
IPSJ Transactions on Advanced Computing Systems Vol.7 No.1 14–22 (Mar. 2014)

Regular Paper

Screening Legitimate and Fake/Crude Antivirus Software

Masaki Kasuya1,a) Kenji Kono1,2,b)

Received: July 25, 2013, Accepted: December 4, 2013

Abstract: Fake antivirus (AV) software, a kind of malware, pretends to be a legitimate AV product and frightens
computer users by showing fake security alerts, as if their computers were infected with malware. In addition, fake
AV urges users to purchase a “commercial” version of the fake AV. In this paper, we search for an indicator that
captures behavioral differences in legitimate AV and fake AV. The key insight behind our approach is that legitimate
AV behaves differently in clean and infected environments, whereas fake AV behaves similarly in both environments,
because it does not analyze malware in the infected environments. We have investigated three potential indicators, file
access pattern, CPU usage, and memory usage, and found that memory usage is an effective indicator to distinguish
legitimate AV from fake AV. In an experiment, this indicator identifies all fake AV samples (39 out of 39) as fake and
all legitimate AV products (8 out of 8) as legitimate. It is impractical for fake AV to evade this indicator because to do
so would require it to detect malware infections, just as legitimate AV does.

Keywords: antivirus software, fake antivirus software, behavior analysis, malware

1. Introduction

Fake antivirus (AV) software is a severe threat to our computer
systems [24]. It pretends to be actual AV software and shows
false security warnings to users as if their computer systems were
infected with malicious software (malware) [23]. Fake AV per-
suades victim users to purchase a useless, “commercial” version
of the fake AV to eliminate bogus threats. “Crude AV” poses a
similar threat to fake AV. It differs from fake AV in that it de-
tects malware, but its detection quality is too low to be practical.
Fake/crude AV is sometimes used to collect sensitive information
such as credit card numbers [9]. For example, AntiVirus 2009,
a fake AV sample, collects credit card numbers and e-mail ad-
dresses of the victims.

The threat of fake AV is real. Symantec detected 43 million in-
stallation attempts of fake AV from July 2008 to Jun 2009 [9]. Ac-
cording to Rajab et al. [22], fake AV accounts for 15% of all mal-
ware detected by Google’s malware detection infrastructure [21].
Fake AV business earns tremendous revenue. Stone-Gross et al.
revealed that three kinds of fake AV have earned more than $130
million dollars [25]. McAfee disclosed that the annual revenue
of one vendor of fake AV exceeded $180 million dollars [20]. To
distribute fake AV, software download sites are sometimes ex-
ploited. In fact, one famous download site, CNET, distributed a
fake AV sample called RegGenie in 2012 [7].

Fake/crude AV is similar to a social engineering attack [26]; the
victim users are deceived and never suspect that fake/crude AV is
not legitimate because it is carefully designed to look like legit-
imate AV. One approach for defending against fake/crude AV is

1 Department of Information and Computer Science, Keio University,
Yokohama, Kanagawa 223–8522, Japan

2 CREST, Japan Science and Technology Agency
a) kasuya@sslab.ics.keio.ac.jp
b) kono@ics.keio.ac.jp

to use signature-based approaches. However, signature-based ap-
proaches are exploit-specific, and a signature must be prepared
for each instance of fake/crude AV. Therefore, these approaches
cannot detect previously unseen instances of fake/crude AV [18].

In this paper, we reveal behavioral differences between legiti-
mate and fake/crude AV, and propose an indicator that captures
the behavioral differences in AV software. The key insight behind
our approach is that legitimate AV behaves differently in 1) clean
environments and 2) infected environments, while fake/crude AV
would not show such differences. A clean environment is the
one in which no malware has been installed, whereas an infected
environment is the one in which malware has been installed.
Fake/crude AV is not expected to show behavioral differences in
clean and infected environments because it does not analyze mal-
ware samples in the infected environment. On the other hand,
legitimate AV instances are expected to show the differences be-
cause they deeply analyze suspicious instances in the infected en-
vironments.

Our indicator can be used in software download sites such as
CNET [1] and PCMAG [3]. When AV samples are uploaded to
download sites with the tag indicating AV, they can be checked
as to whether they are legitimate or fake/crude. Since our indi-
cator works by capturing behavioral differences instead of using
signature, it can detect the latest fake/crude AV instances.

This paper shows that “memory usage” is an effective indica-
tor of fake/crude AV software. Surprisingly, crude AV does not
show differences in memory usage between clean and infected
environments. In our approach, the memory usages of AV-like
software in clean and infected environments are compared statis-
tically. The Levene Test [15], an inferential statistic, is used to

A preliminary version of this paper will appear in The Seventh Interna-
tional Conference on Emerging Security Information, Systems and Tech-
nologies.

c© 2014 Information Processing Society of Japan 14

IPSJ Transactions on Advanced Computing Systems Vol.7 No.1 14–22 (Mar. 2014)

assess the equality of variances in memory usage. If a software
sample that is suspected to be fake/crude AV has statistically the
same distribution of memory usage in both environments, it is
considered fake. Otherwise, it is considered legitimate.

Since our indicator is based on behavioral differences,
fake/crude AV has to mimic the behaviors of legitimate AV in
order to evade it. It is not easy to mimic behaviors of legitimate
AV. If fake/crude AV samples change their memory consump-
tion at random, our approach can detect fake/crude AV correctly
because it compares memory consumption under several settings,
i.e., clean/clean, infected/infected, and clean/infected.

To demonstrate the usefulness of our approach, we have con-
ducted experiments on 39 “real” fake/crude AV samples and 8
legitimate AV products. The results show that our indicator can
identify all 39 fake/crude samples, which means there are no false
negatives, and all 8 legitimate products, which means there are no
false positives.

