*y)ﬂ
=5 ([2.((y ® (2@6)).0 ¢ B)not e 7).

= (uB.hAe.[Bl(y2))*

Problem 2 (ny)-rule: M =,, u(a, 8).[a, 5]M
To simulate (ny)-rule under Wadler’s transla-
tion (—)*, we need both of (ny)-reduction and
(nv)-expansion of the dual calculus.

((e, B).[a, B M)*
;((((*.[a 3)).a)inl e 7).3)inr e 7).y
=l (((((M* o [a, 8]).a)inl @).5)inr

—~

7).y
=1, (M e [a, B]).a)inl e 7).3
oy.((y)inr e 7))y
=) ((M* @ [, y.({y)inr e 7)]).c)inl
*y).y
=ty ({(M o [, ((y)inr @ 7)]).a)in]
.’I”) "y

(M* o [a,y.((y)inr e 7)]).c

z)inl @ y)).y

=(6r) (M" @ [z.((z)inl e),
y-((y)inr e)]).y

=)
ox.(

— e~ —~

Apr. 2007

=) (M7 07)7

) M

where 7 is [z.({x)inl @ v),y.({y)inr e)]. How-
ever, if we simply omit (ny)-rule to avoid this
problem, then we meet another problem. If
we want to obtain the equational correspon-
dence formed by (—)* and (—)., which is one
of Wadler’s main results, then we should show

((u(e, 8).9)) e =n pla,B).(S*)s. We need
(nv)-rule to show this claim. (We abbreviate

(g, B2).Jagpa.(S*)s in M.)
(e, B)-5)")«
((({(S*.a)inl @).3)inr e 7).y)
wy-[plan, Br).[Bi]pB.[V]p(az, Ba)
[ag] per.(S7).
= py-[Yp(ea, Bu).[Bi]pB.[v|M
) (e, Bs).las, Bslwy-[vlw(a, Br)
[BiluB.IM
=) p(os, Bs)-[as, Bslu(an, Br).[Bi]puB
Jas, B3| M
=) (s, Bs).[Bs]uB.[as, Bs) M
= plas, Bs).[Bs]uB-las, Bslu(az, Ba)
Joo e (8%)
=) (s, Bs).[Bs]puB-[as] o (S7).s
=) p(as, Bs)-(S7)u[* o, /]
= p(e, B).(S7)«
Problem 3 (n-)-rule: M =, \x. Mz
To simulate (n-)-rule under Wadler’s transla-
tion (—)*, we need both (n-)-reduction and
(n-)-expansion of the dual calculus.
(Ax.Mx)* = [z.(M* e not{x)) Jnot
=(p) ([2.(M" @ not(x)) |not e v).y
=(no) exp ([z.(M™ e not{z)) Jnot
enot(([a]not e y).a)).y
=(5.) (([a|not e v).ac x.(M™ e not(z))).
=(,) (M" enot(([aJnot e vy).a)).y
=(ny (M ey)y

(TIR

:?UR M*
However, we mneed (n-)-rule to simulate
z(pa.S) =, S8} /4(—}], which is defined in

the call-by-value Ap-calculus as a part of (¢)-
rule. For example,

(z(pa.[BlAz.[aly))*

—xon0t< (y e a)not e 3).cr)
=0n-) [v/.(x @ not{y’))|not
enot(([z.(y ®)]not e 3).cr)

Vol. 48 No. 4

={s.) [#-(y o y'.(x @ not(y’)))not e 3
=(p) [2-(z @ n0t(y))not e 3

For (n5)-rule of the Ap-calculus, we also en-
counter a problem similar to this one.

Problem 1 is due to the so-called administra-
tive redexes, and can be solved by modifying
Wadler’s translations. The idea of this modi-
fication is similar to the modified CPS trans-
lation introduced by de Groote')2). However,
we need different modifications for call-by-value
and call-by-name calculi.

Problem 2 is caused by the difference in how
sums are formulated in the Ap-calculus and the
dual calculus. Wadler added sum types to the
Ap-calculus following Selinger ®). This formula-
tion is based on multiple-concluded sequents as
follows.

L[Sk, Aa:ApB:B
Iy, Alp(a,8).8: AV B
Tl A|M:AVB
I[la,BIM |-y, Aya: A B: B

The formulation of sums in the dual calculus,
on the other hand, is based on single-concluded
sequents:
M, AIM:A
', Al (M)inl: AVEB

-, A|N:B
M, A (N)inr: AV B
-, A|N:B

[K,L]: AVB|TI'|-,.,A|(N)inr: AV B

Our solution to this problem is to refine the
formulation of sums in the Ap-calculus, and
omit (ny)-rule. We introduce sums of the Au-
calculus by using usual injections and case-
expressions.

To avoid Problem 3, we remove (1) and
(n>)-rules, and restrict the call-by-value Apu-
calculus by omitting some rules that cannot be
simulated without (n-) and (75)-rules.

We also encounter problems when we con-
sider the inverse translation from the dual cal-
culus into the Ap-calculus. Since they are
similar to the above Problem 1, we can solve
them by modifying Wadler’s original transla-
tion. However, we also need different modifica-

Duality between Call-by-value Reductions and Call-by-name Reductions 1723

tions for call-by-value and call-by-name.

Overview

In Section 2, we present the detailed for-
mulation of our call-by-value and call-by-name
Ap-calculi, and compare them with the Au-
calculi given by Wadler (2005). In Section 3,
we present the dual calculus as a reduction sys-
tem. In Section 4, we define the call-by-name
translation from the call-by-name Apu-calculus
into the call-by-name dual calculus, and show
that this translation preserve call-by-name re-
ductions (Theorem 16). We also define the call-
by-value translation, and show that it also pre-
serves call-by-value reductions. In Section 5,
we give the inverse translations from the dual
calculus into the Ap-calculus to both call-by-
name and call-by-value, and show that they
preserves reductions (Theorem 28, 34). We
also show that the compositions of the call-
by-name translations become identity maps up
to the call-by-name reductions, and show the
similar property for the call-by-value transla-
tions (Proposition 35, 36). In Section 6, we in-
troduce translations between the call-by-value
and call-by-name Ap-calculi by composing the
above translations with duality on the dual cal-
culus. We finally obtain results corresponding
to Wadler’s (Theorem 40), but our results are
based on reductions.

2. The Ap-calculus

In this paper, we consider the two variants of
the Ap-calculus, call-by-value and call-by-name,
as reduction systems.

The types of the Au-calculus in this paper fol-
low Wadler, i.e., let A and B range over types,
then a type is atomic X, a conjunction A&B, a
disjunction A V B, a negation —A, or an impli-
cation A D B.

Definition (Types of the Au-calculus)
A,B:=X|A&B|AVB|ADB|-A

Two disjoint countable sets of variables for
the Ap-calculus are given, one is called vari-
ables (denoted by x,y, z,...) and the other is
called covariables (denoted by «, 3,7,...). We
distinguish two notions of terms (denoted by
M, N,...)and statements (denoted by S, T ...)
as the expression of the Au-calculus following
Wadler. A term is a variable x, a A-abstraction
Az.M or Az.S, an implication application OM
(where O : A D B), a projection fst(M)
or snd(M), a pairing (M, N), a p-abstraction
pa.S, or a term for sums. A statement is a
covariable application [a]M, a negation appli-

1724 IPSJ Journal Apr. 2007

Ax

Dz:Al,, Alz: A

a:ApR,,AlM:B P, AIM:ADB I'l,,A|N:A
I E
T, A AeM:ADB ~ Ty, A|MN:B =
Ty, A M:ALB Ty, A M:ALB
&E &E
Ty, Al fst(M): A Ty, Alsnd(M):B = °
Tha, Al M:A " Tl A M:A "
[y, Alil(M):AVB ! Ty, Alinr(M):AVEB " °
P, AlM:A ', A|N:B
T, Al (M N): AkB
Py, AlO:AVB Tx: A, , A|M:C F,y:B\fAuA|N:CVE
Iy, A16(0,2.M,y.N):C
Py, AlO:AVB Tia:AlSE,, A Ty:B|Tk,,A
T[8(0,2.8,y.T) |-y, A
Dot AlSE,, A Py, AIM:=A T'|-,,A|IN:A
- -E

Dy, Al A28 nA
DSk, Aa:A
Py, AlpaS:A

Act

T[MN |-, A
Py, AIM:A
Fl[a]M =y, Ao A

Pass

Fig.1 Typing rules of the Au-calculus.

cation OM (where O : —A), or a statement for
sums. Any free occurrence of z in M and S
is bound in the terms Az.M and Az.S respec-
tively. Any free occurrence of a in S is bound
in the term pa.S.

For sums, we give another formulation with-
out following Selinger?. A term for sums is a
left injection inl(M), a right injection inr(M),
and case §(O,z.M,y.N), and a statement for
sums is a case 6(0,x.5,y.T). Any free occur-
rences of z in M and y in N are bound in the
term 0(O, z.M,y.N). Similarly, any free occur-
rences of x in S and y in T are bound in the
term 6(0, z.5,y.T).

Definition (Terms and Statements of Ap)
M,N,O :=z| \x.M | \x.S | MN | pa.S

| fst(M) | snd(N) | (M, N)

| inl(M) | inr(N) | 6(O,x.M,y.N)
S, T = [a]M | MN | §(O,z.5,y.T)

We consider the term modulo a-conversion
of variables and covariables. The sets of free
variables of M and S (denoted by FV(M) and
FV(S)), and the sets of free covariables of M
and S (denoted by FCV(M) and FCV(S)) are
defined as usual. A typing judgment of the Au-
calculus takes the form I' |-, /A | M : A or
L[Sk, A where T denotes a A- context, i.e.,
xy: Ag, ... : A, and A denotes a - conte:rt

ie.,, ay: By,...,am : By,. We note that |—)\# is
sometimes written as |-. The typing rules for
the Ap-calculus are defined in Fig. 1.

We use two kinds of substitution for the Au-
calculus. The first M[V/,] and S[V/,] are the
usual substitutions of a term N for all free oc-
currences of the variable x in M and S. The
second M[T{=}/14¢-] and S[7{7}/(4-,] are
substitutions of a statement context 7{—} (i.e.,
a statement with a single hole accepting a term)
for a covariable «. This second substitution is
defined by induction on M and S using the fol-
lowing clause.

(M) T 03] = T{MTE 1031}
The other clauses are defined homomorphically
like

(MN)T /a1)]

= M[T(_)/ HINF S g)

Note that M[\%l / (-] and S[[B](_)/[a](—)]

are sometimes written as M[?/,] and S[%/,]
respectively.

2.1 The Call-by-name Ap-calculus

We need a notion of call-by-name evaluation
and statement contexts to introduce the call-
by-name Au-calculus, which is equivalent as an
equational theory to the one given by Wadler.

Vol. 48 No. 4 Duality between Call-by-value Reductions and Call-by-name Reductions 1725
(B5) Az M)N —n M[N /4]
(Bg) fst(M,N) —, M
snd(M, N) —, N
(Bv) 6(inl(0), z.Enfz},y. E{y}) —n En{O}
6(inr(0), z.En{z}, y. By {y}) —n E;{O}
6(inl(0), z.Dp{z},y.Dy{y}) —n Dn{O}
6(inr(0), z.Dn{z},y.D7{y}) —n D7{O}
(8-) (Az.S)N —n S[V/a]

© En{pa.S} —n pB.S[P1EA=Y /110 4]
Dyfpa.S} —n S[P 11 /1010 4]

() M —n pofa]M

() E{6(0,2z.M,y.N)} —n (O, z.En{M},y.En{N})
Dn{6(0,2.M,y.N)} — 6(O,2.Dn{M},y.Dp{N})

(v) 0(0,2.8,y.T) —n (A\y.T) pB.0(0, xS, y.[Bly)
6(0,2.5,y.Dn{y}) —n (Az.S) pa.d(0, z.[a]z, y.Dn{y})

(where Ey, is not {—1})

(where a € FCV (M)
(where Ey, is not {—})

(if T is not a simple form w.r.t. y)

(if S is not a simple form w.r.t.)

Fig.2 Reduction rules of the call-by-name Apu-calculus.

A call-by-name evaluation term context (de-
noted by E,, E/,...) is a term context with a
hole, and a call-by-name evaluation statement
context (denoted by D,,, Dl ,...) is a statement
context with a hole. We write {—} for a hole,
and the results of filling a term M in an eval-
uation context F,, and a statement context D,
are written F,{M} and D, {M}, respectively.
Definition (CBN Term and Statement
Contexts)
E,,E, E! :={-}| E,M | fst(E,) | snd(E,)
| 0(En, x. B {x},y-Ei{y})

D,, D) ::=[a]|E, | E,M

| 6(En, x.Dypf{a}, y.Dr{y})

In the following, we say a term M is a simple
form with respect to x if there is a call-by-name
evaluation term context E such that M = F{z}
and z is not free in E, and a statement S is a
simple form with respect to x if there is a call-
by-name evaluation statement context D such
that S = D{z} and z is not free in D.

The one-step call-by-name reduction relation
for the A\p-calculus, denoted by —,,, is defined
as the compatible closure of the rules in Fig. 2.
We write —,,* for the reflexive transitive clo-
sure of —,,. Similarly, we write —,, 7 and =,
for the transitive closure and the reflexive sym-
metric transitive closure of —,, respectively.

In the following, when expressions X and Y
are in a relation R of system S, we write S
X RY. For example, we write Ay - M —, N
if a term M of the Au-calculus reduces a term
N by the one-step call-by-name reduction of the
Ap-calculus.

(6)-rules reduce a deconstructor applied to
a constructor. Note that (8)-rule has an un-

usual and a restricted form using the call-by-
name evaluation and statement contexts. This
restriction is needed to obtain sums equivalent
to ones formulated in Wadler’s call-by-name
system, (¢)-rules substitute an evaluation con-
text and a statement context for a covalue, and
(m)-rule introduces a p-abstraction applied to
a covariable application. (7)-rules correspond
to the permutative conversions, and (v)-rules
expand a case statement §(M,z.S,y.T) when
S or T is not a simple form, and introduce new
bindings. These rules are also needed to obtain
sums equivalent to sums formulated in Wadler’s
system.

We write the Ap-calculus given by Wadler by
A\ and write the call-by-name and call-by-
value variants of Ay by \u®?? and Ape? re-
spectively. Detailed definitions of these systems
can be found in Wadler (2005). We compare our
call-by-name system with the A\u»?-calculus.
The differences between them are summarized
in the following three points:

e QOur system is based on reduction relations
while Au%%? is based on equations,

e formulates sums differently, and

e does not have (n)-rules related to implica-

tions, negations, pairs, and sums while his
system does have them.
We give two translations, [—] and (—)), be-
tween our A\g and Ap®? that interpret sums as
follows.

IZCHE) . ‘
= u7.[5] [['y]ml{f}/[a]{_},['y]mr{f} /[ﬁ]{_}]
[lev, BIM] = 6([M], =[], y.[B]y)

The other clauses are defined homomorphi-

1726 IPSJ Journal Apr. 2007
cally like [[MNH = [[MH[[N]] /[a]{,}]

{(inl(M))) = u(a, B).[a] (M) Proof. S.e? Appendix. a

(inr(N)) = p(a, B).[BI(N) Proposition 2

(6(0,z.M,y.N)))
= wy-(Ay- (AN (18- (A [V (M)
(na.fa, BIGON))
(6(0,2.5,y.1))
= (A (T)) (1B-(Aa.(Sh) (e [a, BILOY))
The other clauses are defined homomorphi-
cally like (MNY) = (M) {(N)).
We define the call-by-name system Ap;! as the
one generated by the rules in Fig. 2 and the fol-

lowing (n)-rules,
() M —, Ax.Mx

(where M : A D B)
(ng) M — (fst(M),snd(M))

(where M : A&B)
(nv) M —, 6(M,z.inl(zx),y.inr(y))

(where M : AV B)
n-) M —, Xz.Mz

(where M : = A)
Ay is equivalent to Wadler’s call-by-name sys-
tem A\u2?? as an equational system. To show
this, we need some preparations. Let F,, and
D, be the call-by-name evaluation contexts of
the Ap;l-calculus. Then, we define the call-by-

name contexts E,, and D of the A\u??-calculus
as follows. o
{-r=1{-} E,N = E,(N))
fst(E,) = fst(E,) snd(E,,) = snd(E,,)
5(Bn, - B (w}, 5 (y)) B
= 1wy E;{ B W El{pe.[o, BIER} }
(B, = [d]E, E.N =E,(N))

= D {nB-Dn{pc.[a, BIEL} }
For the call-by-name contexts E,, and D,, de-

fined above, the following lemma holds.
Lemma 1 o

(1) Ayt = (B, {M}>> =n En{(M)} and
/\ﬂwad F(Dn{M}) =n <)} hold for any
term M of our /\u—calculus

() Aotk ()P gy = (M [P

Jit-3]) and Maed b (SHPAH jgy] =n

(ST gD B
3) Ayt b E{pa.S} =, pB.S[FE=
/lo1(~y) and Apwed - Dy {pa.S} =, S[P-

}
}

(1) If)\/LZ FM= N then)\,uwad - <<M>>
=, (), and if A\p;) F S =, T, then \p>ad -
(Sh =n (T).