The remainder of this paper is organized as follows. Section 2
describes the differences between fake AV and crude AV, and
the current criteria to distinguish them from legitimate AV. Sec-
tion 3 explains our basic approach and shows how to distinguish
fake/crude AV from legitimate AV by using the Levene Test. Sec-
tion 4 presents our experimental results. Discussion and related
work are presented in Sections 5 and 6. Section 7 concludes the
paper.

2. Fake AV and Crude AV

There are two types of malicious AV software: fake AV and
crude AV. To understand the difficulties of distinguishing be-
tween fake/crude AV and legitimate AV, this section describes
the behaviors of fake and crude AV, and briefly introduces recent
guidelines to distinguish fake/crude AV and legitimate AV.

2.1 Fake AV
Fake AV mimics the behavior of legitimate AV and shows bo-

gus security warnings without scanning for malware infections
in the victims’ file systems. To make the behavior resemble that
of legitimate AV, fake AV searches the file system to obtain file
and/or directory names to be displayed in warning messages. For
example, Security Antivirus [13], a fake AV, displays the follow-
ing message:

Virus name:
Virus.Win32.Faker.a

Infected file:
C:\Documents and Settings\Kasuya\Recent\snl2w.dll

Description:
These programs steal MSN Messenger passwords. . .

Pathname, C:\Documents and ... snl2w.dll, is the real
one in the victim’s file system. By showing real pathnames in
the victim’s file system, the fake AV deceives victims into believ-
ing the machine is infected with malware and encourages them to
the purchase a product version of the fake AV.

The directory traverse of fake AV makes it difficult to distin-
guish it from legitimate AV. When observed from the outside,
fake AV traverses directories just as legitimate AV does. Security
Antivirus traverses most directories that all legitimate AV prod-

ucts commonly access. According to our investigation, the access
coverage of Security Antivirus is over 99.7% (= 2,393 / 2,400).
This result means that Security Antivirus carefully takes access
patterns of legitimate AV into account. In other words, we cannot
use directory traversal as an indicator to distinguish fake AV from
legitimate AV.

2.2 Crude AV
Crude AV is low-quality AV software whose detection accu-

racy is too low to be useful. Crude AV differs from fake AV in that
it scans file systems for malware and detects the infection. At the
same time, crude AV differs from legitimate AV in that it cannot
detect a large portion of widely deployed malware. To confirm
that the detection rate of crude AV is very low, we measured the
detection rate of Anti-Virus Elite [14], a well-known crude AV.
We installed 905 unique instances of malware in Windows XP
SP3. Anti-Virus Elite detected only 74 samples. The detection
rate was 8.2%. Kaspersky, an example of legitimate AV, detected
all 905 samples, i.e., its detection rate was 100.0%.

Crude AV is usually classified into malware. According to
VirusTotal [4], an online antivirus scan service, Anti-Virus Elite
is classified as malware in 65% (28 out of 43) of commercial AV
products. Crude AV is malware because there are sites that urge
the visitors to buy a “product” version, which in most cases is just
as poor as the crude AV.

Crude AV blurs the boundary between fake and legitimate AV,
and makes it more difficult to distinguish fake/crude AV from le-
gitimate AV. Crude AV traverses file systems and inspects suspi-
cious files that may contain malware. Aside from the quality of
detection, crude AV behaves very similarly to legitimate AV.

2.3 Current Criteria to Distinguish Legitimate and
Fake/Crude AV

Recently, a security industry has published a white paper [12]
to help end-users identify fake security products such as fake AV.
The document provides a helpful checklist to judge whether the
users’ computers are infected with fake AV. The checklist says,
for instance, that fake AV reports an unreasonably high number
of infections, shows a popup window frequently that warns your
machine is infected with malware, and suggests the purchase of a
commercial version.

This checklist is useful for manual inspection for discovering
fake AV. However, these criteria do not suit automated distinction
of fake/crude and legitimate AV. Suppose that we attempt to au-
tomate the process of counting the number of reported infections.
Since the reports are shown in natural language, it is not easy for
computers to understand the reports. Even if we could interpret
the reports, there are samples of fake AV that do not show up in
a lot of reports. For example, Anti Spyware Expert has only 18
reports of infection.

Furthermore, this checklist does not address how to distinguish
crude AV from legitimate AV. Since crude AV behaves similarly
to legitimate AV aside from the quality of detection, it is almost
impossible to draw up a guideline for crude AV.

c© 2014 Information Processing Society of Japan 15

IPSJ Transactions on Advanced Computing Systems Vol.7 No.1 14–22 (Mar. 2014)

3. Searching for Indicators

In this section, we describe our search for fake/crude AV indi-
cators. As mentioned above, the key insight behind our approach
is that legitimate AV behaves differently in clean and infected en-
vironments while fake/crude AV behaves similarly in both envi-
ronments. A good indicator captures behavioral differences only
in legitimate AV.

3.1 What is a Good Indicator?
A fake/crude AV indicator should satisfy at least three require-

ments. First, it should be applicable to as many instances of
fake/crude AV as possible. In particular, it should be applicable
to previously-unseen instances of fake/crude AV.

Second, it should be impractical for fake/crude AV to evade the
indicator. The criminals that make use of fake/crude AV for their
own profit do not want to spend a lot of money on development
because it would reduce their revenues. A fake/crude AV indica-
tor would thus be ideal since criminals would have to incorporate
the same functionalities as legitimate AV in order to evade it and
they would cost a fortune to develop software equivalent to legit-
imate AV.

Third, a fake/crude AV indicator should enable automatic dis-
tinction of fake/crude AV from legitimate AV. If the distinction
process is automated, it can be incorporated into legitimate AV
or deployed on software download sites [1], [3]. The guidelines
presented in Section 2.3 assume manual inspection of several as-
pects of suspicious behavior of AV-like software. In this paper,
we seek a fake/crude AV indicator that does not require manual
intervention. Rather than relying on visual inspection, we seek a
fake/crude AV indicator from information that can be obtained in
a systematic way. For example, we look for system call patterns
or resource usage patterns that differentiate fake/crude AV from
legitimate AV.

One approach to deriving a fake/crude AV indicator is to use
binary analysis. We cannot rely on the source code because the
source code of malware is not available in public. Binary analysis
has the potential to identify a lot of operations (e.g., system calls
and their arguments) that malware may do. However, it is not
easy to apply binary analysis to fake/crude AV because malware
can be obfuscated using a technique like binary obfuscation [27].
In addition, it is not straightforward to find a sequence of oper-
ations that can differentiate fake/crude AV from legitimate AV.
Hence, we decide not to take this approach.

3.2 Basic Approach
Our basic approach is to compare potential indicators obtained

in clean and infected environments. A clean environment is one
in which no malware has been installed. We assume that an exe-
cution environment just after installing an operating system from
read-only media such as DVD-ROM is clean. Therefore, an en-
vironment with harmless files is also clean. A clean environment
can be prepared by using the recent technology of virtual ma-
chines. Once a clean environment has been prepared, we can
reuse it by saving it as a virtual machine image. An infected
environment is one in which malware has been installed. This

Fig. 1 Our basic approach.

environment is also saved as a virtual machine image for reuse.
Figure 1 illustrates the basic approach used in this paper. For

each sample of AV-like software (it is unknown whether the sam-
ple is fake/crude AV or legitimate AV at this point of time), in-
dicators are measured in clean and infected environments and
statistically compared. The key insight behind this approach is
that legitimate AV behaves differently in clean and infected envi-
ronments while fake/crude AV behaves similarly in clean and in-
fected environments, because legitimate AV thoroughly analyzes
files suspected to be infected with malware. fake/crude AV can-

not change its behavior depending on the presence of an infection
because it does not detect malware infection.

This approach satisfies the three requirements described in
Section 3.1. First, the fake/crude AV indicator does not use fea-
tures specific to each instance of fake/crude AV, and thus, should
be applicable to a wide variety of fake/crude AV. As shown in
Section 4, our indicator successfully identified all (39 out of 39)
fake/crude AV samples and all (8 out of 8) legitimate AV sam-
ples. Second, it is impractical to try to evade the indicator. Since
fake/crude AV must change its behavior depending on the pres-
ence of malware infection, it must be equipped with the detection
facilities that are equivalent to legitimate AV; that is, criminals
must develop a legitimate AV to evade the indicator. Finally, the
distinction process can be automated. There is no need for man-
ual intervention since the indicator can be used in a systematic
way and indicator measurements are compared using a statistical
test.

3.3 Examining Potential Indicators
To discover a good indicator, we examine three candidates that

can be obtained systematically: 1) the file access pattern, 2) CPU
usage, and 3) memory usage. To obtain them, we install hooks
to get the file accesses and Performance Monitor, a default ap-
plication of the Windows OS, to get the CPU usage and memory
usage.
3.3.1 File Access Pattern

While a legitimate AV has to investigate a file’s content to de-
termine whether it is infected with malware, fake/crude AV only
traverses directories to obtain real pathnames; it does not access
files as often as legitimate AV does, because fake/crude AV does
not look hard for malware infection.

Unfortunately, file access patterns are not a good indicator of
fake/crude AV because the patterns of some fake/crude AV sam-
ples are similar to those of legitimate AVs. Figure 2 shows the
similarity of file access patterns between 8 legitimate AV prod-
ucts and 39 fake/crude AV samples. Each bar corresponds to one

c© 2014 Information Processing Society of Japan 16

IPSJ Transactions on Advanced Computing Systems Vol.7 No.1 14–22 (Mar. 2014)

Fig. 2 Similarity of file access patterns between legitimate AV and
fake/crude AV. The file access pattern is not a good indica-
tor because 6 out of 39 fake/crude AV samples access files
accessed by legitimate AV products.

Fig. 3 Comparison of user-mode times in clean and infected environments.
Ui and Uc represent user-mode time ratios in an infected and a clean
environment, respectively. The green bars show Ui−Uc of legitimate
AV products, and the red bars show those of fake/crude AV samples.
Regardless of whether it is fake/crude or legitimate, Ui − Uc ranges
from −10% to 30%.

fake/crude AV sample, and shows the ratio of files accessed by
each fake/crude AV sample to those commonly accessed by legit-
imate AV samples. (There are 10 bars in the figure because the
remaining 29 samples do not access the files). Figure 2 shows
that six fake/crude AV samples resemble legitimate AV products
in terms of file access.
3.3.2 CPU Usage

Next, we investigate CPU usage. Since a malware scan such as
signature matching is executed in user mode not kernel mode, we
focus on the proportion of user mode time of CPU usage. User-
time is expected to increase in legitimate AV if it is executed in
infected environments because sophisticated scanning algorithms
consume a lot of user-mode time. On the other hand, fake/crude
AV is not expected to increase user-mode time in infected envi-
ronments because it does not search for malware infection.