(2) T Auped b M =, N, then Al - [M] =
HNH7 and if)\,ugad S =n T7 then)\,u:]t - IIS]]

—, [T].
[(SP]

() A F [(M)] =, M and A F
nM and Ay = ([ST)

4) et (M) =
Proof. See Appendix. O

2.2 The Call-by-value Ap-calculus

For the call-by-value calculus, we need a no-
tion of values. A values (denoted by V, W,...)
is a variable, a A-abstraction, a pair of values,
or an injection of a value.
Definition (Values of the Call-by-value
Ap)
VW i=z | de.M | (V, W) | inl(V) | inr(W)

| Az.S

We also use a notion of the call-by-value
evaluation term and statement contexts to in-
troduce the call-by-value calculus. However,
in this case, it is useful to give the evalua-
tion contexts as singular contexts. The call-
by-value evaluation singular contexts (denoted
by E,, E.,...) are grouped into the elimination
contexts (denoted by E,, E.,...), which are ob-
tained from an elimination rule. The introduc-
tion contexts (denoted by E;, EI, . ..), which are
constructed by an introduction rule, and the
contexts which have a hole as the argument of a
lambda abstraction, i.e., (Ax.M){—}. The call-
by-value evaluation singular statement contexts
(denoted by D,,D),...) are grouped into the
elimination contexts (denoted by D.,D.,...)
and the contexts which have a hole as the argu-
ment of a lambda abstraction, i.e., (Az.5){-}.
Definition (CBV Evaluation Singular
Contexts)
E, := Az M){-} | E. | E;
B, = {—}M | fst({—}) | snd({—})

[6({~},2.M, y.N)
E; = inl({=}) | inr({=}) [({-}, M)
| (V. {=}

D, == (Az.S){-} | D.
D, si= [al{=} | {=}M | ({=},2.8,y.T)

The one-step call-by-value reduction relation
for the Ap-calculus, denoted by —,, is de-
fined as the compatible closure of the rules in

Vol. 48 No. 4 Duality between Call-by-value Reductions and Call-by-name Reductions 1727
(B>) (e M)V —y M[Y /2]
(Be) fst(V, W) — V
snd(V,W) —, W
(Bv) S(inl(V), .M, y.N) — M[V /]

§(inr(V),z.M,y.N) —, N[V /2]
§(inl(V),z.8,4.T) —» S[V /]
§(inr(V), .8, y. T) —v T[V /2]

(B-) (Az.8)V —y S[V/a]

© Eex{no.S} —o pB.S[P1F =}/ 4]
Dy{pe.S} — o S[Pv 13/ 24)

(where E, is Ee or (Az.M){-1})

(comp) Eox{(Axz.M)N} —y (Az.Ecx{M})N
Dy{(Az.M)N} —, (A\z.D,{M})N
(ﬂ-) Eek{é(or z.M, yN)} v 5(07 x~EeA{M}’ y~EeA{N})
Dy{6(0,2.M,y.N)} — 6(O,2.Dy{M},y.Dy{N})
(Mw) M —, paja)M (where a ¢ FCV(M))
(name) E;je{O} —v (Ax.Eijc{z})O (where O is not a value, Ejc is E; or Ee)

D.{O} — (Az.Dc{z})O

(where O is not a value)

Fig.3 Reduction rules of the call-by-value Ap-calculus.

Fig.3. We write —,* and —,™ for the
reflexive transitive closure and the transitive
closure of —,, respectively. (()-rules reduce
the deconstructor applied to a constructor with
call-by-value restrictions, ({)-rules substitute a
call-by-value evaluation context and a state-
ment context for a covalue, (1),)-rule introduces
a p-abstraction applied to a covariable appli-
cation, and (7)-rules correspond to the per-
mutative conversions. The (name)-rules push
the next term to be evaluated out as an ar-
gument of the function. These rules corre-
spond to the (name)-rule of the \y@-calculus.
The (comp)-rules are associativity rules, which
correspond to the (comp)-rule of the Au@ed-
calculus.

We now compare our call-by-value system
with Wadler’s call-by-value system. The dif-
ferences between them are summarized in the
following four points:

e QOur system is based on reduction relations

while his system is based on equations,

e formulated sums differently,

e defines values differently: a projection from

a value is not a value in our system, and
e does not have (n)-rules related to implica-
tions, negations, pairs, and sums while his
system does have them.
We introduce the call-by-value calculus Ay as
the system generated by the rules in Fig. 3 and
the following (n)-rules.

(ns) V. —,p Az Ve
(V:ADDB)

(ne) V' —n (fs6(V),snd(V))

(V. A&B)
(nv) M —, 6(M,z.inl(x),y.inr(y))
(M: AV B)
(n-) V —p Ve
(V:=A)

We define the Au¥24~-calculus as the restricted

system of the Au%?d-calculus obtained by ex-

cluding a projection from a value from defini-

tion of values. We again consider translations

{(—) and [—] given in the previous subsection.

Our call-by-value system Aul! with (n)-rules is

equivalent to the A\u®*?~-calculus as the equa-

tional systems.

Proposition 3

(1) If \u? = M =, N, then A%~ = (M)

=, (N)), and if \u"? = S =,, T, then A\pwe4~ -

(S) =0 (T).

2) If A= = M =, N, then A\ - [M]

=, [N], and if \u»??= = S =, T, then Au?

[S] =. [7].

3) - [(M)] =, M and Al F [(S)]

=, S.

4 At b (M) =, M and g -

(IST) =v 5.

Proof. See Appendix. a
We mention some basic properties of the Au-

calculus at the end of this section.

Lemma 4 (Substitution Lemma for Apu)

Let M and N be terms, and S and T be state-

ments of the Au-calculus.

(1) Suppose'|=, A [M: A Il z: A},

|/-\/\

o~~~ || —~

1728 IPSJ Journal

A|N:B,thenF|—AﬂA\N[M/w]:B,andif
Lzt A[S|E,, A, then I'| S[M/.] Fap A
(2) Suppose Iz : A | T{x}}-, A . IT},,

Aja: A| N : B, thenI' |-, A N[T{=}
[la){=}] + B, and if I',| S |—)\M A« : A, then
DS 3] Fa, A

where 7{—} is a statement context, that is, a
statement with a single hole.

Proof. (1) is shown by a straightforward induc-
tion on NV and S. (2) can be shown by an induc-
tion on M and S using (1). The key case of (2)
is § = [a]M. Suppose I' | [a]M |-, , A o A
is derived. Since the last rule to obtain this se-
quent is (pass), we obtain I' |-y /A a: A[M:
A. Hence we have I' -, A | M[T{*}/M{_}] :
A by the induction hypothesis, and then T |
T{M[T (g1} =5, A by (1). This means

U | ([a]M)[" 0 iy, A O
Proposition 5 (Subject Reduction for
Ap)

[Subject Reduction for Ay] Let M and N be
terms, and S and T be statements of the Au-
calculus.
(1) Uk, AlM:AandA\utM —, N,
then I' -y A | N: A IfI'| S|,, A and
At S —p T, then T' [T |-, A
(2) Uy, A[M:Aand AubM —, N,
then I'f|=, A | N:A IfI'| S}, A and
A S — T then I' | T' |- A.
Proof. Using the substitution lemma, (1) and
(2) are shown by an induction on —,, and —,,
respectively. O
The call-by-name and call-by-value Apu-calculi
given in this paper are confluent. This is proved
as a corollary of the results in Section 4 and 5
(see Proposition 37).

3. The Dual Calculus

The dual calculus was proposed by
Wadler 191 as a term calculus that corre-
sponds to the classical sequent calculus LK.
Wadler 10 first gave the dual calculus as a re-
duction system, and introduced it as an equa-
tion system in his later paper V). Since we want
to consider the system based on reduction rela-
tions, we will give the reduction system of the
dual calculus referring to the system in his first
paper.

Types, variables, and covariables of the dual
calculus are the same as those of the Au-
calculus.

Apr. 2007

Definition (Types of the Dual Calculus)
AB:=X|A&B|AVB|ADB|-A
where X is an atomic type.

The expressions of the dual calculus consist
of terms (denoted by M, N,...), coterms (de-
noted by K, L,...), and statements (denoted
by S,T,...). A term is either a variable z, a
pair (M, N), a left injection (M)inl or a right
injection (N)inr, a complement of a coterm
[K]not, a function abstraction Ax.M, with z
bound in M, or a covariable abstraction S.«
with « bound in S. A coterm is either a co-
variable «, a case [K, L|; a projection from the
left of a product fst[K] or a projection from the
right of a product snd[L], a complement of a
term not(M), a function application M@K, or
a variable abstraction .S with z bound in S.
A statement is a cut of a term against a coterm
Me K.

Definition (Expressions of the Dual
Calculus)
M, N z:=x | (M,N) | (M)inl | (M)inr | [K]not

| Ae.M | S.« (terms)
K, L:=«|[K,L]| fst[K] | snd[L] | not{M)

| MOQK | z.S (coterms)
S, Tu=MeK (statements)

The set of free variables and covariables oc-
curring in M, K, and S are denoted by FV(M),
FV(K), and FV(S) respectively. We identify
the two expressions in the a-equivalence rela-
tion and will use = for the syntactic identity
on the expressions. The expressions M[V/,],
K[V /], and S[V/,] denote the expressions ob-
tained by substituting N for every free occur-
rence of the variable z in M, K, and S. The ex-
pressions M[F/,], K[F'/,] and S[F/,] are simi-
larly defined.

A context of the dual calculus (denoted by
I', ¥, ...) is a finite set of term variables anno-
tated with types (denoted by z1 : A1,...%y, :
Ap,), in which each variable occurs once at the
most. Similarly, a cocontert of the dual cal-
culus (denoted by A, A, ...) is defined as a
finite set of covariables with types (denoted
by ay : Bi,...qum : Bp). A typing judg-
ment of the dual calculus takes either the form
I'—,,A| M: A, the foom K : A |T |-, A,
or the form I' | S |-,. A. We note that |-, is
sometimes written as |-. The typing rules of
the dual calculus are shown in Fig.4. These
rules are the same as those in Wadler’s later
paper '),

A walue of the dual calculus, denoted by V,
W ...,is avariable z, a pair of values (V, W), an

Vol. 48 No. 4

A
Da:Al, Alz: A xR

Duality between Call-by-value Reductions and Call-by-name Reductions 1729

AxL
a: AT |4 Ao A *

Mg A|M:A K:A|T|,;, A

Cut

T MeK |, A
P4 A|M:A T, A|N:B

&R

T, A|(MN): A&B

K:A|T|,;. A
fst[K] : A&B|T |-, A
P-4, AlM:A
Iy A (M)inl: AV B

&L

VR

L:BI|T |, A
snd[L] : A&B | T |-;, A
Iy, A|N:B
P4 A (N)inr: AV B

&L

VR

K:A|l|,;,, A L:B|T|4, A

[K,L]:AVB|T |, A

Pl AIM:A
not(M) : =A|T |-,. A

-L

-4, A|M:A K:B|T|-,. A

M@K : AD BT |-y, A
z: AT|S|,; A

— = LI
zS:A|T |4 A

K:A|T |, A
T, A [Knot:=A °
Nrx: Ay, A|M:B
OR
T, A e M:ADB
DSy A a:A
Py AlSa:A

RI

Fig.4 Typing rules of the dual calculus.

injection of a value (V)inl or (W)inr, a comple-
ment of a coterm [K]not, or a function Ax.M.
A covalue of the dual calculus is denoted by
P, @ A covalue is a covariable «, a case
over a pair of covalues [K, L], a projection of
a covalue fst[P] or snd[@], a complement of a
term not(M), or a function application over a
covalue MQQ.
Definition (Values and Covalues)
V,W = 2| (V,W) | (V)inl | (W)inr | [K]not

| Ae. M
P,Q = a|[P,Q]| t[P] | snd[Q] | not(M)

| M@Q

These definitions of the values and covalues
are same as those in Wadler (2003) but differ-
ent from those in Wadler (2005). Note that
if we adopt the definitions in Wadler (2005),
then terms containing beta redexes at the top
level may also be values. For example, a term
({(x,y) o fst[a]).a includes a beta redex at the
top level even though it is a value according to
the definition in Wadler (2005).

A term context for the dual calculus (denoted
by E) is a term that contains a hole that accepts
a term, and a coterm context (denoted by F)
is a coterm that contains a hole that accepts a
coterm. The hole is written {—}, and the result
of filling the hole in the term context E with a
term M is written E{M}. Similarly, the result
of filling the hole in the coterm context F' with

a coterm K is written F{K}.
Definition (Term Contexts and Coterm
Contexts)
E = (=}, N) | (V,{=}) | ({=Dinl | ({~Pinr
F = [K AN | =}, P) | fstl{=}] | snd[{~}]

| M@{-}

Note that the context of the form of M@{—}
is defined as a coterm context in this paper,
though it was not defined in Wadler (2003).
This means the reduction rule

N e (MQK) —" (N e (MQa)).ae K
is permitted as (name)-rule in our call-by-name
calculus. This seems to have added a new rule
to Wadler’s original system. However, this rule
is not an essentially new rule, because this rule
is justified when implication is defined in terms
of conjunction, disjunction and negation (see
Proposition 7).

The call-by-name reduction relation —™ and
the call-by-value reduction relation —° of the
dual calculus are defined to be the compatible
closure of rules in Fig. 5. In the sequel, we use
—n* 2T and =" as the reflexive tran-
sitive closure, the transitive closure, and the
symmetric reflexive transitive closure of —"
respectively. —v*, —¥" and =" are defined
similarly.

Some of our reduction rules are slightly dif-
ferent from those in Wadler (2003), but the
differences are not essential. (f-)-rules given

1730 IPSJ Journal

Apr. 2007

Call-by-name reduction

(Bg) (M,N) e fst[P] —™ M e P
(M,N)esnd[Q] —™ N eQ

(Bv) (M)inle [P,Q] —™ M e P

(N)inr e [P,Q] —"™ N e Q

(8-) [K]not e not(M) —™ M e K

(B>) \z.M o (NQP) —" M[N/;] e P

(BL) Mex.S —m S[M/,]

(Br) S.ae P —m S[F/4]

(nr) K —"z.(zeK)

(nr) M —" (Mea).a

(name) M e F{K} —"™ (M e F{a}).ae K

Call-by-value reduction

(V,W) efst|[K] —" Ve K
(V,W)esnd[L] —? WelL
(V)inle [K,L] —" Ve K
(W)inre [K,L] —" W e L
[K]not e not(M) —? M e K
Az.M o (NQK) —?Y Nex.(MeK)
VexS —? S[V/i]
S.ae K —v S[K/,]
K —" z.(x e K)
M —"? (Mea).a
E{M}e K —" Mex.(E{z} e K)

Fig.5 Reduction rules of the call-by-value and call-by-name dual calculus.

here are justified in Proposition 6. (name)-
rules correspond to (¢)-rules of the dual cal-
culus in Wadler (2003), though these rules are
not included in his system. Indeed, we can eas-
ily show (name)-rules from (¢)-rules using (5r,)
and (8g)-rules in both the call-by-name and
call-by-value systems. Conversely, we can ob-
tain (¢)-rules from (name)-rules using (n;,) and
(ngr)-rules.

When a term M of the dual calculus reduces a
term N by the one-step call-by-name reduction,
we write DC' F M —" N. We also write
DCFK —™L,DCF S —"T etc. For call-
by-value calculus, we also define these notations
similarly.

As in Wadler’s original dual calculus, impli-
cation can be defined in terms of the other con-
nectives, i.e., the following propositions hold.
Proposition 6
Under call-by-value, an implication can be de-
fined by

ADB= —\(A&—\B)

Ax. M = [z.(z o fst[z.(z @ snd[not(M)])])not

NQK = not((N, [K]not)).

The translation of a function abstraction is
a value, and the typing and reduction rules for
implication can be derived from the typing rules
for the other connectives.

Proof. The call-by-value (8-)-rule is validated
as follows.
(a) If N is a value V, then
(Az.M) e (VQK)
= [2.(z o fst[x.(z e snd[not{M)])])|not
enot({ (V, [K]not))

—>1(’,3ﬂ) (V,[K]not) e z.(z e fst[x.(z
e snd[not(M)])])
—{s,,) (V, [K]not) e fst[z.((V; [K]not)

e snd[not(M)])]
— () V @ z.([K]not e not(M))
— gy Ve z.(M e K).
(b) If N is not a value, we need (name)-rule:
(Az.M) e (NQK)
= [2.(z o fst[x.(z e snd[not{M)])])|not
enot((N, [K]not))
—{s.) (N, [K]not)
o 2.(z o fst[z.(z @ snd[not(M)])])
—>(name) Ne Y. (< [K]n0t>
® z.(z o fst[z.(z e snd[not(M)])]))
—(s,) N ®y-((y, [K]not)
o fst[z.((y, [K]not) e snd[not(M)])])
fay N & -y o 2.([Knot e not(M)))
—(s,) N @ z.([K]not e not(M))
— sy Nex.(MeK). 0
Proposition 7
Under call-by-name, an implication can be de-
fined by

A>DB=-AVB

Az.M = ({[z.((M)inr e)]not)inl e).y

NQK = [not(N), L.

The translation of a function application with
covalue is a covalue, and the typing and reduc-
tion rules for implication can be derived from
the typing rules for the other connectives.
Proof. The call-by-name (f-) and (name)-
rules are validated as follows.