In spite of our expectations, the differences in user-mode time
between clean and infected environments are not useful for distin-
guishing fake/crude AV from legitimate AV. Figure 3 shows the
differences in user-mode time ratio between clean and infected
environments. The y-axis shows Ui −Uc, where Ui stands for the
user-mode time ratio measured in an infected environment and
Uc stands for the user-mode time ratio measured in a clean envi-

ronment. The green bars show Ui−Uc of legitimate AV products,
and the red bars show those of fake/crude AV samples. The over-
all trend in the user-mode time ratios is the same in the legitimate
products and fake/crude samples. Ui − Uc ranges from −10% to
30%.
3.3.3 Memory Usage

Finally, we examine memory usage. Memory usage is ex-
pected to increase in infected environments in legitimate AV be-
cause it requires more memory to perform in-depth analyses of
malware. On the other hand, fake/crude AV is not expected to in-
crease memory usage because it should behave similarly in clean
and infected environments.

Our preliminary results show memory usage can be an effec-
tive indicator to distinguish legitimate AV from fake/crude AV.
Figure 4 shows the memory usage of one legitimate AV prod-
uct, one fake AV sample and one crude AV sample. It reveals
memory usage can differ in legitimate and fake/crude AV. In the
legitimate AV product, the memory usage increases in infected
environments. However, the fake/crude AV sample does not show
such increase in memory usage in infected environments; it shows
almost the same trend in both environments.

Figure 5 shows Vi/Vc for each legitimate AV product and
fake/crude AV sample. Vi stands for the variance in an infected
environment and Vc stands for the variance in a clean environ-
ment. As you can see from the figure, Vi/Vc shows different
trends for legitimate AV and fake/crude AV. This suggests that
memory usage is a good indicator of fake/crude AV.

Table 1 shows the summary of the compared features, moni-
toring cost of the features, and the effectiveness (results) of each
potential indicator.

3.4 Memory Usage as an Indicator
This section describes a concrete method to distinguish

fake/crude AV from legitimate AV. On the basis of examinations
in the previous sections, we choose memory usage as an indica-
tor of fake/crude AV. A sample of AV-like software is installed in
clean and infected environments and the memory usage is mea-
sured in each environment. An infected environment is prepared
by installing 905 unique instances of malware (about 500 MB in
total), and a clean environment is prepared by installing 500 MB
of clean files. The installed malware instances and clean files are
the same size and have the same directory structure. Note that we
do not have to prepare these environments every time a test is per-
formed, because a virtual machine image can be copied for reuse.

Memory usage is measured every second in each environment.
For ease of mathematical formalization, the clean and infected en-
vironments are numbered 1 and 2. The measured memory usage
values are grouped into a sequence for each environment and rep-
resented by Yi, where i denotes the number of group (1 ≤ n ≤ 2).

If the distributions in Y1 (clean env.) and Y2 (infected env.) are
not statistically different, we conclude that the tested sample of
AV-like software is fake/crude AV. Otherwise, we conclude that
the tested sample is legitimate AV.

To compare the memory usage distributions in each environ-
ment, we use the Levene Test [15], a well-known inferential statis-
tic used to assess the equality of variances in different samples. It

c© 2014 Information Processing Society of Japan 17

IPSJ Transactions on Advanced Computing Systems Vol.7 No.1 14–22 (Mar. 2014)

Table 1 Summary of our preliminary results.

Indicators Compared Features Monitoring cost Results
File access pattern File access patterns Hook open system call bad

CPU usage CPU usage in user mode CPU usage obtained every second bad
Memory usage Variances of memory usages Memory usage obtained every second good

Fig. 4 Memory usages of legitimate AV, fake and crude AV. Legitimate AV
significantly consumes a lot of memory when it detects malware. On
the other hand, fake/crude AV hardly changes their usage in going
from clean to infected environments. Memory usage and scan time
are normalized.

tests the null hypothesis that the population variances are equal.
The Levene Test compares the distributions of two sequences Yi

and Yj. If the results of the test are less than the significance level
(0.05 in this paper), the difference is statistically significant. In

Fig. 5 Comparison of variances in clean and infected environments. Vi and
Vc represent the variances of memory usage distributions in an in-
fected and a clean environment, respectively. All legitimate AV prod-
ucts significantly increase the variances in the infected environment.
However, fake/crude AV samples hardly change variances in these
environments.

our method, memory usage is measured M times to mitigate fluc-
tuations and the Levene Test is repeated. If the M results of the
Levene Test are all less than 0.05, we consider that the distribu-
tions are different. Since it is time-consuming to measure indi-
cators M times, we measure indicators � √M� times and perform
the Levene Test on any pair of the measured indicators.

4. Experiments

This section shows that memory usage can be used to distin-
guish fake/crude AV from legitimate AV. We collected 8 legit-
imate AV products listed in Table 2. In addition to them, 39
fake/crude AV samples listed in Table 3 from malware collection
sites [2], [19] and Malware Domain List [17]. Clean and infected
environments were prepared by using KVM with Qemu 1.1.1, in
which Windows XP SP3 was installed and 1GB of memory is al-
located. Although we used Windows XP in the experiments, our
approach was not limited to a specific OS. Memory usage was
obtained from Windows process structures (EPROCESS entries),
because some fake/crude AVs interfere with the access to system
information through Performance Monitor. These environments
were prepared as described in Section 3.4. The Levene Test was
repeated 9 times. In other words, M equaled 9. Since � √M� was
3 in this case, memory usage in each environment was measured
3 times.

The Levene Test used memory usages obtained from different
environments as shown in Fig. 6, and counts of less than signif-
icance level (0.05) were gathered. If the count reached 9, the
tested AV sample was identified as legitimate. Otherwise, it was
identified as fake/crude.

Our method correctly identified all 39 fake/crude AV samples
and 8 legitimate AV products. The results are shown in Table 4.
In the table, class means whether tested samples are legitimate or
fake/crude. C and I mean memory usage in clean environment

c© 2014 Information Processing Society of Japan 18

IPSJ Transactions on Advanced Computing Systems Vol.7 No.1 14–22 (Mar. 2014)

Table 2 Legitimate AV products.

Avast Pro Antivirus 7.0.1426 G Data Antivirus 2011 21.1.0.1
AVG Antivirus 2012.0.1913 Kaspersky Anti-Virus 2011 11.0.2.556
McAfee VirusScan 15.0.294 ESET NOD32 Antivirus 4.2.71.2
Norton AntiVirus 18.7.0.13 Panda Antivirus Pro 2011 10.00.00

Table 3 Fake/Crude AV samples.

XP Internet Security 2011 XP Internet Security 2012 6.0.2900.2180
XP Home Security 2011 XP Home Security 2012 6.0.2900.2180
XP Anti Spyware 2011 XP Anti Spyware 2012 6.0.2900.2180

XP Antivirus 2011 XP Antivirus 2012 6.0.2900.2180
XP Security 2011 XP Security 2012 6.0.2900.2180

XP Total Security 2011 PC Privacy Cleaner 1.0.22.4
Patchup Plus Virus Remover 2008 1.0.15.2
Security Tool Virus Remover 2009 1.0.9.0

System Security Anti Spy Safeguard 1.0.0.0
XL Guarder Security Antivirus 2.0.2.18

Security Shield Major Defense Kit 1.0.0.0
Protect Code Anti Spyware Bot 9.6.9

Adware Bot 12.0.6 Security Defender 1.6.812.0
Reg Clean 1.0.0.1 Malware Removal Bot 12.0.6
Onescan 1.0.0.1 Anti Spyware Expert 1.0.22.2

Anti-Spyware 12.0.6 Anti-Virus Elite v5.0
Error Sweeper 2.8.0 Pest Detector 1.0.0.0

Registry Smart 2.10.0 Netcom3 PC Cleaner 9.1.10
Red Cross 1.0.0.0 Peak Protection 1.0.0.0

Privacy Control 2.6.0.0

Fig. 6 Memory usage is measured 3 times in a clean and an infected envi-
ronment, respectively (we obtain 3 memory usages for a clean envi-
ronment and another 3 memory usages for an infected environment).
The Levene test is performed on any pair of the memory usages.
Each arrow means one Levene test is performed on the pair of the
memory usage for a clean environment (lefthand side of the arrow)
and the memory usage for an infected environment (righthand side
of the arrow). Since we have 3 memory usages for a clean and an
infected environment respectively, we perform 9 (= 3 * 3) Levene
tests in total for all the pairs of the memory usages.

and infected environment, respectively, e.g., C1 is the memory
usage obtained from clean environment 1. When a pair shows
statistical significance, the result of the Levene Test is shown as
“�” in Table 4. Otherwise, it is shown as “X” in the table. If a
sample shows the count of “�” is 9, the verdict is legitimate AV.
Otherwise, the verdict is fake/crude AV.

In all legitimate AVs in Table 4 (upper 8 samples), the number
of “�” is 9. It means memory usages of legitimate AV between
the infected and clean environments are always statistically sig-
nificant. In other words, legitimate AV consumes a lot of mem-
ory to analyze and detect malware; i.e., the memory usage clearly
increases in the infected environments. However, the memory
usage does not increase in the clean environments because legiti-
mate AV does not analyze malware. Figure 7 and Fig. 8 show the
memory usages of McAfee and AVG. Compared with the mem-
ory usages in the clean environments, AVG and McAfee consume
more memory in the infected environments. All the other legiti-
mate AVs show a similar pattern.

In 19 fake/crude AV samples out of 39, the number of “�” is
zero. In the 29 samples out 39, the number of “�” is less than

Fig. 7 Memory usages of AVG, a legitimate AV product. When it detects
malware, the memory usages clearly increase.

Fig. 8 Memory usages of McAfee, a legitimate AV product. It consumes a
lot of memory in infected environment.

Fig. 9 Memory usage of Red Cross. The memory usages are almost the
same between infected and clean environments. Memory usage and
scan time are normalized.

or equal to 3. The result shows the memory usage of fake/crude
AVs does not show statistical differences in the clean and infected
environments. Figure 9 shows RedCross’s memory usage. The
figure shows the memory usages between the clean and infected
environments are almost the same. Figure 10 shows Pest De-
tector’s memory usage (the count of “�” is 3). In Fig. 10, the
memory usage in infected environment 3 is obviously different
from the others. As a result, all pairs including the memory usage
in infected environment 3 show statistical significance.

In two fake/crude AV samples, the number of “�” is 6. Fig-
ure 11 shows the memory usage of XP AntiVirus 2011. Com-

c© 2014 Information Processing Society of Japan 19

IPSJ Transactions on Advanced Computing Systems Vol.7 No.1 14–22 (Mar. 2014)

Table 4 Each Levene Test’s result and the verdict.