(Az.M) e (NQP)

= ({[o-((M)inr o 7)]not)inl 7).7
o[not(N), P|
—6) (([z.({M)inr
e [not(NN), P])|not)inl e [not(N), P]

—7

Vol. 48 No. 4

— [x.(M e P)]not e not(N)
— () Nex.(MeP)
— (o) MY/ 0 P
N e (MQK) = N e [not(M), K]
_)?name) (N b [IlOt<M>, OZD'OZ o K
= (Ne (MQa)).ae K O

We now mention some basic properties of the
dual calculus.
Lemma 8 (Substitution Lemma for DC)
Let M and N be terms, K and L be coterms,
and S and T be statements of the dual calculus.
(1) Suppose '-A | M : A IT,z: Al
A|N:B,thenT'|-A | NM/,]: B. If
L:B|Tl,x: AR A,then LIM/,]: B|T |- A.
fl,z:A|S|-A,thenT | SM/,]|-A.
(2) Suppose K : A | T-A. IfT - Ao
A| N:B,then T |-A | N[¥/,] : B. If
L:B|TFAa:A, then L[X/,]: B|T |- A.
T |S|-Aa:A, thenT | S[EK/,]|-A.
Proof. (1) and (2) are shown by a straightfor-
ward induction on M, K, and S. O
Proposition 9 (Subject Reduction for
DOC)
Let M and N be terms, K and L be coterms,
and S and T be statements of the dual calculus.
(1) ITHA|M:Aand DCHFM —" N,
then A | N: A UK :A|T | A and
DCFK —"™ L,then L : A|T|A. If
'SFAand DCFS —" T, thenT | T|A.
(2) UT+-A|M:Aand DCHFM —" N,
thenT'-A|N: A IfK:A|T|-Aand DC
K—"L,thenL: A|T|-AIfT"'| S|-A and
DCFS —YT,thenT | T |- A.
Proof. Using the substitution lemma, (1) and
(2) are shown by an induction on —,, and —,,
respectively. 0

As Wadler mentioned in his paper, the reduc-
tions of his dual calculus are confluent. More-
over, if (n), (nr), and (¢)-rules are omitted,
then the remaining reductions are strongly nor-
malizing for typed terms. Our systems enjoy
similar properties. However, since (n.) and
(nr)-rules are expansions, the full reductions
are not strongly normalizing. Moreover, the full
reductions of our systems, like Wadler’s origi-
nal systems, include looping terms even if for
typed terms. For example, (z,y) e a is a ty-
pable statement, and this statement loops in
the call-by-value calculus.

(o,g)oa — (20 B).B,9) e a
_)’Uname) (.’b b ﬂ)ﬁ i Z(<Z’y> b 0[)

Duality between Call-by-value Reductions and Call-by-name Reductions 1731

— (s T 2((2,9) 0)

~—(Br) (z,y)oa
We can give a similar example for the call-by-
name calculus.

We now consider the two versions of the dual
calculus; one given in Wadler (2003) and the
other given in Wadler (2005). For the latter
version, we write DC)!= as the call-by-name
system and DC]= as the call-by-value system.
The differences between the two versions of the
dual calculus are summarized in the following
three points:

e The first version is based on reduction rela-
tions while the second one is based on equa-
tions,

e the first version does not have (7)-rules re-
lated to implications, negations, pairs and
sums while the second one does contain
them, and

e the second version contains terms of the
forms (Vefst[a]).ac and (Vesnd[f]).5 as val-
ues and coterms of the forms x.((z)inl e P)
and y.({y)inr e) as covalues.

4. Translations from the Au-calculus
into the Dual Calculus

In this section, we give the translations from
the Ap-calculus into the dual calculus. We con-
sequently introduce two different translations
for the call-by-name and call-by-value calculi,
and show that these translations preserve typ-
ing and reductions.

4.1 The Naive Translation

In this subsection, we give the naive transla-

tion from the Ap-calculus into the dual calculus.
This translation preserves equalities, but does
not preserves reductions.
Definition (The Naive Translation (—)®)
The naive translation (—)® from the Au-
calculus into the dual calculus is defined as fol-
lows. This translation maps a term M and a
statement S of our Au-calculus to a term M®
and a statement S® of the dual calculus respec-
tively.

(2)® =2

((M,N))® = (M®,N®)

(6(0,2.M,y.N))®

= (0° o [2.(M 0 0), (N w)]}
(6(0,2.8,y.T))® = O® o [2.5%,y.T?]
(fst(0))® = (0O%® e fst[a]).

(in1(0))® = (0®)inl

1732 IPSJ Journal

Apr. 2007

(M)t = (M :p a)o

([a] M) = M :,,
(OM)* =0
((Mz.S)N)# = N* 0 2.5*

(5(0,.8,y.T))" = O o 2.5, y-T”]

“n, nOL(MH)

(where « is a fresh covariable)

(where O is not a A-abstraction)

z K=xeK N):p K = (MY N o K
fst(M) :n K = M =y, fst[K] 1nl()i K = (M%)inle K
snd(M) 1, K = M :y, snd[K] 1nr(Vi K = (MP)inr e K
(Az.S) 1y K = [2.S%]not @ K aS, K=S'aeK
Az M) 3 K = Oz M) o K
(OM) :n K = O 3, (M*QK) (where O is not a A-abstraction)
(Az.M)N) :py K = (N* 0 2.(M 3, @)). 00 K

5(0,2.M,y.N) :p,

K= (O1j o [z.(M :p @),

y.(N i a)]) ade K

Fig. 6 Translation (—)#

o (M®Qa)).a

(\z.M)® = \e.M®

This naive translation is defined by changing
the part of sums of the original translation (—)*
given in Wadler (2005). The naive translation
is consistent with Wadler’s translation in the
sense of the following lemma.
Lemma 10
Let M be a term, and S be a statement of our
Ap-calculus, then

(1) DC"™ F (M)" =" M® and DC"=
()™ =" 8%,
(2) DC"= F (M)" =Y M® and DC"=
{sy* =v se.
Proof. See Appendix. O

The naive translation preserves typing rules
and equalities.
Proposition 11
(1) IUrR PWRAY | M : A thenT|-A | M® : A.
T[Sk, A thenl"|S®\—
(2) If)\,ul—M— NthenDC}—M® ="
N® If Ay S=,T, thenDC’l—S® ="T®,
(3) IfAu+ M =, N, then DC - M® =V
N® If \uk S =, T, then DC - S® = T®,
Proof. (1) We can prove this claim by a straight
forward induction on |-,
(2) This claim can be shown directly by an in-
duction on =,. Even if we do not adopt this
approach, we can show this claim as a corollary
of Theorem 16 using Lemma 12.

: CBN Ap-calculus — CBN dual calculus.

(3) As with (2), we can show this claim di-
rectly, or as a corollary of Theorem 21 using
Lemma 17. 0
In general, this naive translation does not
preserve reductions as well as Wadler’s trans-
lation. This is because of the so-called
administrative redexes. A typical exam-
ple is ({)-reduction : (pa.[f]A\z.[a)x)y —n
wy-[B]Az.[v](zy)
®
((ne.[B]Az.[a]z)y)
= (([o-(z » @)}not » B).c s (y@7)) .y
(s ([2-(x o (y@7))Inot e B).y
(s ([z((z @ (y@7')).4" @ 7)]not ®).y
®
= (uy-[BAz.[7](zy))

To solve this problem, we modify the naive
translation. The idea of modification is sim-
ilar to the modified CPS translation by de
Groote V2. In the following two subsections,
we give different translations for the call-by-
name and call-by-value calculi. This is because
the administrative redexes of these two calculi
are slightly different.

4.2 The Translation from CBN Ap-

calculus into CBN Dual Calculus

The call-by-name translation consists of the

following two translations.

e (—)* maps any term M and statement S
of the A\y-calculus to a term M*¥ and state-
ment S% of the dual calculus, respectively.

e ((—):p K) is a translation given by coterm
K and maps any term M of the Ap-calculus
to a statement M :, K of the dual calculus.

The definition of the call-by-name translation

(—)* is given in Fig. 6. In this figure, S.a e K
means S[X/,] if K is a covalue, otherwise it
means S.a e K.

This translation is consistent with the naive

I l

Vol. 48 No. 4

translation, that is, the following lemma holds.

Lemma 12

Let M and S be a term and a statement of the

Ap-calculus, then

(1) DC+ M® eP —"* M :, P for any

covalue P,

(2) DCF M® —™ M and

(3) DCF 8% —n* Gt

Proof. See Appendix. a
This translation preserves the typing deriva-

tion, that is, the following proposition holds.

Proposition 13

(1) IT},,A[M: A, then T}, A | M*: A

(2) Hr|s ‘_M A, then I'| S* |-, A.

Proof. This proposition can be shown by the

subject reduction property for the dual calculus

using Proposition 11 and Lemma 12. O

Lemma 14

(1) Let M and N be terms, and S be a state-

ment of the Ap-calculus, then

DC + (M i PN/ —m MN/] o

P[N'/.], and DC F SHN* /o] —m (S[¥/.])*

hold for any covalue P.

(2) Let P and @ be covalues, and M be a

term of the dual calculus, then

DCFMe[z.(zeP),y.(yeQ) —™ Me|[P,Q]

(3) If K is not a covalue, then DC + O :,

K —m™ O! ¢ K for any term O of the A\u-

calculus.

(4) DCVF (M :, N!QP) —™ (MN :, P)

and DC + (M :, not(N*)) —™* (MN :, P)

for any terms M and N of the Ap-calculus, and

covalue P.

Proof. See Appendix. d
Let E, and D,, be a call-by-name evaluation

term context and statement context of the Au-

calculus, and P be a covalue of the dual cal-

culus, then we define covalues ®(E,, P) and

®(D,,) as follows:

o({-},P)=P

®(E,N,P) = ®(E,, N*QP)
(fst(FEy), P) = ®(Fy, fst[P])

®(snd(E,,), P) = ®(E,,snd[P])
(

= &(E,, [®(E!, P),®(E", P)))
®([a]Ep) = (B,)
®(E,N) = ®(E,, not(N*))
(8(En, z.Dn{z},y.D,{y}), P)
= O(E,, [®(Dn), ®(D))])
Then the following properties hold.

Duality between Call-by-value Reductions and Call-by-name Reductions 1733

Lemma 15
(1) If M is not a A-abstraction, then DC'
(B {M} i, P) —™ (M :, ®(E,,P)) and
DC + (Dp{M})¥ —™* (M :, ®(D,,)) hold.
(2) For any term M of the Ap-calculus, DC' -
(M :, ®(E,,P)) —™ (E,{M} :, P) and
DC - (M :, ®(D,,)) —™ (D,{M})* hold.
(3) Let M be a term and S be a statement of
the Ap-calculus, then DC I (M =, P)[*(Pn)/]
" M2 gy] 2 P[*P0) /o], and
DC = SHPP [o] —m (S[P /jaygy])
hold for any covalue P.
Proof. See Appendix. O
Then, we prove that the call-by-name modi-
fied translation (—)# preserves reductions.

Theorem 16 (Soundness of (—))

(1) Ifip+FM—, N, then DC + (M :,
P) —™* (N :,, P) for any covalue P, especially
DC F M —m* N¥,

(2) If AuS—, T, then DCFS¥ —m* T%,
Moreover, if —,, is (3), (B), (Bv) or (8-),
then —"™* can be replaced by —"*.

Proof. See Appendix. O

4.3 The Translation from CBV Ap-

calculus into CBV Dual Calculus

In this subsection, we introduce the call-by-
value translation from the Ap-calculus into the
dual calculus by modifying the naive transla-
tion (—)®. The call-by-name translation also
consists of the two translations: (=) and (—) 1,
K. (=)' maps any term M and statement S of
the Au-calculus to a term MT and statement ST
of the dual calculus respectively. The infix op-
erator “:,” translates a pair of terms M of the
Ap-calculus and a coterm K of the dual calculus
into a statement M :, K of the dual calculus.
The definition of the call-by-value translation
(—)T is given in Fig. 7.

When we compare the CBV translation
given here with the CBN translation, the
definitions of (pa.S : K), (Az.M)N
K), (6(0,z.M,y.N) :, K), (Az.S)N)T, and
§(0,z.8,y.T)" are different. This is because
the administrative redexes differ according to
the difference of ({)-rules of the call-by-name
and call-by-value systems.

Like the call-by-name translation, the call-
by-value translation is also consistent with the
naive translation in the sense of the following

lemma.
Lemma 17

Let M and S be a term and a statement of the
Au-calculus, then

1734 IPSJ Journal

Apr. 2007

(M) = (M -, a).a (where « is a fresh covariable)
([e]M)t = M -,
omt=o0:, not(MT) (where O is not a A-abstraction)
(Oz.8)YN) =N, z.5T
(6(0,2.8,y.TH = M+, [z.81,y.TT]
z, K=zeK N):w K= (M NY e K
fst(M) 1y K = M :y fst[K] inl(M) :p K = (M1)inl @ K
snd(M) 1y K = M :, snd[K] 1nr()i K = (MT)inr e K
(\z.S) 1y K = [x.ST]not ¢ K .S K = ST[K /]
Az.M) @ K= Az.MT) e K
(OM) :, K =0 :, (MTQK) (where O is not a A-abstraction)
(Az.M)N) :y K =N 1y x.(M 3 K)

0(0,2.M,y.N) 1y K =0 1y

[@.(M 0y K),y.(N :p K)]

Fig.7 Translation (=)t : CBV Au-calculus — CBV dual calculus.

(1) DCF M®eK —" M :, K for any
coterm K ,

(2) DCF M® —v* Mt and

(3) DCt 8% —vx St

Proof. We prove (1), (2), and (3) by a simul-
taneous induction on M and S. Most parts of
this proof are similar to the one in Lemma 12.

For example,
Case of (A\z.M)N

(Ae.M)N)® o K
= ((A\z.M®) o (N®Qq)).ac @ K
—{s1) (A\z.M®) o (N®QK)
—55) N® e2.(M® o K)
1.H.(1)
—" N z.(M :y K)
=((Ae.M)N) :, K O
This call-by-value translation also preserves
the typing derivation.
Proposition 18
(1) UTR A A|M : A, thenT'|—, A|MT
(2) IfI‘|S\ SWRAY thenI‘\ST |—
Proof. This propos1t10n can be shown by the
subject reduction property for the dual calculus
using Proposition 11 and Lemma 17. O
Definition
For each value V' in the Au-calculus, we define
a value (V)? in the dual calculus as follows.
()" =, (VW) =V, wr)
(inl(V))*=(V¥)inl (A\z.M)*=\z.M!
(inr(W))? = (W*¥)inr (Az.S)”=[z.ST]not

Using this notation, we can show the follow-
ing lemma.
Lemma 19

(1) DCFEV'eK —v (V : K) for any

coterm K, especially Vv —v* VT,
(2) DCF (V: K) —" V'eK for any
coterm K. That is, the statement (V' :, K)
loops in the call-by-value dual calculus.
(3) Let M be a term, S be a statement, and
V be a value of the Au-calculus, then
DO+ (M = K)[V /] — (M[Y/a]
K[V /,]), and DC + STV /o] —= (S[V /)1
for any coterm K.
Proof. (1) is proved by a straightforward induc-
tion on V. For example, we consider the case
of (V,W):
(VW) e K) =
I.H.
— (VI W e K=(V, W) ¢ K
(2) is also proved by an induction on V. We
consider the key cases.
Case of (V,W):
(VW) K)= (VI W e K
_>1()name) VT o (E(<.’L’, WT> ® K)

—(gn) V z.((z, W) e K)
I.H

(VO W) e K

—" V" ez ((x, W*> oK)
—{o1) <V wi)e

_>(name) W ‘(<Vv7y> .K)

— o W0 y-((V',y) K)

I.H.

—" y.((V',y) @ K)

— (1) (VT W“) e K=(V,IW)' e K

Cases of (V)inl and (W)inr: this case can be
proved in a way similar to the above case using
the induction hypothesis and (name)-rule.

(3) is proved by a straightforward induction on
M and S. The key case is:

Vol. 48 No. 4

(@20 K[/o] = (@ o K)[V /]

v 1) v
=VVe K[V [,] —" (Vi K[V /o)) O

Let E, be a call-by-value evaluation singular
term context, and K be a coterm of the dual
calculus. Then we define coterm ¥ (F,, K) as
follows.

VU({-}N,K)= N'QK

U((Aze.M){-},K)=z.(M :, K)

Y((VA=1), K)=y.((V",y) e K)
({({=}, M), K) = z.((z, M") ¢ K)
[.(M :y K),y.(N :, K)]
(fst(—), K) = fst[K]
(inl(—), K) = z.((z)inl « K)
(snd{—}, K) = snd[K]
(K) = y.({y)inr e K)
and for every singular statement context D,,,
we define coterm ¥ (D,) as follows.

U(le{-}) =a U({—}N)=not(NT)

U((Az.8){-}) =z.ST

V(6({~} 2.8,y.7)) = [2.57,y.T"]

About this notation, the following properties

hold.
Lemma 20

(1) Let M not be a A\-abstraction, then DC' -
(E,{M} @, K) —¥* (M :, ¥(E,,K)) and
DC - (D, {M})" —* (M :, ¥(D,)) hold.

(2) Let E be an elimination context or
(Ax.M){-}, and D, be an evaluation singu-
lar statement context. Then DC F (M :,
Y(E,K)) —Y (E{M} :, K) and DC + (M
U(D,)) —* (D,{M})" hold for any term M
of the Au-calculus.

(3) Let E; be an introduction context of
the Ap-calculus. Then DC +F (M o
U(E, K)) —" (Mx.E{z})M :, K) for any
term M.

(4) Let E be an elimination context or
(Ax.M){—} of the call-by-value Au-calculus.
Then DC + (M K)YEH)] —v
MPECH] w0 KPP /], and

DC + STYEA /) —v (SIPY /D)1
hold for any coterm K.

(5) Let D, be an evaluation singular state-
ment context of the call-by-value Ap-calculus.
Then DC F (M K)o/] —v*
M[D“{_}/[a]{,}] v K[\P(D"’)/a], and

DC F STY@ /] —v (S[PAdg]

s

S S
78

inr(—),

Duality between Call-by-value Reductions and Call-by-name Reductions 1735

hold for any coterm K.

Proof. See Appendix. O
Then we prove that the call-by-value modified

translation (—)T preserves reductions.

Theorem 21 (Soundness of (—)")

(1) Ak M —, N, then DC + (M
K) —v* (N :, K) for any coterm K, espe-
cially DC' + Mt —v* NT,

(2) If \uFS—, T, then DC+ ST —v* TT.
Moreover, if —, is (85), (B), (ﬁv) or (6-),
then —¥* can be replaced by —"

Proof. See Appendix. a

5. Translation from the Dual Calculus
into the Ap-calculus

In this section, we introduce the translations
from the dual calculus into the Ap-calculus. As
in the previous section, we give two different
translations for the call-by-name and call-by-
value calculi.

5.1 The Naive Translation

In this subsection, we give the naive transla-
tion from the dual calculus into the Au-calculus

This translation preserves equalities but does

not preserve reductions.
Definition (The Naive Translation (—)g)
The naive translation from the dual calculus
into the Ap-calculus is defined as follows. This
translation (—)g maps a term M and a state-
ment S of the dual calculus to a term Mg and
a statement Sg of the Au-calculus respectively,
and maps a coterm K with a term O of the
Ap-calculus to a statement Kg{O} of the Au-
calculus.

(x)g =

<Ma N>)® = <M®7N®>
Lle{0} =6(0,z.Ke{z},y.Le{y})
(M)inl)g = inl(Mg)

(
K,
(
E st[K])e{0} = Ke {fst(0)}
(
(

ag{O0} = [a]O

(N)inr)g = inr(Ng)

snd[L])e{0} = Le{snd(0)}
[K not)® = A\z. K®{x}

S.a)g = ,ua.S®
z.8)e{0} = (A\z2.55)0
(MeK)s=Ke{Mg}
This naive translation is given by changing
the part of sums of the original translation (—),
given by Wadler (2005). The naive translation

1736 IPSJ Journal

is consistent with Wadler’s translation in the

sense of the following lemma.

Lemma 22

Let M be a term, K be a coterm, S be a state-

ment of the dual calculus, and O be a term of

the A\pu®*?-calculus. Then

(1) Ap b [M] =" Mg, Ap b [KAO}] ="

Ko {[O]}, and At b [S.] =" Se.

(2) i [M] =0 Mg, A b [K.AO}] =7

Ke{[O]}, and Au - [S.] =" Se .

Proof. See Appendix. O
The naive translation preserves typing rules

and equalities.

Proposition 23

(1) IT-A|M:A, thenI‘\—MA | Mg : A.

IFK:A[Tl-Aand ', A[O: A, then

I| Ko{O} |-y, A.

IET | S A, then I' [Sg |-, A.

(2) I DCHE M =" N, then \u b Mg =,

Ng.

If DC + K =" L, then Ay - Kg{O} =,

Lg{O}.

IfDCEFS="T,then A\ut Sg =, Ts.

(3) If DCF M=" N, then A\ut+Mg=, Ng.

If DC - K =Y L, then \y + Kg{O} =,

Lg{O}.

If DCFS="T, then \ut Sg =, Tg.

Proof. (1) We can prove this claim by a

straightforward induction on |-.

(2) This claim can be shown directly by an in-

duction on =". Even if we do not adopt this

approach, we can show this claim as a corollary

of Theorem 28 using Lemma 24.

(3) Asin (2), we can show this claim directly, or

as a corollary of Theorem 34 using Lemma 30.

O

In general, this naive translation does not

preserve reductions as well as Wadler’s trans-

lation. (np)-rule is a counter-example for the

call-by-name system:

ag{0} = [a]0 —, (Az.[a]x)O
= (z.(z 0))o{0}
On the other hand, (8-)-rule is a counter-
example for the call-by-value system:
([a]not e not((z e 5).7))e
= (not((z & 3).7))e{[c|note }
(Az.[e]z) . [Blz ——(name) [e]py.[Blz
= ap{((zef)7)®} = ((xef)rea)e
We also need to modify this naive translation.

In the following two subsections, we give differ-
ent translations for the call-by-name and call-

Apr. 2007

by-value calculi.
5.2 The Translation from CBN Dual
Calculus into CBN Ap-calculus

To solve the problem for the call-by-name cal-
culus displayed at the end of the previous sub-
section, we need to modify the translation of
the coterm x.5.

Definition ((—); : CBN DC — CBN Ap)
We introduce the new translation (—)y by mod-
ifying the definition of (—)g as

(2.9),{0} = S,[°/.).

The other clauses are similar to the naive trans-
lation.

The full definition of (—)y is displayed in Fig. 8
(see Appendix).

The following lemma means that the call-by-
name translation (—)y is consistent with the
naive translation.

Lemma 24

Let M be a term, K be a coterm, and S be a
statement of the dual calculus. Then

(1) Mk Mg — M,

(2) Ak Kg{O} — Ky{O} for any term
O of the Ap-calculus, and

(3) Ak Sg —F Sy.

Proposition 25

(1) T}, A|M:A, thenF|—>\MA | My : A.
(2) IfK:A|F|—dCAandF|—/\#A|O:A,
then T’ |_>\u A | K{O}.

(3) LT|S|k,A, thenI‘\—/\MA\Su.
Proof. These claims can be shown by the sub-
ject reduction property for the Au-calculus us-
ing Proposition 23 (1) and Lemma 24. O
Lemma 26

(1) Ik O —, O, then \up - Ky{O}
—% Ky{O'} for any coterm K.

@) MM/, = (M[¥/.))s K{ONM: /] =
(K[Y/a)g{ O /a]} and Sy[Ms/a] = (S[V/a])z-
(3) If Pis acovalue, then P;{—} is a call-by-
name evaluation context of the Au-calculus.
@) My["1 /] = (M[* /o],
(KAODI* T fiagy] = (K[fal)e{O1+)
Jtog(—3}> and Sy[Pet7) /i1 4] = (S[F/a])y for

any coterm L.

Proof. (1) The claim is proved by induction on
K.

(2) The claim is proved by induction on M, K,
and S.

(3) The claim is proved by induction on P.

(4) The claim is proved by induction on M, K,
and S. We give the key case:

Vol. 48 No. 4

({ONF (=) = (O) =17 /a2y
=L A0 3]}
O

Let F' be a coterm context of the dual calcu-
lus, and O be a term of the Au-calculus. Then
we define term Fy{O} of the Ap-calculus as fol-
lows:

{-h{0r =0 (Ma{-}){0} =OM;

(fst[=])4{O} = 1st(O)

(snd[-])¢{O} = snd(0)

([=, PD):{0} = pe.6(0, 2.[a]z, y.Pi{y})

(K, =De{O} = pB.6(0, z. Ky{x},y.[Bly)

This notation satisfies the following property.
Lemma 27
Let coterm L not be a covalue, and P be a
covalue. Then
(1) Ak F{L}{O} —7, Ly{F{O}}, and
(2) Autk P{F{O}} — F{P}:{O}
for any term O of the Au-calculus.

Proof. (1) is proved by a case analysis of F.
We give the key cases.
Case of [—, P]:

[L, Pl{0} = 6(0, z.Ly{x},y. Pe{y})

—) (Az.Ly{z})pa.d(0, z.[a]z, y. Pi{y})
—p-) Ly{ pab6(0,z.[o]z,y. P{y}) }
= Ly{[-, Pls{O} }

Case of [K, —]:

(K, L}:{0} = 6(0, z. Ky{z}, y. Ly{y})

—) My-Le{yHuB.6(0, z.Ky{z}, y.[Bly)
— o) Le{ 1B.6(0, z. K{z},y.[Bly) }
= LA [K,-][{0} }

(2) is also proved by a case analysis of F'. We

give the key cases.
Case of [—, Q):

P{[-,Ql{0}}
= P{ pa.6(0, 2.0z, y.Qs{y}) }
— ¢ 0(0,z.P{x}, y.Qe{y})
= [P, Q{0}
Case of [K, —|:
P{[K,-]{O}}
= P{pB.6(0, z.Ke{x}, y.[Bly) }
— ¢ 0(0,z.Ky{z}, y. Pi{y})
= [K, P]3{O} O
We now prove that the call-by-name transla-
tion (—)y preserves reductions.

Theorem 28 (Soundness of (—))
(1) IfDCFM —"™ N, then Ap - My —7

Duality between Call-by-value Reductions and Call-by-name Reductions 1737

Ny.

(2ﬁ) If bC v K —" L, then Ay F
K {0} —, Ly{O}.

(3) I DCHS —"T, then AutS;—7 Tj.

Moreover, in (1), (2) and (3), if —™ is (85),
(Bg), (Bv) or (B-), then —* can be replaced
by —}.

Proof. See Appendix. a

5.3 The Translation from CBV Dual

Calculus into CBV Au-calculus

Now we introduce the modified translation
(—)4 for the call-by-value calculus. The prob-
lematic cases of the naive translation were (1)
and (f-)-rules. To solve these problems, we
introduce a notation: (\,z.5)0O. This means
S[9/.] if O is a value, otherwise (Az.5)0O. Our
idea for solving the latter case is to modify the
definition of (M & K)g to (A\yz.Kg{z})Msg.
Definition ((—); : CBV DC — CBV Ap)
We define the translation (—); as follows:

K;[O] = (\pz.K3{z})O

fSt[K]T{O} = KT[fSt(O)]

snd[K+{O} = K;[snd(O)]

(MQK){O} = Kt[OM;]

(.8)+{0} = (A\yz.54)O

(M e K); = K;[My]

The other clauses are similar to the naive
translation. The full definition of (=)t is dis-
played in Fig. 9 (see Appendix).

For the call-by-value translation, we use the
two notations K;{O} and K[O]. The relation

between these two notations is as follows.
Lemma 29

Let O be a term of the Au-calculus, and K be

a coterm, then

(1) K;{V} = K;[V] for any value V; and

(2) Ak K {0} —; Ki[O].

Proof. See Appendix. O
The call-by-value translation, (—)4, is consis-

tent with the naive translation as well as the

call-by-name translation.

Lemma 30

Let M be a term, K be a coterm, and S be a

statement of the dual calculus, then

(1) Ak Mg —3 M;,

(2) A F Kg{O} —; K{{O} for any term

O of the Au-calculus , and

(3) AuFSg —¥ S;.

Proof. See Appendix. a
The translation (—); is compatible with the

type system.

Proposition 31

(1) U, A[M:A thenT'l—y A M : A

1738 IPSJ Journal

(2) HK:A[lF,AandD|-, A[O: A4,
then I' |-, A | K{{O}.
(3) HT[S|,. A thenT |-, AlS;.

Proof. These claims can be shown by the sub-
ject reduction property for the Au-calculus us-
ing Proposition 23 (1) and Lemma 30. |
Lemma 32

Let O and O’ be terms of the Au-calculus, M
and N be terms, V be a value, K and L be
coterms, and S be a statement of the dual cal-
culus.

(1) If Ak O —, O, then \p F K;{O}
—5 Ki{O'} and A\u F K [O] — K;[O'].

2) MV /a) = (M [a])t,
(KAON[" /2] = (K[Y /z])+{O["1 /a]},
(K [OD[1/2] = (K[/2])+[O[1 /4], and

Sil"1 /o] = (S[V /aD)t-

Proof. See Appendix. a
Lemma 33

Let O be a term of the Au-calculus, M be a
term, K and L be coterms, and S be a state-
ment of the dual calculus. Then

)\,ul_MT[()\yLT{y}){ }/ - }] (
)\,uI—(KT{O})[(’\yLT{y}){ }/[- }}
— 3 (K[/o))t [0 D /g 4]],
[
]

[“/aDt;

N (R OD[OSH D)]
— (K [/al)t [[()\yLT{y}{ }/[- }H and
A b Sy[QwE D=}/ 3] —r (S1F/a))s-

Proof. See Appendix. a
We now prove that the call-by-name transla-
tion (—); preserves reductions.

Theorem 34 (Soundness of (—);)
(1) If DCFM-—"N, then A\uk-M; — N;.
(2) If DCFK —" L, then \p F K{{O}
(3) If DCHS—" T, then A\ukS; —) Tt .
Moreover, in (1), (2), and (3), if —" is (85),
(Be), (,6\/) or (=), then — can be replaced
by —F
Proof. See Appendix. a
5.4 Reloading Property
Wadler (2005) showed that the compositions
of his translations Ay — dual — Ay and dual —
Ap — dual reload into the Ap-calculus and the
dual calculus respectively. That is, they become
identity maps up to the call-by-name/call-by-
value equalities. When we consider about the
composition of our translations, we can obtain
corresponding results as follows:

Apr. 2007

- a reloaded term by the call-by-name mod-
ified translations reduced from the origi-
nal term by the call-by-name reductions
(Proposition 35 (1), 36 (1)), and

- a reloaded term by the call-by-value mod-
ified translations reduced from the origi-
nal term by the call-by-value reductions
(Proposition 35 (2), 36 (2)).

Proposition 35 (Reloading Property (1))
Let O be a term and S be a statement of the
Ap-calculus. Then

(1) M 5 — (5,

)\u [Pu{O} —>

* (O 1y, P)y for any covalue
P, espemally Al l— (@)

n (0F)g 5
(2))\u S —2 (ST)
Ap = K [O] —7 (K); for any coterm
K, especially)\,u H O —>:j (O");.
Proof. See Appendix. |

Proposition 36 (Reloading Property (2))
Let M be a term, K be a coterm, and S be a
statement of the dual calculus. Then
(1) DC = M —™ (My)¥,
DCF Ofe K —™ (K;{O})* for any term
O of the Ap-calculus, and
DCF S —m* (Sy)F;
(2) DC = M —v* (M)T
DCF Ote K —v* (K{{O})' for any term
O of the Ap-calculus, and
DCFE S —v* (ST)T.
Proof. See Appendix. O
We can obtain the Church-Rosser property
for the Ap-calculus by using the Church-Rosser
property for the dual calculus and the results
in Section 4 and 5.
Proposition 37 (Church-Rosser Property
for Ap)
(D ApEFO — Mand \ut O — M’
then there exists a term O’ such that Ay -
M —* O and Au+ M —* O'.
If)\,uFS—> Tand/\uFS—> T,
then there exists a statement S’ such that
ApbT —% 8 and AT —* 5.
2)If A O —* M and A\u -0 —% M,
then there exists a term O’ such that A\
M —* 0" and \u - M —% O'.
Ifdu b S —Tand \ub S —2 T,
then there exists a statement S’ such that
AT —3 S and \u T —F 5.
Proof. See Appendix. |

6. Duality between Call-by-name and
Call-by-value

Duality is the essential feature of the dual

Vol. 48 No. 4

calculus. The dual calculus corresponds to

Gentzen’s sequent calculus and has explicit du-

ality of classical logic at each level.

- Types: disjunction is dual to conjunction, and
negation is self-dual,

- Expressions: terms are dual to coterms, and
statements are self-dual,

- Typing rules: right rules are dual to left rules,
and cut is self-dual, and

- Evaluation strategies: call-by-value is dual to
call-by-name.

In this section, following Wadler’s approach,
we discuss the systems that do not involve im-
plication, since duality is not defined for impli-
cation.

The duality translation from the dual calcu-
lus to itself is given as follows.

Duality for the dual calculus

(X=X

(A&B)° = B° Vv A°

(AV B)° = B°&A°

(RA)° =-4A°

(z)° = (a)° =«

((M, >)° =[N°, M°] ([K,L])°=(L° K°)

((M)inl)° = snd[M°] (fst[K])° = (K°)inr

((N)inr)° = fst[N°] (snd[L])° = (L°)inl

(S.a)°=2.5° (z.5)° =S5z
Proposition 38 (Duality for the Dual

Calculus)
(Involution) Duality is an involution, that is,
A=A, M°° =M, K°°=K, and S°°=S.
(Expressions and typing rules)
(a) For any term M of the dual calculus, M°
is a coterm.
If M has type A, then M*° also has type A,
ie.,
'~ A|M:A implies M°: A|A°|-T°.
where I'° is z,, : Ap,,...,x1: Af for I =
1 A1y T 2 A, and A° s ay, @ By,
aq1:BY for A=aq: By, ..., By.
(b) For any coterm K of the dual calculus, K°
is a term.
If K has type A, then K° also has type A,
ie.,
K:A|TA implies A°|-T°|K°: A
(c) For any statement S of the dual calculus,
S° is also a statement, and
I'| S| A implies A° | S° |- T°.
(EBvaluation strategies)
(a) If DC'+M —" N, then DC'-M°—" N°.
If DC+-K—" L, then DC+K°—" L°.
If DCFS—" T, then DCFS° —" T°.

Duality between Call-by-value Reductions and Call-by-name Reductions 1739

(b) If DCFM —" N, then DC'+M°—" N°.
If DC+K —" L, then DC+ K°—" L°.
If DCFS—" T, then DCF S°—" T°.
Wadler (2005) gave a translation between
the call-by-name and call-by-value Ap-calculi
by composing the translation, (—)°, and his
translations between the dual calculus and the
Ap-calculus. He explained duality between the
call-by-name Ap-calculus and the call-by-value
Au-calculus by purely syntactic techniques. We
follow his approach. Since we gave the different
translations for call-by-name and call-by-value
in the previous sections, we introduce two dis-
tinct translations between the call-by-name and
call-by-value Ap-calculi.
Definition ((—). : CBN Ay — CBV Ap)
Let A be a type, M and O be terms, and S be
a statement of the A\u-calculus. Then we define
the translation (—), as follows.

(A), = A°
M{O} = (M
Se = ((8%)°)4
Definition ((—)e. : CBV Ay — CBN Ap)
Let A be a type, M and O be terms, and S be
a statement of the A\u-calculus. Then we define
the translation (—)e as follows.
(A)e = A°
M{O} = (M7
Se = ((81)%)s
The following properties of these translations
are easily shown.
Proposition 39
(1) For any term M of the Ap-calculus, M,{O}
and M.{O} are statements of the Au-
calculus. For any statement S of the Au-
calculus, S, and S, are statements of the
Ap-calculus.
(2) TR MA|M AandA - i
then I' | Mo{O} |-, , A
HT Sk, A, thenl"|SO Fa A
) Uy, A|M:Aand Agl-y T | O A,
then I' | Mo{O} |-, , A.
HT Sk, A, thenT' | Se |-, A
Then, we obtain our final results.
Theorem 40
Let M, N, and O be terms, and S and T be
statements. Then the following hold.
(1) The translation (—), preserves reductions.
ApE M —, N implies Ap = M, {O}
— No{O}
A E S —,, T implies Ap = Sy — T

)0}

)°){0}

Iy |O: A,

1740 IPSJ Journal

(2) The translation (—)e preserves reductions.
A= M —, N implies Ay - M,{O}
—n No{O}
A S —, T implies Ay b Sq —, T

(3) The composition of translations obtained
by applying (—)e after (=), is identity up
to the call-by-name reductions.