Name Class C1 & I1 C1 & I2 C1 & I3 C2 & I1 C2 & I2 C2 & I3 C3 & I1 C3 & I2 C3 & I3 Total of � Verdict
Avast Legitimate � � � � � � � � � 9 Legitimate
AVG Legitimate � � � � � � � � � 9 Legitimate

McAfee Legitimate � � � � � � � � � 9 Legitimate
NOD32 Legitimate � � � � � � � � � 9 Legitimate
G Data Legitimate � � � � � � � � � 9 Legitimate
Norton Legitimate � � � � � � � � � 9 Legitimate

Kaspersky Legitimate � � � � � � � � � 9 Legitimate
Panda Legitimate � � � � � � � � � 9 Legitimate

Adware Bot Fake/Crude X X X X X X X X X 0 Fake/Crude
Anti Spy Safeguard Fake/Crude X X X X X X X X X 0 Fake/Crude

Anti-Spyware Fake/Crude � X X X � � X � � 5 Fake/Crude
Anti Spyware Bot Fake/Crude X X X X X X X X X 0 Fake/Crude
Anti-Virus Elite Fake/Crude X X X X X X X X X 0 Fake/Crude

Anti Spyware Expert Fake/Crude � X X X X � X X � 3 Fake/Crude
Error Sweeper Fake/Crude X X X � X X X X X 1 Fake/Crude

Major Defense Kit Fake/Crude X X X X X X X X X 0 Fake/Crude
Malware Removal Bot Fake/Crude X X X X X X X X X 0 Fake/Crude

Netcom3 Fake/Crude � X � � X � X � X 5 Fake/Crude
Onescan Fake/Crude X X X X X X X X X 0 Fake/Crude

Patchup Plus Fake/Crude X X X X X X X X X 0 Fake/Crude
PC Privacy Cleaner Fake/Crude X � � X � � � X X 5 Fake/Crude

Peak Protection Fake/Crude X X X X X X X X X 0 Fake/Crude
Pest Detector Fake/Crude X X X X X X � � � 3 Fake/Crude

Privacy Control Fake/Crude X X X X X X X X X 0 Fake/Crude
Red Cross Fake/Crude X X X X X X X X X 0 Fake/Crude
Reg Clean Fake/Crude X X X X X X X X X 0 Fake/Crude

Registry Smart Fake/Crude X X X X X X X X X 0 Fake/Crude
Security Antivirus Fake/Crude X X X X X X X X X 0 Fake/Crude

Protect Code Fake/Crude X X X X X � X X � 2 Fake/Crude
Security Defender Fake/Crude � X X � X � � � � 6 Fake/Crude

Security Shield Fake/Crude X X X X X X X X X 0 Fake/Crude
Security Tool Fake/Crude X X X X X X X X X 0 Fake/Crude

System Security Fake/Crude � X � � X � X � X 5 Fake/Crude
Virus Remover 2008 Fake/Crude X X X X X X X X X 0 Fake/Crude
Virus Remover 2009 Fake/Crude X X X X X X X X X 0 Fake/Crude

XL Guarder Fake/Crude X X X X X X X X X 0 Fake/Crude
XP AntiSpyware 2011 Fake/Crude � � X X � X � � X 5 Fake/Crude
XP AntiSpyware 2012 Fake/Crude X X X � X � � � X 4 Fake/Crude

XP AntiVirus 2011 Fake/Crude X � X � � � � � X 6 Fake/Crude
XP AntiVirus 2012 Fake/Crude X X X X X X � � X 2 Fake/Crude

XP HomeSecurity 2011 Fake/Crude X X � X X � X X X 2 Fake/Crude
XP HomeSecurity 2012 Fake/Crude X X � X X � � � X 4 Fake/Crude

XP InternetSecurity 2011 Fake/Crude X X X X X X � � X 2 Fake/Crude
XP InternetSecurity 2012 Fake/Crude X X � X X � X X X 2 Fake/Crude

XP Security 2011 Fake/Crude X � � X X � � X X 4 Fake/Crude
XP Security 2012 Fake/Crude X X � X X X � � X 3 Fake/Crude

XP TotalSecurity 2011 Fake/Crude X X X X X X � � X 2 Fake/Crude
“�” means there is statistical significance. “X” means there is not statistical significance.

Fig. 10 Memory usages of Pest Detector. The memory usage in infected
environment 3 is different from the others. Memory usage and scan
time are normalized.

Fig. 11 Memory usage of XP AntiVirus 2011. Each memory usage is differ-
ent whenever it executes rogue malware scanning. Memory usage
and scan time are normalized.

c© 2014 Information Processing Society of Japan 20

IPSJ Transactions on Advanced Computing Systems Vol.7 No.1 14–22 (Mar. 2014)

pared with Fig. 9 and Fig. 10, the memory usage patterns show
wider divergences. Probably, this fake/crude AV changes its be-
havior every time it is executed. Since our approach compares
the behaviors in clean and infected environments, fake/crude AVs
cannot evade our approach even if they change their behaviors
randomly. A fake/crude AV must distinguish clean and infected
environments to evade our approach.

5. Discussion

5.1 Evasion
It is useless to change memory usage at random to evade our

indicator. If memory usage is measured only once in clean and
infected environments, the randomly changing memory usage
could evade our indicator. However, as explained in Section 3.4,
memory usage is measured M times in our approach and the Lev-
ene Test is performed multiple times. To deceive our approach,
fake/crude AV samples must change their memory usage based
on the presence of malware. This means that the fake/crude AV
would have to act as legitimate ones; that is, they would correctly
detect malware infections.

One possible approach to evade our indicator is to use open
source AV or leaked source code of legitimate AV. Fake/crude
AV samples based on legitimate AV could evade our indicator
because their behavior is similar to legitimate AV. However,
we believe our indicator raises the bar to developing fake/crude
AV because fake/crude AV developers require the source code of
product-quality legitimate AV. We also hope vendors can quickly
develop effective signatures to detect fake/crude AV based on
their products, since the legitimate vendors have the source code
of their products and deeply understand the internal behavior of
their products.