A E M —, poa.(Mo{al})e
A E O{M} —,, (Mo{O})e
A E S —, (So)e

(4) The composition of translations obtained
by applying (—), after (—), is identity up
to the call-by-value reductions.

A M —, po.(Md{a})o
Ak Oc{M} — (Mo{O})o
)\/L '7 S — (Sc)o

Proof. See Appendix. a

Although Wadler gave the same translation
which goes back and forth between the call-by-
name and call-by-value Au-calculi, we needed
two different translations. However, although
Wadler’s translation preserved only equations,
our translations preserve reductions. This is the
greatest advantage of our results.

Acknowledgments I thank Philip Wadler
for the very fruitful discussions. I also thank
Makoto Tatsuta, Kazushige Terui, and Makoto
Kanazawa for very helpful comments and dis-
cussions on this work.

References

1) de Groote, P.: A CPS-translation of the Apu-
calculus, Proc. 19th Intl. Coll. on Trees in Alge-
bra and Programming, CAAP’9/, Edinburgh,
UK, 11-13 Apr.1994, Vol.787, pp.85—99, Berlin,
Springer-Verlag (1994).

2) de Groote, P.: Strong normalization of classi-
cal natural deduction with disjunction, 5th In-
ternational Conference on Typed Lambda Cal-
culi and Applications, TLCA’01, Lecture Notes
in Computer Science, Vol.2044, pp.182-196,
Springer-Verlag (2001).

3) Felleisen, M., Friedman, D.P., Kohlbecker, E.
and Duba, B.: A syntactic theory of sequential
control, Th. Comp. Sci., Vol.52, No.3, pp.205—
237 (1987).

4) Filinski, A.: Declarative continuations and
categorical duality, Master’s thesis, Univ. of
Copenhagen (1989).

5) Griffin, T.G.: A formulae-as-types notion of
control, Proc. 1990 Principles of Programming
Languages Conference, pp.47-58, IEEE Com-

Apr. 2007

puter Society Press (1990).

6) Ong, C.-H.L. and Stewart, C.A.: A curry-
howard foundation for functional computation
with control, Proc. Symposium on Principles of
Programming Languages, pp.215-227 (1997).

7) Parigot, M.: Ap-calculus: An algorithmic in-
terpretation of classical natural deduction,
Proc. International Conference on Logic Pro-
gramming and Automated Deduction, Lecture
Notes in Computer Science, Vol.624, pp.190—
201, Springer-Verlag (1992).

8) Sabry, A. and Felleisen, M.: Reasoning about
programs in continuation-passing style, Lisp
and Symbolic Computation, Vol.6, No.3/4,
pp-289-360 (1993).

9) Selinger, P.: Control categories and duality:
on the categorical semantics of the lambda-mu
calculus, Mathematical Structures in Computer
Science, pp.207-260 (2001).

10) Wadler, P.: Call-by-Value is Dual to Call-
by-Name, International Conference on Func-
tional Programming, Uppsala, Sweden, pp.25—
29 (2003).

11) Wadler, P.: Call-by-Value is Dual to Call-
by-Name — Reloaded, Rewriting Techniques
and Applications, Nara, Japan, pp.185-203,
Springer (2005).

Appendix

A.1 The Full Definitions of Transla-
tions (—); and (—)t

The full definition of the translation (—)j
from the call-by-name dual calculus into the
call-by-name Ap-calculus is displayed in Fig. 8,
and the full definition of the translation (—)¢
from the call-by-value dual calculus into the
call-by-value Ap-calculus is displayed in Fig. 9.

A.2 Proofs
Proof of Lemma 1 (1) is easily shown by induc-
tion on E,, and D,. (2) is shown by induction
on M and S using (1). We give the key case.

(AP /)]

([NP /)]
Du{ (MO Jay]}
Y

=

)

Do (M o}
a (D {MP /(1)

= (([M) [P Jrar 1)
(3) is also shown by induction on E, and D,.
For example, the case of
0(En,z.Dy{x},y.D),{y}) can be proved as fol-
lows.

Vol. 48 No. 4

()y =2
((M,N))y = (My, Ny)
(M >1I11) = inl(My)
((N)inr)y = inr(Ny)
([Knot)y = M. Ky{z}

()\33 M)ﬂ = Az. Mﬁ
(S.a)y = pa.Sy

Duality between Call-by-value Reductions and Call-by-name Reductions

not(
(M@K)y{O} = Kz{OM;}

1741

oy{0} = [o]O
[K, L]{0} = 6(0, = Ky{z}, y.-Ly{y})

(fst[K]); {0} = Ky{fst(O)}
(snd[L])4{0} = Ly{snd(O)}

M);{0} = OM,

(2.5){0} = S4[° /=]

(M o K)y = Ky{My}

Fig.8 Translation (—)y

(Mg, Ny)
inl(My)
(N)inr); = inr(Ny)
[K]not); = Az Ki{z}
(Az. M)y = Az M;
(S.a); = pa.S;
(M o K) = K;[Mj]

(@)t
(M, N))+
(M)in)+

(
(
(

: CBN dual calculus— CBN Ap-calculus.

ai{0} = [o]O
(K, L]+{0} = 6(0, 2. Ki{z},y.Li{y})

(fSt[K])T{O} = Ky [fst(0)]
(snd[L])1 {0} = Li[snd(O)]
not(M
(M@K)1{0} = K;[OM;]

)+{0} = OM;

(2.9)1{0} = (o510
K:[0] = (Rvz.K¢{2})O

Fig.9 Translation (—)t

6(En, an{l‘}, yD;’L{y}){/JaS}
= D} {uf.Dn{pe[o, BB {pe.S}}}

L D { uB. Do fpefa, Blua
.S[[QI]E_”{*}/[QH_}]}}
=c, DL {pB Do SAPA=Y /1 11
= DR {uB.S[AEA) y]
PO]}
= s[ier))P i)

P -]
_ g[(lesFat-D)

Pt} D7 (-}
[/a1l /m]{—}]/[a]{f}}
Y §[Prtus Dutna e SIEA-1) /]

— 6(En,x.Dp{x},y.D!, -
— g[B ERATIIS YN

where I.H. means the induction hypothesis, and
(x) is by the definition of the substitution for a
covariable. g

(1) We can show this by induction on the call-
by-name equation of the Aujl-calculus. We con-
sider only the rules about sums, i.e., (8y), (¢),
(7), (v), and (ny)-rules.
Case of (By)-rule :

(0(inl(0), z. B, {x}, y. B {y}))

= py-M (. (A [y Er {=})

(pov.[er, B](inl(0)))

: CBV dual calculus — CBV Ap-calculus.

= py.M (pf.(Az. Y] (B {x})
(nafa, Blu(e/, 8').['T(ON))

=5, 17-M (8.0 [y (B {x})
(pa.[a](O)))

=, 1M (pB.-(Az.[V{(E,{x})(O))

=n 17-(Ay.VEI{y})
(18.(Az.[Y1E;{2})(O) (by Lem 1 (1))

=g v EL{puB-EL{(O)}}

=n 1y-EL{(O)} (by Lem 1 (3))

=n. ER{(O)}

=n (E,{O}) (by Lem 1 (1))

where M is an abbreviation of (Ay.[v](EL{y})).
The other rules of the (By)-rule can also be
shown similarly.

Case of (¢)-rule :

(En{pa.S}) =n Bn{(na.S)}

(by Lem 1 (1))

= En{puo-{(S)}
=n wB-LN P a1y]

(by Lem 1 (3))
Er g 0)

(by Lem 1 (2))
(Dn{pa.S}) = Dp{{pe.S)}
=n Dp{pa.(S >>} = S /1)
n (SPH ag31)

=n {(uB.S[1"

1742 IPSJ Journal

Case of (m)-rule :
(En{0(0,2.M,y.N})

Lem 1) 5 E {(6(0,2.M,y.N))}

= En{my-(Ay- 1)) (18- (A [y] (D)
(nav[o, B1(ON)) }

L ey Oy B (VD)
8-z [y |En { (M) }) (nev-[a, BI(O))
Y (30,0 B M), g EL{N}))
The other rule of the (7)-rule can also be shown
similarly.
Case of (v)-rule :
(6(0,.5,y.T))

= (M) (uB-(a-(S))
(pa. [04 ﬂ o))

=)(u BNy [8]y") (nB".(Az.(S))
(ua[3'1(oN))
= (M. (1)) (18- (1Bl))
(nB". (A (S)) (pa [}<<0>>)))

= ((\.T) pB.6(0, 2.8, y.[Bly))

(6(0, 2.8, y.Dp{y}))

= (\y.(D {y}>)(uﬁ

(na >))
»)

(1B (Az-([a]a)) (ua' [/, BT(ON)))
= M(,ua (9(0,z.[a]x,y.D,, {y})>>)
= ((A\2.9) (pe.6(0, z.[a]z, y.Dyp{y})))

where M is an abbreviation of (Az.{(S))).
Case of (ny)-rule :

{(6(M, z.inl(x),y.inr(y))))
= . (Ay-[y]{(inr(y)) (u8
(pavfe, BI(M)))

= wy- (M., 87).[6")
(uB-(Az.[ypu(a’, §').[a']z)
(pa.fo, BI(M >>)

=g py-(Ay.[ylu(e”, 67).[6"1y)
(uB.p(e, B).[| pa[a, BI(M)

(A [y]((inr (z))

Apr. 2007

=g, 1v-(y. [y’ 687).18"y)
(uB.Iyu(e', 8").[a, BI(M))
up-

= wy-[Vlu(a”, B"). [6] u(a', 3"
Jo’, BI(M)

=g, wy-Ip(”, ")V, B)
Jo’, B71(M)

=, w(a, Br).[or, Bi]
y- [y, B7). [y (o) [/, B (M)
=¢, ula, Br).[oa, Bilp (B")
Ja, Bi]u(e, B7).[, B7](M)
=p, wla, Br).loa, 51}« »
=y, (M)

(2) We can show this by induction on the call-
by-name equation of the Au%?I-calculus. We
consider only the rules about sums, i.e., (8y),
(¢v), and (ny)-rules.

(By)-rule :

[le/, Bpu(a, B).S]
= 5(In(a 3)-81. 21 :15y)
= 5(,[”.[[5]] [[vlml{—}/[a]{_},[W]mr{—}/[m{_}]’
z.[a]z, y.[8']y)
= [5] [5(inl{—}»ﬂ¢~[a’]ﬂc,.y~[ﬁ’]y)/[&]{7}7
S(inr{~},z.[a']z,y.[8']y) /[ﬂ]
=g, [SI M /10—y 21 /1]

=[S /a,” /5]
(¢y)-rule :
[fev, Bluy. ST = o([pry-S], @ [a]z, y.[B]y)
= 6(uy-[S], = [e]z, y.[Bly)
= [9] [5({7},x~[a]w’y‘[ﬁ]y)/M{_}}

) orfafl{—
= IS

(*) is shown by induction on terms and state-
ments. The key case is as follows.

[M)A etedev B /]

= (DML helelenldi))

= o (MU heledear Bl /),
z.[a]e, y.[5]y)

E (M) @l [Bly)

= [[a, BIMPHTY /D]
(E) [[([Y]M)[[“’BH_}/MH]H
v)-rule

[1(ev, B).[ev, BIM]]
= py-[le, BIM]

Vol. 48 No. 4

[[v]inl{—}/[a]{f},[v]inr{—} /181(—3]
= uy.0([M], z.[a]z, y.[B]y)
[[v]inl{—}/[a]{f},[W]inr{—} /181(-3]
= py.6([M], z.[y]inl(z), y.[y]inr(y))
=x 17 V0([M], z.inl(z), y.inr(y))
= (IM],z.nl(z), y.inr(y))
—nv [[MH
(3) We can show this by induction on term
M and statement S of the Ap]l-calculus.
We consider the cases of inl(M), inr(M),
0(0,2.M,y.N) and §(O,z.S,y.T).
Case of inl(M):
[{inl(M))] = [u(e, B).Ja](M)]
= wy-([e][(M)])
[['y]inl{f}/[a]{i},['y]inr{f} 1811-3]
= py-ind ([(M)])
=y inl(M) =, inl(M)
The case of inr(M) can also be shown similarly.

Case of §(O,z.M,y.N):
[(6(0, 2. M, y. N)>>ﬂ

= [y (Mg VIAND) (1B (M. [y (M)
(pava,]<< >>))>>

= v (Mg TN (8- A [V T(M)T)
([l BICON D))
1y O (uB. (A [y) M)
(na.[[a, BICON]))

= 1y (Ay.[VIN) (uB-(Az.[y] M)

(ua 3([(ON, =l y.[81y)))

= 17- (. IN) (8.0 [M)
(na.0(0, z.[alz, y.[B]y)))
5 1700, 2. BIM, 3. HIN)
=(m) 1v.[7]6(0,2.M,y.N)
:(Uu) (5(0 xX. M yN)
(%) is shown by case analysis of M and N. If

M and N are not simple forms w.r.t. = and y
respectively, then we have

1y-0(0, [y M, y.[v]N)
=) K- (MY [YIN) (1B.6(0, z.[y]M
=) 17-((Ay-[VN) (8. (A [y] M)
(na.8(0,z.[a]z, y.[Bly)))

If M is E,{z} and N is not a simple form w.r.t.
y, then we have

py.0(0, . [y Ex{x}, y.[Y]N)

y-81y))

Duality between Call-by-value Reductions and Call-by-name Reductions 1743

=w) 17-(Ay.[y]V)
(1B.6(0, z. [y Enf{z}, y.[B]y))
=) 17-((Ay-[7IN)
(1B En{pa.6(0, x.[a)z, y.[Bly)}))
=(35) Y- ((/\y[])((/\aj VEn{z})
(pa.d(0, x|)

The rest of the cases are shown similarly.

Case of 6(0,x.S,y.T): this case is similar to
the above case.

(4) We can show this by induction on term M
and statement S of the A\u»?-calculus. We
consider only p(«, 3).S and [, 8] M.

Case of u(a, §).S:

([nex, B)-ST)
= (uy.[SIPPM
=y (IST™M Y g
= py-([ST)

[P0 7) IR 5104
= (ISP D11
/[= }[W]u(a B8~ }/[ﬂ]{—}]
n (a1, Br).[at, Bi)
ey (IS DI ATy
[v]u(a“,,@“) 1Y /]
=¢v M plai, Br).
(IS [lerFrlm

la,B1]p(e’

]{—}7”]f“‘"{*}/[ﬁ]{—}}>>
BNy rTan))

Y

[ﬁ/]{*}/[,@]{f}]
=, 1(a, B). <<[[5ﬂ>>
[fos= }/ N ,6’1]{*} /11(-}]
= u(avﬁ)«[[sl])}
= (e, 8)-S
Case of [,] M:
(e, BIMT) = (o(IM], . [e]z, y-[Bly))
= ((\y.[8]y) (uB'"-(Aa[a])
BIEIMIN))
BIIMT)

(ua. [,

=5 (BB [epa o,

=3, [a, BI([M])

= o BIM 0
Proof of Proposition 8 (1) We can show this by
induction on the call-by-value equation of the
Apl-calculus. We consider only the rules about
sums, i.e., (8yv), (¢), (7), (comp), (name), and
(nv)-rules.
Case of (By)-rule :

(BGnl(V), 2. M, 5. N))

1744 IPSJ Journal

2 w1 /)

=n. (M[Y/a])
where N is an abbreviation of (Ay.[y](N).
(¥) comes from the claim: (M)[{V7/,] =

(MY /.]) and (SY[)/,] = (ST /,]). This
claim is shown by a straightforward induction
on M and S. The other rules of the (8)-rule
can also be shown similarly.

Case of (¢)-rule : This case can be shown by
a case analysis of the evaluation contexts. The
key case is when E, is §({—},2.M,y.N) and D,
is 0({—},z.5,y.T).

Subcase of E, is 6({—},z.M,y.N) :

{(6(pa.S; . M,y.N))
= py-(Ay-[I(NV))
(18" [y (M) ped [, B'Tpee.(S))
= 1y.N(uf' Muc [o, §'pe.(S)
=c 7N (B Mpa! (SH P13 03]
=¢ AAW-«S»[[O‘/’ﬁ’]{:}/[a]{—}]
M)N 109
= ey ([1= DT)

[- }]/ 1]
= uy-(SHI N (M (e fo,
—5 MV.«S»[[’Y]H’Y-J/\’\(Mﬂ/'ﬁ(ﬂal-[a/,

ﬁ’]{f}))/[a]{f}]

BH-1

= py (S[OPUTHE MY /3T

=y S[OPEE=R0 foy1)

where M and N are abbreviations of
Az [y]{(M)) and Ay.[v]{(N)) respectively. (*) is
shown by a straightforward induction on terms
and statements.

Case of (m)-rule :

We can obtain = from
[a]6(O,2.M,y.N)

=, 0(0,x.[a]M,y.[a]N) with

Apr. 2007

(ny)-rule and (¢)-rule in the following way. Let
E be E, or (Az.M){-}, then

E{§(0,z.M,y.N)}
= E{o[0]6(0,2.M,y.N)}
= E{pa.6(0,z.[a]M,y.[0]N)}
=¢ pB-0(0, x.[BIE{M}, y.[B]E{N})}
— 138130, 2. E{M}, y E{N})}
=y, 0(0,x.E{M},y.E{N})}.
Similarly, we can obtain D, {6(O,x.M,y.N)} =,
(0, 2.Dy{M},y.D,{N}). Therefore, it is
sufficient to prove (([a]0(O,z.M,y.N)) =,
(6(0,z.[a]M, y.[a]N))).
([6(0, 2. M, y.N))
= []W Ay [IEND)

(1" (A [y (M) e o, BT(O))
=, (Ay-[a](NV))

(" (AzJa](M))ua o, B1(O))

= ((6(0,z.[a]M, y.[a]N))

Case of (comp)-rule : To show this case,
it is sufficient to have ([o]((Ax.M)N)) =,
{(A\x.]a] M)N)) by the discussion similar to that
for (m)-rule.
([d((Az MIN))) =, [a](Az. (M
=comp (Az-[a] (M))) (V)
= ((Az.[a]M)N'))
Case of (name)-rule : We can easily show
Ay B (E{O}) =, ((A\x.Ef{2})O)) by a
case analysis of Fj;. On the other hand, we
have (([a]O)) = [a](O)) =comp (A2.[a]2){O)) =
{ (Az.[a]z)O)). Therefore we obtain Au?*d~
(EfO}) =v ((A\2.Ec{z})O)), since Ap, F
E. {0} =, (Ax.E.{x})O can be shown from
A F [a]O =, (Az.[a]z)O with (¢), (n,) and
(comp)-rules as follows.
E{0} =, Bc{ua[a]0)
=y E{pa.(Az.[a]z)O0}
=¢ pB-(Az.[f]Ee{x})O)
“name /Lﬁ[ﬂ]((/\er{x})O)
me (Az.E{x})O

Case of (nv) rule :
(6(M, .inl(x), y.inx(y)))
)

pry-(Ny- [y (ine(y)))

(1B [y]{(inl(2)) (pa.[a, BI(M)))
1y- (M- Ry) (13- (Az.[7] L) M)

v M(alvﬂl) [ar, By (My.[Y]Ry)

(uB.(\.[7] L) M)

=¢, mlay, 41).(My.[ay, B1]Ry)

MAND

Vol. 48 No. 4

(1B-(Aa.[o1, B1] L) M)
=By u(al,ﬂ1).(Ay.[ﬂﬂy)(uﬁ.’(}x.[al]x)M)
=name H(a1, B1).[BilpB.[aa] M
= plaa, Br).[Bi]pB.lea]pe. e, BI(M)
=g, ka1, Br).[oa, B1] (M)
=, (M)

where M , Ly, and R, are abbreviations of
(pevla, BI(M)), (inl(x))) and ((inr(y))) respec-
tively.
(2) We can show this by induction on the call-
by-name equation of the Au%??-calculus. We
consider only the rules about sums, i.e., (8y),
(€), (nv), (name), and (comp)-rules.
Case of (By)-rule :
[lo, 3] (e, B).5]
= §([u(e, B).S], @[], y.[8']y)
= 5 (uy- [T g oy P 0 14,
a.[a]a,y.[6]y)
=) [5] [5(1111{—}»%[06 lz,y.[6]y)/[a]{_}7
S(inr{—},z.[a/|z,y.[5’
O AL YN

(*) a'l1{— {—
= [[SM[I }/[a]{f}j[ﬁl{ }/[ﬁ]{f}]
=[5[* /o) /6]l

(¥) can be shown by the following claim:
O(inl(M), z.[a]x, y.[Bly) =» [a]M for any M.
We show this. If M is a value, then the claim
is obtained by (08y)-rule. If M is not a value,
then

o(inl(M), z.[a]z, y.[Bly)

=name (Az. 6(z,x [a]z, y.[B]y))inl(M)
—name ()\Z 6(2 xX. [] z,y []y))
((X2'.inl(2")) M)

=comp (AZ.(A2.0(2, z.[a]z,
y-18ly))inl(2")) M
=5 (A\2".6(inl(2"), z. [z, y.[Bly)) M
—Bv ()‘Z/'[O‘]Z/)M =name (0] M
Case of (¢)-rule : to show this case, we intro-
duce evaluation singular context E,, and sin-

gular statement context D,, of the Ap®ed—-
calculus.

Ey w=A{=}N [V{=} [{V.{=}) | {=}, M)
| fst({=}) [snd({-})
= [o{—} | [a, B{=} [{=}M | V{-}
It is easily shown that if we have the following
claims:

Duality between Call-by-value Reductions and Call-by-name Reductions 1745

[Ew{pa.S}] =y [uB.S[P /1)(—4]] and
[Duw{pc.S3 =y ISP a3,

then we can show this case. We can prove the
claim by a case analysis of F,, and D,,. We
consider the key cases:

-E,isz{-}:
[xpa.S] = zpo[S] =, (Az.2z)pa.[S]
=c pB.[SIIPIO= = /)]
=0 1B-[SIP T /g4

) _

= pB.[S[7 0 /1010411
() can be shown by induction on terms and
statements. The key case is proved as follows.

[MY /g1 y)

= ([[MDIP* /g ()
Bl (M /a3
Bl (IM P /]
= [([dM) [P /10y]

- Dy, is z{—}: this can be shown in a way sim-
ilar to the above case.
- Dy is o, B]{—}:
[lev, Blpy.S] = 6([py-S], @ [a]2
= 6(uy-[S], =[]z, y.[Bly)
[5] [5({—},w.[a]w7y~[ﬁ]y)/M{_}}

IS /1]

(*) is already shown in the proof of Proposi-
tion 2.
Case of (ny)-rule :

[1(ev, B).[ev, B]M]]
= py.[lo, BIM]

[[v]inl{—}/[a]{f}7[w]inr{—} /181(—3]
= py-6([M], =.[a]z, y.[B]y)

[/g P 15
= py-6([M], z.[y)inl(z), y.[v]inr(y))
=(m) 1y [Y]6([M], 2.inl(z), y.inr(y))
=n,) 0([M], z.inl(z), y.inr(y))
=) [M]

Case of (name)-rule : Let D be a statement
context of the A4~ -calculus, then we can ob-
tain (name)-rule of the)\,uwad*—calculus from
A= = (A\z.a]z)M =, [a]M with (n,), and
(¢)-rule in the following way.

D{M} =y, Di{pr[a] M)
=, D{pa.(Az.[a]z) M} =y (Az.D{z})M

~
m::

,y-18ly)

~ o~

5= 1l

1746 IPSJ Journal

Therefore, it is sufficient to prove (Az.[a]z)M]
=, [[e]M] in our call-by-value Ap-calculus.
[(Az.[a]z)M] = (Az.[a]x)[M]

= (name) [HO[]M]]
Case of (comp)-rule : Let D be a statement
-calculus, then we can

context of the Au%ed—
obtain (comp)-rule of the)\,u“’ad_ calculus from

[((Az.M)N) =, (Az.[a]M)N, (), and (C)-
rule in the following way.
D{(Ax.M)N} =,, D{po.[a](Ax.M)N}
=, D{pa.(A\z.[o]M)N} = Aa. D{M})N
Therefore, it is sufficient to prove [[a]((Az.M)
N)] =, [Az.[a]N].
[(. M)N)] = [o] (M. [M])[N])
Az o] [M]))[N] = [(Az.[a] M)N]
(3) We can show this by induction on term
M and statement S of the Apjl-calculus. We
consider inl(M), inr(M), §(O,z.M,y.N) and
0(0,z.5,y.T).
Case of inl(M):
[(inl(M))] = [r(e,
= py- ([[€M))])
[[W]inl{—}/[a]{_},[W]inr{—} 1811-1]
= iy [lind ([M)]) =0 ey [ylind (M)
=y, inl(M)
inr(M) can be shown similarly.
Case of §(O,x.M,y.N):
[(6(0,2.M,y.N))]
= [y Oy N D) (8- (A [y] (M)
(pevfor, BILON)))
= -y DN
(pev[[e, B1(O

~(comp) (

B)-led(M)]

=y, 0(0,x.M,y.N)
The other cases are shown similarly.
Case of §(0,z.S,y.T): this case is similar to
the above case.
(4) We can show this by induction on term M

Apr. 2007

and statement S of the A\u®%~-calculus. We
consider only p(«, 3).S and [, 8] M.
Case of u(a,).S:
([0 5).51) |
= (py- ST 1y PP g 1)
= - (ISP 1y PP g 1)
= 18T
[[’Y] [[inl{*}]]/[a]{
v o, Br).[ax, Bi]
py-(1ST)
[[~][inl{— }]]/[- }
=¢, lar, B)-(IST)
[[0(1 »B1][inl{— }]]/[1= }7[a1,[31][[inr{—}]]/[ﬁ]{7}]
=g, n(e, B)-([ST)
[gy P gy
= p(e, B).([ST)
& n(e,8).8
Case of [a, B]M:
([[ev, pIMT)) = (S6([M]), =[]
= ((\y.[8ly) (uB'"-(Aa[a])
(ua .o, B'1([M]))))
=name (BB’ [a]pd [,
=3, [a, BI([M])
=0 o, BIM D
Proof of Lemma 10 (1) is proved by an induc-
tion on M and S. We give the sums, i.e., inl(O),
inr(0), §(0,x.M,y.N), and 6(0,z.S,y.T).
Case of inl(O) :
(inl(0))" = ((a, B)-la](O))"
= (O] # @).B)inr o ~).a)inr 0 7).

7},[’11[[mr{*}]] J161(-3]

7[in {}H/ﬁ]{ }]

»y-[B1y))

AT

= (<(<(O® e a).B)inr e) >1nr . ’y) v

=3, ({((O® e). 3)inr @ v).cx ® y.((y)inr
*7))-y

=, (((O¥ ea).B)inr e7).a e y.((y)inr
7))y

=5, (0% ea).B ez ((x)inle7)).a

oy.((y)inr e 7))y

=(an) (OF e y.((y)inr e7)).y
— ((0®)inr e 7).

; (O®)inr

where 7 is an abbreviation of [z.((z)inl e

Vol. 48 No. 4

7),y.({y)inr @ v)]. Note that these equations
are the DC"= equation, that is, Wadler’s sys-
tem (2005).

Case of inr(O) : this case is proved in a way
similar to the above case.

Case of (O, z.M,y.N) :

(8(0,z.M,y.N))*
= (,wy (Ay [y]<< >)(M5 (Az.[v](M))
ua o, B))*

= (not onot<(

a)). ﬁ>) R
=5, (((<<0>> oo,)).aeM).GeN)y
= (((O® o], f]).cc 0 z.(M® 0 7)).0
oy.(N® ory)),ry
=Crame) ((O% o [2.(M® o), 5]).8
*y.(N® e 7))y
={name) (070 [2.(MP), y.(Ne7)]) .y
= (6(0,2.M,y.N))®

where M and N are abbreviations of x.((M) o
v) and y.((N)" e v) respectively.

Case of §(0O,x.5,y.T) : this case is proved in a
way similar to the above case.

(2) is also proved by an induction on M and
S. The key cases are terms and statements for
sums, and these cases are shown in a way simi-
lar to (1). O
Proof of Lemma 12 We prove (1), (2), and (3)
by a simultaneous induction on M, S. If (1)
is shown for some term M, (2) of M is easily

1
shown by: M® —7 (M® ea).a —(>)"* (M -,
a).a = M*. Therefore we prove (1) and (3).
Case of z : this case is immediate.
Case of \x.M, (M,N), inl(O), and inr(O) :
these cases are easily shown by the induction
hypothesis of (2).
Case of MN (MN is a term, M is not a A-
abstraction) : this case is also easily shown by
the induction hypotheses of (1) and (2).
Case of A\z.S : this case is easily shown by the
induction hypothesis of (3).
Case of MN (MN is a statement, M is not a
A-abstraction) : this case is also easily shown
by the induction hypotheses of (1) and (2).
Case of 6(0,x.5,y.T) : this case is also easily
shown by the induction hypotheses of (2) and
(3).
Case of [a]M : this case is also easily shown by
the induction hypothesis of (1).

Jnot e not(({O)*

Duality between Call-by-value Reductions and Call-by-name Reductions 1747

Case of (A\z.M)N
(A\z.M)N)® o P
= ((\z.M®) o (N®Qq)).ace P
(s, Az.M®) 0 (N®QP)
(85) N® ez.(M® o P)

—
—

Case of fst(O) :

fst(0)® @ P = (O® e fst[a]).ac e P
1.H.(1)
— 1) O® e fst[P] —"* O :,, fst[P]

= fst(0) :p, P

Case of snd(O) : this case is shown in a way
similar to the above case.
Case of §(O,z.M,y.N) :

5(0,2.M,y.N)® o P

= (0% ¢ [z.(M® 0a),y.(N® @ a)]).cco P

— 1) O%® o [2.(M® e P),y.(N® o P)]
I.H.(1)
—" 0% e [2.(M 3, P),y.(N :,, P)]
1.H.(2)
—" 0% e [x.(M :, P),y.(N :, P)]
=6(0,2.M,y.N) :,, P
Case of pa.S :
1.H.(3)
(n.S)®? e P=S® e P —" Sf qe P
—a.) SHP /) = perS o, P
Case of (Az.S)N
(Az.S)N)®
= [2.S®]not e not(N®) —(5.) N® e 2.5%
1.H.(2),(3)

—" NYez.5% = ((A\z.S)N)* O
Proof of Lemma 14 (1) we can prove this claim

by a straightforward induction on M and S.
The key case is :

(@0 PV /2]
(o P)[V' /] = Nt e P[N'/,]
(N a).aop[Nu/z] —" N, P[Nn/m]

(2)
Me[z.(xeP)y.(yeQ)
—name) (M o [v.(z 0 P),3]).00y.(ye Q)
?ﬂL) (Me[z.(xreP),3])0eQ
iy M o[r(a0 P).Q)
M e [a,Q]).cex.(xeP)

?name) (

Hl

1748 IPSJ Journal

—

(61) (o[a,Q]).cce P
—) M o [P, Q]

(3) this claim can be shown by an induction on
term O.
Cases of z, \x.M, Az.S, pa.S, (M, N), inl(M),
and inr(M) : these are easily shown by the def-
inition.
Case of MN (MN is a term, M is not a A-
abstraction) :

MN -, K

I.H.
=M :, Nu@K ¥ Nrh e (Nﬁ@K)
—>?name) (]\4’j L4 (Nﬁ@a)).a o K

" (M :, N*Qa).cce K
=(MN :, a).ae K

= (MN) e K
Case of (Az.M)N :
(Az.M)N :,, K = (Nt e 2.(M 3,)).ac0 K
= ((Az.M)N :, a).ae K

= ((Az.M)N)* e K
Case of fst(O) :

fst(0) 1 K = O 1, fst[K] Lot fst[K]
e (0% e fst]a]).cc @ K
in f8tla]).a e K
= (fst(0) 3, a).a ¢ K = fst(0)* o K
Case of snd(O) : this case is shown in a way
similar to the above case.
Case of §(O,x.M,y.N) :
5(0,2.M,y.N) :p, K
(O, [x.(M =, @), y.(N 3 @)]).a e K
(6(0,z.M,y.N) 1, a).ce K
=6(0,2.M,y.N) e K
(4) If M is not a A-abstraction, then the claim is

immediately shown. We consider the remaining
cases.

(A\z.M) : (N*@P) = (\z.M*) o (N*QP)
—4 N'ex (M'eP)
—% Ntew.(M:, P)=(Az.M)N =, P
(Az.S) : not(N*) = [£.5%not e not(N¥)
—35. N*ez.5% = (\z.S)N)* 0
Proof of Lemma 15 (1) is proved by an induc-
tion on E, and D,. For E,N, we can prove
the claim by the induction hypothesis, since

E,{M} is not a A-abstraction by the assump-
tion of M. We now consider §(E,,z.E/{z},

y.El{y}) and §(E,, z.Dy{z}, y.D,{y}).

— (M

Apr. 2007

Case of §(Ey, z.El {x},y.E!{y}) :
O(En{M}, z.Er{z},y.Ef{y}) o P
= E,{M}} e [z.(E/{z} :, P),
y-(Ey{y} i P)]
I.H.
L B MY o o 0 B(E], P)),
y-(y e ®(E,, P))]
Lem 14(2)
—" En{M}ﬁ b [(I)(E;wP% ¢(E'Z7P)]
= (Bu{M} 0 a).c s [8(E], P), &(E", P)
—" (En{M} w [(E,, P), ®(E,, P)]

I.H.

—"" M i, ®(E,,, [2(E;,, P), ®(E;, P)])
=Mz, ©(6(En, x.E {z},y.E,{y}), P)
Case of §(E,, z.Dp{z},y.D,{y}) : this case is

proved in a way similar to the above case.
The other cases are easily shown using the in-
duction hypothesis.
(2) is proved by an induction on E,, and D,,. If
FE, is E,N, then
M :, ®(E,N,P)
LH.
—"* B, {M} :, (N*@P)
Lem 14(4)
—"* B {M}N i, P
If D, is E,N, this case is also proved by the
induction hypothesis and Lemma 14(4). If E,
is 0(En,xz.El{z},y.El'{y}), then
M :, ®(6(E,, z.El {z},y.El{y}), P)

=M:, ®(E,, N*QP)

=M :, ®(E,, [®(E,, P),®(E/, P)])
IH"*E (M} -, [®(E., P), d(E", P)]

(@
< B (M}, [(z e ®(EL, P)),
-(yﬂb(E” P))|

I.H.
—"" B, {M} 1 [2.(Ep {2} 1 P),
y-(Ey{y} i P)]
Lem 14(3)
—" (En{M})f
y-(En{y} m P)]
=§(E{M},z.El {z},y.El{y}) :n P
If D, is §(E,, 2. Dp{x},y.D) {y}), this case can
be shown in a way similar to the above case.
The remaining cases are proved easily using the
the induction hypothesis.
(3) is proved by an induction on M and S. The
key case is [a]M.
([a] M)F[PE [o] = (M 2 a)[PP) /4]
®(Dy))

I.I_IT.L* D,{-}
—" (M7 Jiagi—y]

o [z.(E{z} :, P),

Vol. 48 No. 4

2

)
sk ni— #
—" (Du{ M [P /10 41})
_ - #
= ([M) [P 1a13])

The other cases are proved easily using the
the induction hypothesis. O
Proof of Theorem 16 The claims are proved by
simultaneous induction on —,.