5.2 Deployment Scenario
Our approach can serve to prevent software download sites

from distributing fake/crude AV. Software download sites such as
CNET [1] and PCMAG [3] should not distribute fake/crude AV.
In spite of their careful management, though, CNET distributed
a sample of fake AV in the middle of September 2012 [7]. A dis-
crimination system based on our indicator can prevent the users
of those sites from downloading fake/crude AV. Since AV soft-
ware is usually indexed by tags such as “antivirus” in software
download sites, all the pieces of software indexed by “antivirus”
can be tested to decide if they are legitimate or fake/crude AV.

Rajab et al. [22] present an analysis of fake AV distribution
sites. According to the result, fake AV attacks occur frequently
via web sites likely to reach more users including spam we sites
an on-line Ads. To detect fake/crude AV distribution sites, there
are some approaches such as deSEO [11] and SURF [16]. They
detect search poisoning [6] which guides users to malicious web
sites. Our approach can identify AV like binaries obtained from
deSEO and SURF as fake/crude AV or legitimate AV.

5.3 Other Possible Indicators
We investigated three indicators, file access patterns, CPU us-

age and memory usage, and found that memory usage is a good
indicator to distinguish fake/crude AV from legitimate AV. How-

ever, since our indicator needs to collect memory usages multiple
times for distinction, the cost may be expensive.

To solve this problem, exploiting file access patterns serves to
limit candidates as a pre-filter, because file access patterns of most
fake/crude AVs differ from those of legitimate AV as shown in
Section 3.3.1. We plan to collect more fake/crude AV samples
and discuss whether this method serves to reduce candidates.

6. Related Work

Recently, two studies have reported long-term analyses of
fake/crude AV threat ecosystems. They show the tradi-
tional signature-based and blacklist-based approaches are use-
less against fake/crude AV. Rajab et al. show it is practically
impossible to keep signatures with a high detection rate against
fake/crude AV [22]. The detection rate rises and falls frequently.
Cova et al. show that neither IP nor domain-based blacklists are
effective on fake/crude AV [5]. Legitimate web sites are often
blocked in IP-based blacklists, and domain-based blacklists are
evaded by rotating short-lived domains.

Stone-Gross et al. suggest that credit-card companies should
endeavor to identify fake/crude AV companies [25]. Fake/crude
AV companies monitor the refunds that customers demand from
their credit card providers, and they control these refunds so as
to keep the chargeback rates low. However, this behavior leads
to unusual patterns in chargebacks, which may be leveraged by
credit-card companies to identify and ban fraudulent companies.

A white paper has been published to identify fake/crude AV
by visual inspection [12]. It provides diverse characteristics
about fake/crude AV. By using it, computer users can identify
fake/crude AV by visual inspection. As described in Section 2.3,
some fake/crude AV samples do not have such characteristics.

Behavioral differences are used to detect various types of mal-
ware infection. Egele et al. detect spyware using the dynamic
analysis of information flow in Internet Explorers’ plugins [8].
They track information flow of sensitive data and detect spyware
if they are leaked to the outside of Internet Explorer. Gu et al. pro-
pose BotSniffer which employs several correlation and similarity
analyses to identify the crowd of hosts [10]. Gu et al. leverage the
fact that bots are likely to conduct malicious activities at the same
time.

7. Conclusion

Fake/crude AV software masquerades as a legitimate AV soft-
ware product with the goal of deceiving victims into purchasing
it that seemingly removes malware from their computers. The
threat of fake/crude AV is increasing; fake AV accounted for 15%
of all malware Google detected on the web [22].

In this paper, we searched for an indicator that captures be-
havioral differences between legitimate AV and fake/crude AV.
The key idea is “fake/crude AV does not consume computer re-
sources when it accesses malware.” Through our experimental
investigation, memory usage would be a good indicator because
fake/crude AV does not show statistical differences in memory us-
age between clean and infected environments, but legitimate AV
shows clear differences in memory usage. We have demonstrated
Levene Test on the memory usages in a clean and an infected en-

c© 2014 Information Processing Society of Japan 21

IPSJ Transactions on Advanced Computing Systems Vol.7 No.1 14–22 (Mar. 2014)

vironment distinguishes fake/crude AV from legitimate AV. Our
method correctly identified 8 out of 8 legitimate AV products and
39 out of 39 fake/crude AV samples.

For future directions, we are planning to extend our approach
to be incorporated into anomaly detection systems. Since the
scanning behavior of fake/crude AV differs from sample to sam-
ple, it is not straightforward to extract a normal profile for the
scanning behaviors. Further analysis on the behaviors of legit-
imate AV would reveal more inherent behaviors that are pecu-
liar to genuine AV, which would enable the anomaly-based detec-
tion of fake/crude AV. It would be also interesting to extend our
method to on-line or incremental detection of fake/crude AV.

References

[1] CNET | Download.com, available from 〈http://download.cnet.com〉
(accessed 2013-07).

[2] FakeAVs (Dashke’s blog), available from 〈http://www.fakeavs.com〉
(accessed 2013-07).

[3] PCMAG.COM, available from 〈http://www.pcmag.com/downloads〉
(accessed 2013-07).

[4] Virus Total, available from 〈https://www.virustotal.com〉 (accessed
2013-07).

[5] Cova, M., Leita, C., Thonnard, O., Keromytis, A.D. and Dacier,
M.: An Analysis of Rogue AV Campaigns, Proc. 13th International
Symposium on Recent Advances in Intrusion Detection (RAID ’10),
pp.442–463 (2010).

[6] Doshi, N.: Iframes, Please Make Way for SEO Poisoning (2009),
available from 〈http://www.symantec.com/connect/blogs/iframes-
please-make-way-seo-poisoning〉.