- Base cases are shown as follows.
(8-) : (()\33 M)N :, P? = Ntex.(M:, P)
o (M 2 PYY /]

Lem 1;%"((1) N
- (MY /2] 0 P)

(ﬂ&_) : (fst(M,N) :, P) = (M,N) :,

(M* N*¥) o fst[P] — 5y

fst[P]
M!eP

—n) (M :, P)

The other rule of (fg) can be proved simi-

(By) ¢ (3(inl(0), . En{a}, y- Bl {y}) in P)
S(6({~}, 2. B {x},

= (Inl(0) :n ©({—}, [2(En, P), D(Ey,, P)]))
= (inl(0) :p, [®(E,, P), ®(E!, P)])

= ((O%)inl o [®(E,, P), ®(E,,, P)])

— {3,y OF ¢ ®(E,, P)

() O n O(En, P)

Lem 15(2)

—" (Bn{O} 1 P)
The other rules of (8y) can be proved simi-
larly.
(B-) : (A\z.S)N)# = Ntex.S* — 1)
Lem 14(1)
—"(S[V/a])F
Q) : (Fn{pa.S}:y P)
Lem 15(1)
—"* (pa.S iy, ©(Ey, P))
= SHED) o] = SHIED) [P
= SHHIE 1)1
Lem 15(3)
—" (S 1oy)/ 6)
= (uB.S[P1E =4 (1] 1 P)
The other rule of (¢) can be proved similarly.
() : (pe[o]M oy P) = ([a]M)P /a]
=(M:, a)[f /a}_M P
() : (En {5(0 2.0M,y.N)} 1, P)

Lem 15(1
—>”* ((5(0 x.M,y.N) :p, ®(E,, P))
= (OF o [x.(M :, <I>(En,P))7
y.(N i, ®(E,, P))])
Lem 15(2)
—" (OF o [2.(E {M} :, P),
Y-(En{N} :n P)])
= (6(0,2.En{M},y.En{N}) 1n P)

SHN /4]

Duality between Call-by-value Reductions and Call-by-name Reductions 1749

The other rules of (7) can be proved similarly.
(v) : Let T not be a simple form. Then

(6(0,2.8,4.7))* = OF o [2.5%, 4. T
(name (Oﬁ [‘/L.Sﬁ7 /6])/6 b yTﬁ
— 0y (OF e [2.5% 4/ (i @ B)]).B @ y.T*
=6(0,z.8,y.[8ly)*.0 e y.T*
= (A\y.T)pB-6(0, 2.8,y [Bly))*.
The other rule of (v) can be proved similarly.
- Induction cases of (1) and (2).
We can easily show these cases by the induc-
tion hypothesis. We consider the less than obvi-

ous case: ON —,, (Ax.M)N is obtained from
O —,, Ax.M and O is not a A-abstraction.

(ON :, P) = (O :, (N*QP))
I.H.

—™ (A\z.M :, (N*QP))
= \z.M* e (N*QP)
— {5y Nt ex.(M*e P)
—4n) N* ex.(M :, P)
= ((Ae.M)N :, P) O
Proof of Lemma 20 (1) Since M is not
a A-abstraction, we can immediately show
(Dp{M} :y K) = (M :, ¥(D,)) by the def-
inition. If F, is an elimination context or
(Ax.M){-}, then we have (E,{M} :, K) =
(M :, ¥(E,,K)). For the introduction con-
texts, the claim is proved by a case analysis of
E,.
Case of ({—}, N):
(M,N):, K=(M' N o K
—)E)name) MT b JJ(<LE, NT> i K)
—(6n) (M = z.((z,NT) o K))
= (M :, ¥({-},N), K))
Case of (V, { 1)
(V. M)y K =(VI, M) e K
T(Jname) VT ez (<.’L’ MT> K)
oy Vo 2.((z, MT) @ K)
Lem 19(2)
—Y VVex.((x,M") e K)

— g, (VY MT) 0 K
—lnamey MT 0 y.(V,y) 0 K)
—) (M 2 y.((V",y) @ K))
= (M ¥((V.{-}),K))
Case of inl(—):

l l

1750 IPSJ Journal

inl(M) :y K = (M")inl ¢ K
—>E’mm€) M e z.((z)inl e K)
—(gp) M v z.({z)inl e K)
=M :, ¥(inl(-), K)
Case of inr(—): this case is proved in a way
similar to the above case.
(2) can be shown by a case analysis of E and
D,. We give the key case of D, as follows:
A\z.S 1 U({=IN) = A\z.S :, not(NT)
= [2.S"]not e not(N'T) — () Nt ez ST
— gy N w297 = (Az.S)N)T
For E, the key case is: M is Az.M and F is
{=}N. This case is shown in a way similar to
the key case of D,.
(3) can be shown by a case analysis of E;.
Case of ({—}, N):
(M :y W(({=},N), K))
=M:, z.((z,NT) e K)
—) M 0 z.((z", NT) o K)
=M:z.((z,N):, K)
= Az {z,N))M :, K
Case of (V, {—}):
Mz U(V.{-}), K)
= (M y.((V",y) 0 K))

(Ay- (Vo)) M =, K
Case of inl(—):
M : U(inl(—),K) =M :, z.({(z)inl e K)
=M :, x.(inl(z) 3 K)
= (Az.inl(z))M : K
Case of inr(—): this case is proved in a way
similar to the above case.
(4) can be shown by an induction on M and S.
The key case is:
(DM)[P9 /] = (M 3y @750]
I.H.
— MPPEY04]) 0 B (E, B)
(2)
—" B{M[P 1y 4]} = B
= (BIE{MIP D)1
= ([M) [P /1y)T
(5) can be shown by an induction on M and S.
The key case is:

Apr. 2007

([M)[T P o] = (M o) [P /]
—" MPAY] 1 (D)

(2)
—* (DA M [P /gD

= (M) [P ffagr)T O
Proof of Theorem 21 (1) and (2) are proved by
simultaneous induction on —,,. Base cases are
shown as follows.

B-): A M)V oy K=V iy z.(M : K)

Lem 19(2)

—" VVeuw.(M:, K)
_>E);3L) (M 2 K)[V' /4]
Lem 19(3)
L M[V/z] o K
(Be.): fst(V, W)y K = (V,W) :,, fst[K]
Lem 19(2)
—V* (V,W)Vefst[K]|=(V?, W) efst[K]
Lem 19(1)
—)Fﬁ)VUOK — Vi, K
&

The other rule of (8g) is proved similarly.
(By): 0(inl(V),z.M,y.N) :,, K

=inl(V) i [2.(M 1, K),y.(N :p K)]

Lem 19(2)

—v* (V%inle [x.(M :y K),y.(N 3, K)]

— g,y V' ex (M K)

_>E)5L) (M K)[V' /4]

Lem 19(3)

N M[V/z] o K

The other rules of (8y) are proved similarly.
Lem 19(2)
(B-): (M. V)I =V 2.8T —v* VVe,z.51
Vo Lem 19(3) v
— 1y ST /al — (S /)T
(¢): Let E., be an elimination context of
(Ax.M){-1}, then
Lem 20(1)
E{pa.S} 1w K —" pa.S:y, V(E.N, K)
= SHYEAK))] = ST[YEB) / 1[5/ 6]
Lem 20(4) . X
—v (S[EEMTH /1 3 DTE /)
= Mﬁ.S[[B]EC/\{_}/[Q]{i}] v K
The other rule of (¢) is proved similarly.
(comp): Ecx{(Ax. M)N}, K
Lem 20(1)
—"* (Ax.M)N :, V(E.\, K)
=N (M: U (B K))
Lem 20(2)
—"* Ny z.(Eaa{M} : K)
= (Ao Ex{M})N :, K
The other rule of ({) is proved similarly.
(m): Ecx{d(O,2.M,y.N)}: K
Lem 20(1)
—v §(0,2.M,y.N) i, U(E,», K)

Vol. 48 No. 4

=0y [2.(M :, U(Een, K)),
y(N v \I](Ee)\u K))]
Lem 20(2)
— 0y [(Barx{M} 2y K),
Y(Eer{N} 1y K)]
=0(0, 2. Ex{M},y.Ecx{N}) 1w K
The other rule of (¢) is proved similarly.
(m): per-fa]M 2y K = ([a]M)T[* /o]
—(M va)[Jo| =M, K
(name): Let O not be a value. Then E;{O} 1,

Lem 20(1)
K —" 0 Y(E;,K)
—" (A\z.Ei{2})O :, K ; and

Lem 20(3)
Lem 20(1)

EAO0} W K —v* 0, U(E,, K)

—, O (v e V(B K))

Lem 20(2)

—Y 0y z.(E{z} 0 K)

= (\z.E{x})O 1, K.
Induction cases (1) and (2) : These cases are
similar to the proof for induction cases of call-
by-name. O
Proof of Lemma 22 (1) is proved by an induc-
tion on M, K, and S. We give the cases of
sums, i.e., (M)inl, (N)inl, and [K, L].
Case of (M)inl :

[(M)inL] = [p(e, B).[a] M.]
= py(le]ML])
(IR /gy PEE) gy

. I.H. .
= py-YJinl([M.]) =0 py.[ylinl(M)
=, inl(Mg) = ((M)inl)g
Case of (N)inr : this case is proved in a way
similar to the above case.

Case of [K, L] :
[[K, L1.{O}] = [Lu{pB.-K{ pev]e,
L Le{[uB.- K. {pa.[o, BIO}}
= L®{uﬁ.[[K {uala, BIO]}

=0 Lo{uB.Ke{[uo.lo, BOT}}
= Lo{nB.Ke{na.6([0], z.[o]z

£, 0(10], 2. Ko {2}, y-Lo{y})

= (K. Lo {[0]}
(¥) comes from the claim: Kg{ua.S}
S[K®{*}/[a]{_}]. This claim is proved by a
straightforward induction on K.

(2) is proved by an induction on M and S.
The key cases are terms and statements for
sums, and these cases are shown in a way simi-
lar to (1). O
Proof of Theorem 28 The claims are proved by
simultaneous induction on the reduction rela-

BlO}]

y:[Bly) 1}

Duality between Call-by-value Reductions and Call-by-name Reductions 1751

tion —"™. Base cases are shown as follows.
(B5): ((Ax.M) e (NQP)); = (NQP)y{Az. My}

= P{0w. My) Ny} —(55) PAMy["/2]}
= (PAM [N /z] = (M o P)y[: /o]
(z.(M o P))y{Ny} = (N e z.(M o P));
2 ((M, N) o fst[P])y = fst[Ple{ (M, Ny) }
= Pﬁ{fst<Mﬁ,Nu>}
—(pe) Pr{My} = (M o P);
The other (g) case can be shown similarly.
(Bv): ((M)inle [P, Q])y = [P, QJy{inl(My) }a
= o(inl(My), z.Pi{z}, y.Q{y})
— () Pr{Mz} = (M o P);
The other (8g) case can be shown similarly.
(8-): ([Knot e not(M));
= (not(M))g{ Az Ky{z}} = (Ao Ky{x}) M,
) Be{My} = (M e K)y

(Br): (S.a @ P)y = Pi{ pa.Sy }
Lem 26(4)

(Be

I_/III

—) S 1wo)] (S1%/al)s
(Br): (M°$5)n—(175) (M}
= 5[M5 /] "2 (s1M)
(ng): My —(sy,) pefa]My = (M e a).a);
(n1): K3{O} = (K{x})[°/.]
= (20 K)4[0/.] = (2.(x » K)); {0}

(name): Note that K is not a covalue.
(Mo F{K})y = F{K}{My}
Lem 27(1)
—n K{F{My}}
— () Ky{po[o] Fy{My}}
= Ky{pa.ay{ Fy{M;} }}
Lem 27(2)

—n KifpoF{a}y{My}}
= (M o Fla}).a e K);
Induction cases can be shown easily. O
Proof of Lemma 29 (1) is immediately shown.
We show (2) when O is not a value by a case
analysis of K.
Case of a: aj{O} = [a]O — (hame) (A2.[a]2)O
= a;[0]
Case of [K, L]:
(K, L]1{0} = 6(0, z. Ki{z}, y-Li{y})
— (name) (A2.0(z, x.K{x},y.Li{y}))O
= (K, L}; 0]
Case of fst[K]:
fst[K]+{O} = K{[fst(0)] = (A\z. K {z})fst(O)
— (name) (Az.Ki{z})((Azfst(2))O)
— (comp) (Az.(Az.K{z})fst(x))O

1752 IPSJ Journal

= (Az.(Ky[fst(x)])O
= (Az.(fst[K]4{z})O
Case of snd[K]: This case can be shown in a

way similar to the above case.
Case of not(M):

not(M)+{O} = OM; — (name) (A2.2M;)O
= (Az.not(M)+{z})O = not(M)+[O]
Case of MQK:
(M@K)T{O} = KT[OMT] = ()\ZKT{Z})OMT
—(name) (>‘Z KT{Z})((AI' xMT)O)
— (comp) (Az.(Az.Ki{2})(xM;))O

= fst[K]4[O]

= (\z.(Kt[zM;:])O
= (Az.(MQK){z})0 = (MQK); (O]
Case of x.5:

(.9){0} = (A\z.5;)0 = (A2.5t[* /])O
= (Az.(2.9)3+{2})O = (2.5)+[0] O

Proof of Lemma 30 The claims are shown by a
simultaneous induction on M, K, and S. We
consider the key cases.

Case of fst[K]:

fst[K] {0} = Kg{fst(0)} il;j K+ {fst(0)}
Lem 29
— Ki[fst(0)] = fst[K]+ O]

Case of snd[K]: This case is proved similarly.
Case of MQK:

(MAK)o {0} = Ko {OMa} 2% K1{OM;}

Lem 39
— Ki[OM] = (MQK){O}
Case of x.5:
I.H.
(2.9)e{0} = (A\x.8)0 — (Az.S;)O
—>: (XUI.ST)O = (IS)T{O}
Case of M o K:

I1.H.
(MeK)g =Ke{Mg} —, Ki{M:}

Lem 29

—y Ki[Mi] = (M e K)y O
Proof of Lemma 82 (1) The claim is proved by
induction on K.
(2) We claim that if we have (K3{O})[V*/,] =
(K1Y /)){O[¥1 [a]}, then we obtain (K[0])
/] = (K[/)i [O[¥1/2]). We show this
claim. Assume O is a value, then O[Y/,] is
also a value. Hence we have

(KON /o] = (KH{OD[Y /o]
= (K["/aD)4{0[" /2]}

Apr. 2007

= (K["/z)4[O1"1/a]]-
If O is not a value, then O[Y/,] is also not a
value, so we have

(IHODI" /o] = (A2 K {2} O)["1 /]
= (A= (K{z)["1 /a])(O[" /a]))
= (A2 (K[/a))i{=1(0[" /a]))
= (K["/2])1[011 /a]]-

Therefore we show the other claims by induc-
tion on M, K, and S. We give the key case:

xjr[vf/r] = 2" /,] =V O
Proof of Lemma 33 We can prove this lemma
by a simultaneous induction on M, K, and S.
We give two cases.

Case of a:

(o {ON [D=dy]
= ([a}o)[(/\ylr{y}){—}/[a]{_}}
= Q- Li{y) (O[D /4)
—5 - Li {y D (O[Mv-E D=/)
=L; [O[()\yl“r{y}){*}/[a]{i}“
Case of fst[K]:

([{O [P E D=/ 4]
= KT[fst(O)])[()‘y'L*{y}){f}/[a]{_}]
I.H.
— (K["/a))i
[fst(O)[(/\y~LT{y}){_}/[a]{7}]]
(KT" /o)t [fst(O[Aw-H D =d g 4)]

= (fst(K[" /o))t
[Est(O[M B D /)

Lem 29(2)
—5 (fst(K[" /o)t
[fst(O[Pv- L+ D) /e 4])] O

Proof of Theorem 34 (1) — (3) are proved by si-
multaneous induction on the reduction relation
—". We claim that if K3;{O} — L;{O},
then K;[O] —3 L{[O]. We first show this
claim. If O is a value, the claim is immediately
shown. Otherwise, K;[O] = (A\z.Ki{z})O —
(Az.Li{z})O = L4[O].
We often use the following shortcuts:
(a) (Vo K)i = K;[V3] = Ki{V;}
(b) M. Kifa}) My —5 Aoz Ki{w}) M;
= K[M) = (MoK)
(L) (ég)My —7 (M8 My
—r (2.9)i[Mi] = (M e x.5)+

Base cases are shown as follows.
(B5): (M. M) e (NQK));

= (2.9){M;}

Vol. 48 No. 4

) (NQK) {(Aa. M)y}
Ki[(Az.M;) Ny
(/\Z Ki{z})((Az. M) Ny)

— (comp) (Az-(A2.K1{z}) M;) Ny

(b) (c)
—5 (A (MeK){)Ny — (Nex.(MeK));
(Be): ((V, W) e fst[K])+ £ fst[K]+{((V, W))+}
= 1y

=

(
Ry [86(V5, W3]) KG VA
(V L] K)T
The other case of (g) can be shown similarly.

(8,): ((V)inle [K, L)); 2 [K, L};{ (V)inl; }

= 6(inl(V3), 2. K+ {a}, y. L {y})
—) KiiVi

%) (VeK);
The other case of (g) can be shown similarly.
(8-): ([K]not e not(M));

2 (not (M)){ [K]not, }

®)
(5R) (SO“K)T = KT[(SO‘) }
= (Az. Ki{x})no.Ss
— o) S[QeE=D=hy]
Lem 33

%% (S /u]);
(Br): (V o2.8); 2 (2.8):{Vi} = $4[V1 /]

NSACIA
(WRL)]\/2[;(2)—>() He[a] My = pa.a{M}

—5 poca[M] = poc(M e o)y

=((Mea).a);

(nr): If O is a value V, then
Ki{V) = (KDl /o] € (00 K[V /]
= (z.(z o K)){V}.

If O is not a value, then
Lem 29(2

K]L{O} —> KT [O] = ()\CEK]L{:L‘})O
= ()\J;(as ¢ K);)O = (z.(z e K));{O}.
(name): Note that M; is not a value because
M is not a value.
((M,N) e K); = Ki[(M, N)4]

= (Az.K{2}) (M, Ny)
—(name) ()‘ZKT{Z})((A:E<‘(E’NT>)MT)
—(comp) (M- (A2 K {z}) (2, Ni)) My

(®)

— (Az.((z, N) o K);) M;

(e)

— (M ez.((z,N) e K));
((V, M) e K) = Ki[(V, M)1]
= (Az.K{z})(Vy, My)

Duality between Call-by-value Reductions and Call-by-name Reductions 1753

—(name) ()‘ZKT{Z})((AQ"O/T’ x>)MT)
— (comp) (Az-(Az.K3{z})(V;, 2)) M

(b)
—, (Az.((V,z) @ K)i) My
(0)
— (M ex.((V,z) e K));
((M)inle K); = K[(M)inl; |
= (Az.Ki{z})inl(M;)
— (name) (Az.Ki{z})((Az.inl(z)) M;)
— (comp) (AZ.(Az.K{z})inl(z)) M;
(b)
— (Az.((x)inl ® K)+)M;
(c)
— (M e z.((x)inl ® K))+
The last case, (M)inre K —" Mez.({z)inre
K), is also shown similarly.
Induction cases can be easily shown.]
Proof of Proposition 35 (1) If we have
P{O} —% (O 1, P)y for any covalue P, then
we can obtain O —, pa.[a]O = pa.ay{O}
—% (0 4y @)y = ((0 3 a)a)y = (0%
We prove the rest of (1) by a simultaneous in-
duction on O and S.
Case of v: Py{z} = (zeP)y= (2, P)
Case of (M, N):

PAM, NY} 2% P{{(MP), (NF)))
= P{(M* N*)y}
= ((M,N)* e P); — ((M,N) :,, P);
Case of fst(O):
P{fst(0)}
I.H.
fst[P]{O0} —, fst[P]{(e}
(O* o fst[P g —, (O 1y, fst[P]
= (fSt(O) n P)ﬁ

The case of snd(O) is shown similarly.
Case of inl(O):

)t

I.H.
P{inl(0)} —, Py{inl((0%);)}
= P,{(O%inly} = ((O%)inl e P),
= (inl(O) :, P)y
The case of inr(O) is shown similarly.
Case of §(O,z.M,y.N):
PA{6(0,z. M, y.N)}
—>(ﬂ.) 5(0, l‘.Pﬁ{M}, yPﬁ{N})

f"; §(0,z.(M :, P),y.(N =y, P))
=6(0,2'.(x.(M =, P))s{z'},

1754 IPSJ Journal

Yy (y-(N 2 P)e{y'})
= [I(M ‘n P),y.(N n P)]ﬁ{O}

I.H.
— o [@.(M 1 P),y.(N 1 P){(O%)}

= (0% o [0:(M i P)u(N 0 P)),

= (6(0,x.M,y.N) :p, P)y
Case of A\xz. M :

I.H.
Pi{\z.M} —% Py{hx.(M*);}

= ((A\z.M*) ¢ P)y = (\z.M :,, P),

Case of MN(MN is a term, and M is not a
A-abstraction):

R{MN} 5 P{ M(NY),)
= (N*aP),{ M }
ijj; (M* -, (N*@P)), = (MN :, P),
Case of (Az.M)N :
Pﬁ{ ()\%M)N} —(B>) Pﬁ{M[N/m] }
= (z.(P{M})){N}
I.H.
_}; (v.(M =y, P))ﬁ{N}

I.H.
— o (@.(M 1 P)){ (N¥) }
= (N*ex.(M :, P))
= ((Az.M)N :, P)y
Case of A\z.S5':

P28}~ PoAz.(S1))
=P{\y.(z.5")4{y} }= ([z.5"|not e P)ﬁ
= (\z.S:, P)y
Case of pa.S':
I.H.
Py{pa.S} —, Pi{pa.(S%)}
—) (S /a1

— 0 ($¥7/al); = (por.S o Py
Case of [a]O:

010 = 0, {0} —25 (0 2,),
— ((jo]0));

Case of §(0,x.5,y.T):
I.H.
§(0,2.8,y.T) — 6(0,2.(S"), y.(T)y)

= 5(0, x’.((x.Sﬁ)u{x’}),

Yy ((y.T):{y'}))
= [2.5%,y.T%;{0}
I.H.
—, [2.5%, 4. TH{ (0%}
= (0% [a:.Sﬁ,y.Tﬁ])ﬁ

Apr. 2007

= (5(0,2.8,y.T)");

Case of MN(MN is a statement, and M is not
a A-abstraction):

MN :}1: M(N*®); = not(N*),{M}
:I;‘ (M :p, not(Nﬁ»ﬁ = ((JWN)ﬁ)t

n

Case of (Az.S)N

(Az.S)N f’; (Az.(S%)5)N
o (5N /2]

= (2.5%)4{N} il;’; (.5%):{(N*);}
= (Nu ox.Sﬁ)ﬁ = (((/\x.S)N)ﬂ)ﬁ

(2) We can easily show O —7 (OT); from
K{[O] —3 (O 4, K)t in a way similar to the
proof in (1). In the following, we prove the rest
of (2) by a simultaneous induction on O and S.
Case of v: Ki[z] = (v e K); = (21 K)t

Case of (M, N):

(s

I.H.
K[(M, N)] —5 Ky[((M), (N)y)]
= K;[(MT,NY)i] = ((M,N)" ¢ K);
— (M, N) 2, K);
Case of fst(O):
K;[fst(0)] = fst[K]:{O}

DB wel) (0M)

ity K ((0')] = (0! » ()
— (fst[K]) (fst(0) =y, K)+

The case of snd(O) is shown snnllarly
Case of inl(O):

I.H.
Ki[inl(0)] — Ki[iml((O")y)]

= K{[(O)inl;]
= ((O")inl e K); = (inl(0) :, K);
The case of inr(O) is shown similarly.
Case of (O, z.M,y.N):
Ki[6(0,z.M,y.N)]
= (A\2.K4{2})d(0,x.M,y.N)
—(m) 5(O,x.(Az.KT{z})M,
y.(A\z.K{z})N)
— 0(0, z. K [M], y.K¢[N])

I 50, 2.(M 1 K) (N 2, K)
=0(0,2" (z.(M =, K)){z'},
y'(y-(N 2 K))i{y'})

Vol. 48 No. 4

= [z.(M :, K),
Lem 29
—r (M K),

v

y-(N = K)|+{O}
y-(N =y K)}[O]

I.H.
_): (O ‘v [LL'(M ‘v K)ay(N v K)])T
= (0(0,2.M,y.N) :, K)t
Case of \xz. M :
I.H.
KTP\CCM] —>: KT[/\IE.(MT)T]

= ((A\e.M") e K); = (\a.M =, K)j
Case of MN(MN is a term, and M is not a
A-abstraction) :

K[MN] 58 K [MV]

= (NT@R) M} ot
il';j (M -, (NTQK)); = (MN :, K);
Case of (Az.M)N :
Ki[(Az.M)N| = (Az.Ki{z})((Az.M)N)
—(comp) ()\1[,’ (AZ KT{Z}))N
— (Ax.K;[M])N
I.H.

(NTQE);[M]

—5 (A (M = K)i)N
— (@(M w K)){N}
I.H.

— (N oy (M K))4
=((Az.M)N :, K)

Case of A\z.S5':
[/\xS]—I>{ Ki[Ax.(S
= Kt [My.((2.8M){y}]
= ([a. ST]notoK) =

bl

(Ax.S 0 K)t
Case of pa.S':

I.H.
Ki[pa.S] — Kilpa.(ST)q]
= (\z.Ki{z})pa.(8T);
—) (ST E =Dy]
Lem 33

— (ST /a)t = (na8 o Ky
Case of [a]O:

Lem 29
[@]O = a {0} — o;[0]
I.H.
— (0 @) = (([)O));

Case of §(0,x.5,y.T):
§(0,2.9,y.T) il';;a(o,x.(sf)f,y.(:ﬂ)f)
=6(0,2" ((z.57)i{2"}),
v (v TH{y'}))

Duality between Call-by-value Reductions and Call-by-name Reductions 1755

= [2.5",4.T1;{0)
Lem 29
— [a:.ST,y.TTMO]

v

I.H.
— (O v [JJ.K’E:'T,y.TT])Jr

= (6(0,x.8,y.T)");

Case of MN(MN is a statement, and M is not
a A-abstraction) :

MN fﬁ; M(NT); = not(NT) {M}
2 (M 5 mot (V) = (M))y
Case of (Az.S)N:

— (N3 .87 = (e.5)N)'), O
Proof of Proposition 36 (1) If we establish the
following claims: (a) M e Q —™* (Mj =, Q);
(b) Of ¢ K —™* K;{O} if K is not a covalue;
() (0w P) —"* (P{O})%; and (d) § —"
(Sy)*, we can easily obtain (1). Therefore, we
show these claims by a simultaneous induction
on M, K, P,and S.
Caseof x: zeQ=x:, P
Case of (M)inl:
(ninte @ (e @
= inl(My) =, Q@ = (M)inly 1, Q

The case of (M)inr is shown similarly.

Case of (M, N):

I.H.(a)
(M,N) e Q —"" ((My)F, (Ny)F) ¢ Q
= (Mg, Ny) 10 Q) = (M, N)y 1, Q)

Case of [K]not:

[Knot @ @ —{, [z.(z ® K)not e

—>(nR) [x.(x ‘e K)not e Q
I.H.(b)
—" [z.(Ky{2})*|not & Q
= (Az.(K{z}) :n Q) = ([K]noty :n Q)
Case of A\z.M:
I.H.(a)
(Az.M) e P —"* (\z.(My)*) e P
=(MMy:, P)=((Aa.M)y:, P)
Case of S.a:
H.(d)
S.ae@ S (Sp)f.aeQ
—) (S)*[%/al

= (,U,Oé.Sﬁ n Q) = ((SO&)u n Q)

1756 IPSJ Journal

Case of a:
(0 1 @) = ([0]O)F = ({0})F
Case of [P, Q]:
— () (O (w0 P), y(y 0 Q)
I.H.(c)
—" (0 i [x.(Pﬁ{:L’})u, y(Qu{y})u])
" OF o [2.(P o)), 1.(Q:{y)}

= 0(0,z.Py{z}, y.Qs{y})*
= ([P, Ql:{0})*
Case of fst[P]:
(O =, fst[P]) = (fst(O) :,, P)

I1.H.(c)
" (B {fst(0)})* = (t[P], {0}

The case of snd[P] can be shown similarly.

Case of not(M):
I.H.(a)

(O i not(M)) —™ (O 1, not((Mﬁ)u>)
" (OMy)F = (not(M){O})F
Case of MQP:
I.H.(a)
(O 1, (M@QP)) —™ (O +,

I.H.(c)
—"* (OMj 1, P) —"" (P{OM;})*

= ((M@P),{O})

Case of [K, Q] (where [K, Q)] is not a covalue):
(O*e [K, L))

—) O e z.(x e K),

(M)FaP))

y.(ye L)]

1.H.(b)
—n* Oji L] [.’L‘.(Kﬁ{l’})u, y.(Lﬁ{y})ﬁ]
=6(0,z.Ky{z},y-Ly{y})
= (IK, L]:{O})*
Case of fst[K] (where K is not a covalue):
(O* o fst[K])
— (name) (OF o fsta]).cc @ K
—" (O, fst[a]).c @ K
= (fst(0) :p a).a o K = (fst(0))* o« K

I.H.(b)
—"* (Ky{fst(0)})* = (st[K]4{0})*

The case of snd[K] can be shown similarly.

Case of MQK (where K is not a covalue):
(0% o (MOK))
_)?name) (Oﬁ ° (M@a))a o K
—" (01, (MQa)). 0 K
I.H.(a)
N (O n ((Mn)ﬁ@oz)).a o K

—" (OMy 1). @ K

Apr. 2007
I.H.(b)
= (OMy)* o K —™ (Ky{OM;})
= ((MQK) {0})*
Case of x.5:
I.H.(d)
(O 0 22.5) —™* (OF @ 2.(Sy)F)
— Ty (S0 /a)
Lem 14(1)
—" (S92 = ((2.9)4{0})F
Case of M e K:
I.H.(a)
(M o K) —" (M;)f o K

I.H.

" (K { M})P = (M o K)y)*
(2) We show these claims by a simultaneous
induction on M, K, and S. If we establish
(O K) —¥* (K {O})T then we can easily
obtain (OTe K) —* (K;{O})!. Therefore, we
show this claim instead of the second clause of

2).

Case of 1 @ —{,) (rea).a = (z 0 a).a =
ot = ()7
Case of (M)inl:

I.H.
(M)inl —"* ((M;)")inl
—lnm) (((MT)Tﬁnl o).
= (inl(My) = a).a = (inl(My))T
= (M)inly)!

(M)inr is shown similarly.
Case of (M, N):

(M, Ny~ ()T, ()T
(nR) (<(MT)T’ (NT)]L> *a).a
= ((My, Ny) 1 a).ao = (Mz, Ny)T

= (M, N)1)f
Case of [K]not:
[K]not — () [2-(z @ K)]not

vt [z.(K{z}) ot
—) ([2-(Ki{z}) ot e).
= (Az.Ki{z} 1 o).

= (. Ki{z})" = ([Knot;)'
Case of \z.M:

I.H.
Ax. M —* Az (M;)T
(n) (. (MT) a).o
(M. M; 2 a).a = (Ao M;)T
((Az.M))f

l

Vol. 48 No. 4

Case of S.a:

I.H.
S.a —U* (ST)T.a = (ST)T['B/a]ﬁ

= (pa.Si 1 B).6 = (na.Si)f
((S.a)p)!

Case of ;' (01, a) = ([a]O)T = (e {O})T
Case of [K, L]:
(O v [K7 L])
—) (O [z(z 0 K), y.(yo L))

L (04 (K e, w (L))
= 0(0, 2. K {z},y.Li {y})
= ([K, Ll;{o})!
Case of fst[K]:
(O :, st[K]) = (fst(0) 1 K)
i (kg (0))!
Lem 29
U (K [fst(0)])T = (fst[K:{O})
snd[K] can be shown similarly.
Case of not(M):

(O v n0t<M>) :T){U* (O v HOt<(M1—)T>)
o OM) = (o) {0

(0 -4 (MGK)) —* (0 -, ((My)|GK)

—V* (OM; 2, K) B (Ki{OM;})T
Lem 29
— (Ki[OMy]) = ((MQK){O})f

Case of z.5:

I.H.
(O :, 02.8) —"* (O =, 2.(Sp)T)
= ((Az.5)0)" —"* ((2.9){O})f
Case of M o K:
I.H.
(Mo K) —"* (M;)' o K
I.H.
—{a1) (M; =y K) —V" (KT{MT})T
Lem 29
—" (K[My]) = (M e K)y)T O
Proof of Proposition 37 (1) We show the first
line of (1). Suppose Ay - O —) M and
Mt F O —% M', then DC F (O)f —n*
(M) and DC (O)% —™ (M')* by Theo-
rem 16. By the Church-Rosser property of the
dual calculus, there is a term N of the dual
calculus such that DC (M)} —™ N and

Duality between Call-by-value Reductions and Call-by-name Reductions 1757

DC F (M')¥ —™ N. Hence we have Ay F
(M) — (N); and Au b (M), —
(N)y by Theorem 28. Therefore we obtain
A M —% (N)y and Ap = M —7% (N)y by
Proposition 35. The second line of (1) is shown
similarly. (2) is also shown in a way similar to
(1). O
Proof of Theorem 40 (1) is shown by using The-
orem 16, Theorem 34, and Proposition 38.
(2) is shown by using Theorem 21, Theorem 28,
and Proposition 38.
(3) follows from Proposition 35, 36, and 38. We
show the third line first.
Prop 35(1)
S —n (89 = (5%

n
Prop 36(2)
E3

— (((5*)1)™) = (So)e
The second line is shown as follows.
O {M} = (07){M}
Prop 35(1)
— (07){(M*)4}
= (M* 0 O1°); = (M*° 0 O'°),
= (0" # 1)),
Prop 36(2)
— (M%) {O})1*)y = (Mo{O})s
The first line follows from the second line.
M —) po[a] M

Y e (M} —* pa.(Mo{a))s

() is shown by
ae{M} = (a") {M} = (e 8).5)") {M}
= (8.8 0 @){M} = ([a]B)[*/5] = [a] M.
(4) can be shown in a way similar to (3). O
(Received August 21, 2006)
(Accepted January 9, 2007)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.3, pp.207-243.)

Daisuke Kimura was born
in 1977. He received his M.S.
degree from Kyoto University in
2003. He has been a Ph.D. stu-
dent at the Graduate University
for Advanced Studies since 2003.
He has done research area on
theoretical computer science and mathematical
logic. His current research interest is type the-
ory for classical logic. He is a member of IPSJ
and JSSST.