[7] Doyle, S.: How To Remove RegGenie Rogue Antivirus Software
– Uninstall RegGenie Malware (Identity Theft Protection) (2012),
available from 〈http://botcrawl.com/how-to-remove-reggenie-rogue-
antivirus-software/〉 (accessed 2013-07).

[8] Egele, M., Kruegel, C., Kirda, E., Yin, H. and Song, D.: Dynamic Spy-
ware Analysis, Proc. USENIX Annual Technical Conference, pp.233–
246 (2007).

[9] Fossi, M., Turner, D., Johnson, E., Mack, T., Adams, T., Blackbird, J.,
Low, M. K., McKinney, D., Dacier, M., Keromytis, A.D., Leita, C.,
Cova, M., Orbeton, J. and Thonnard, O.: Symantec Report on Rogue
Security Software (2009), available from
〈http://www4.symantec.com/Vrt/
wl?tu id=TeCm125590003756772344〉 (accessed 2013-07).

[10] Gu, G., Zhang, J. and Lee, W.: BotSniffer: Detecting Botnet Com-
mand and Control Channels in Network Traffic, Proc. 15th Annual
Network and Distributed System Security Symposium (NDSS ’08)
(2008).

[11] John, J.P., Yu, F., Xie, Y., Krishnamurthy, A. and Abadi, M.: de-
SEO: Combating Search-Result Poisoning, Proc. 20th USENIX Se-
curity Symposium, pp.299–313 (2011).

[12] Karnik, A., Rico, A.C.J., Prakash, A. and Honjo, S.: Identifying Fake
Security Products (2009), available from
〈http://www.mcafee.com/us/resources/white-papers/wp-identifying-
fake-security-products.pdf〉 (accessed 2013-07).

[13] Kiguolis, U.: Remove Security Antivirus (2010), available from
〈http://www.2-spyware.com/remove-security-antivirus.html〉 (ac-
cessed 2013-07).

[14] Kiguolis, U.: Remove Anti-Virus Elite (2012), available from
〈http://www.2-spyware.com/remove-antivirus-elite.html〉 (accessed
2013-07).

[15] Levene, H.: Robust Tests for Equality of Variances, Stanford Univer-
sity Press (1960).

[16] Lu, L., Perdisci, R. and Lee, W.: SURF: Detecting and Measur-
ing Search Poisoning, Proc. 18th ACM Conference on Computer and
Communications Security (CCS ’11), pp.467–476 (2011).

[17] MDL: Malware Domain List, available from
〈http://www.malwaredomainlist.com/〉 (accessed 2013-07).

[18] Oberheide, J., Cooke, E. and Jahanian, F.: Cloud AV: N-Version An-
tivirus in the Network Cloud, Proc. 17th USENIX Security Sympo-
sium, pp.91–106 (2008).

[19] Open Malware: Open Malware — Community Malicious code researh
and analysis, available from 〈http://offensivecomputing.net〉 (accessed
2013-07).

[20] Paget, F.: Running Scared: Fake Security Software Rakes in Money
Around the World (2010), available from 〈http://www.mcafee.com/

us/resources/white-papers/wp-running-scared-fake-security-
software.pdf〉 (accessed 2013-07).

[21] Provos, N., Mavrommatis, P., Rajab, M.A. and Monrose, F.: All Your
iFRAMEs Point to Us, Proc. 17th USENIX Security Symposium, pp.1–
16 (2008).

[22] Rajab, M.A., Ballard, L., Mavrommatis, P., Provos, N. and Zhao, X.:
The Nocebo Effect on the Web: An Analysis of Fake Anti-Virus Dis-
tribution, Proc. 3rd USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET ’10) (2010).

[23] Sophos: What is FakeAV? (2010), available from 〈http://www.bt.bt/
forms/sophos-what-is-fakeav-wpna.pdf〉 (accessed 2013-07).

[24] Sophos: Stopping Fake Antivirus: How to Keep Scareware off
Your Network (2013), available from 〈http://www.sophos.com/en-
us/medialibrary/Gateddf〉 (accessed 2013-07).

[25] Stone-Gross, B., Abman, R., Kemmerer, R.A., Kruegel, C.,
Steigerwald, D.G. and Vigna, G.: The Underground Economy of Fake
Antivirus Software, Proc. 10th Workshop on Economics of Informa-
tion Security (WEIS ’11) (2011), (online) available from
〈http://weis2011.econinfosec.org/papers/The Underground Economy
of Fake Antivirus Software.pdf〉.

[26] Trend Labs: Unmasking FAKEAV (2010), available from
〈http://solutionfile.trendmicro.com/solutionfile/EN-
1055340/EN/Unmasking FakeAV v4.pdf〉 (accessed 2013-07).

[27] Wu, Z., Gianvecchio, S., Xie, M. and Wang, H.: Mimimorphism: A
New Approach to Binary Code Obfuscation, Proc. 17th ACM Confer-
ence on Computer and Communications Security (CCS ’10), pp.536–
546 (2010).

Masaki Kasuya received his B.E. and
M.E. degrees from Keio University in
2009 and 2011, respectively. He is cur-
rently a Ph.D. candidate in Keio Univer-
sity. His research interests include mal-
ware security, browser security, and sys-
tem security. He is a student member of
IEEE, ACM and IPSJ.

Kenji Kono received his B.Sc. degree in
1993, M.Sc. degree in 1995, and Ph.D.
degree in 2000, all in computer science
from the University of Tokyo. He is an as-
sociate professor of the Department of In-
formation and Computer Science at Keio
University. His research interests include
operating systems, system software, and

Internet security. He is a member of IEEE/CS, ACM and
USENIX.

c© 2014 Information Processing Society of Japan 22

