
Electronic Preprint for Journal of Information Processing Vol.22 No.2

Regular Paper

A Flexible Execution Control Method of Application
Software for Educational Windows PCs

Keita Kawano1,a) Daisuke Okamoto1 Masanori Fujiwara1,†1 Nariyoshi Yamai1

Received: June 28, 2013, Accepted: December 4, 2013

Abstract: Recently, many educational institutions have had to maintain a large number of PCs (educational PCs).
It is common for the administrators of these institutions to use a disk image distribution system to manage them all
together. It allows the administrators to keep all of their educational PCs in the same configuration with ease. This
method, however, robs them of the flexibility of management. Suppose that use of certain application software is re-
stricted to specific users or sites in those institutions. Suppose also that use of other application software is requested
to be prohibited by teachers during classes. It is hard for the administrators to satisfy all of these requirements with
the traditional method since it causes heavy administrative burden. This paper proposes a flexible method to manage
application software on educational Windows PCs without significant efforts of the administrators even with these
requirements. The proposed method controls the execution of individual application software on each educational PC
to create the requested environments. Teachers as well as the administrators can directly and dynamically change its
configuration during their classes. An execution control system was actually implemented as a prototype to show the
feasibility of the proposed method.

Keywords: educational PC, application software, execution control, management cost, flexibility

1. Introduction

Recently, to meet the requirements for information literacy ed-
ucation and the demands for computer-assisted teaching, many
educational institutions such as universities have had to support a
lot of educational PCs [1], [2], [3]. Since an increase in the num-
ber of educational PCs raises the administrative burden, a method
to alleviate it has been a major concern of the administrators in
these institutions [4], [5].

Disk image distribution systems are usually used for this pur-
pose. With a disk image distribution system, a disk image of one
model PC can be distributed to all of the educational PCs at once.
This helps the administrators keep all of their educational PCs in
the same configuration.

This method, however, robs them of the flexibility of manage-
ment that is always required in most higher educational institu-
tions like universities. There, each department has its own ed-
ucational policies. This means that each department usually re-
quests different environments for their educational PCs. Most of
all, application software environments for its education are likely
to differ among departments.

Some departments may request certain application software
whose license fee needs to be paid. Other departments may hope
to use other application software that should be used after suffi-
cient ethics and compliance education and thus the administrators
do not want the other students to use it. Even in classes, teachers
hope to restrict use of specific application software during exam-

1 Okayama University, Okayama 700–8530, Japan
†1 Presently with JR WEST IT Solutions Company
a) keita@cc.okayama-u.ac.jp

inations.
With the traditional method using a disk image distribution sys-

tem, it is hard for the administrators to satisfy all of these require-
ments. The first requirement, which causes fruitless license fee,
can be satisfied if user license (the amount of payment depends
on the number of users) options are provided for the application
software. However, if no sophisticated license servers are pro-
vided, students who do not belong to the corresponding depart-
ments can waste the limited number of licenses. In addition, there
is application software, especially from small software vendors or
individuals, for which only device license (the amount of payment
depends on the number of installations) options are provided.

The first and second requirements might be satisfied to some
extent if the administrators could maintain a different model disk
image for each request. The number of installations of the appli-
cation software could be reduced to the number of educational
PCs in the PC rooms of the corresponding departments. The
application software that should be used after sufficient ethics
and compliance education could be installed only within the PC
rooms of the corresponding departments.

This method, however, is not acceptable if many departments
have different demands since the administrative burden increases
linearly with the number of managed model disk images. More-
over, if use of certain application software is asked to be restricted
only to a group of users such as a group of students taking a spe-
cific class, the method using multiple model disk images cannot
fulfill this request depending on the way of image distribution, as
described later in Section 4.1. Even though it is possible, it raises
the number of managed model disk images, increasing the admin-
istrative burden. The method also does not have real-time control

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

of restriction policies to support the third requirement. Hence, a
method to regain the lost flexibility of management due to the use
of disk image distribution systems without committed efforts of
the administrators even with the above requirements is needed.

This paper proposes a flexible method to manage application
software on educational Windows PCs *1. The proposed method
creates individual application software environments by control-
ling the execution of application software on each educational
PC. It lets the administrators restrict use of each application soft-
ware to specific groups of users or educational PCs without rely-
ing on creating specific model disk images, which increases the
administrative burden linearly as described above. Teachers as
well as the administrators are allowed to build arbitrary applica-
tion software environments directly and dynamically during their
classes without losing definitive decisions of the administrators.

Note that there are several options for operating systems on ed-
ucational PCs, such as the Microsoft Windows family, Apple OS
X, and Linux [9], [10], [11], [12]. In addition, some institutions
provide different versions of the same operating system due to
the constraints of indispensable application software while other
institutions offer different families of operating systems. This pa-
per, however, assumes that only a single version of Windows is
installed on all of the educational PCs for implementation reasons
and for simplicity *2. This paper also assumes that no multiboot
feature is used on the educational PCs, also for simplicity.

The rest of this paper is organized as follows. The manage-
ment cost of educational PCs is formulated in Section 2. Sec-
tion 3 discusses related work. Section 4 describes an overview of
the management of educational PCs using a disk image distribu-
tion system and its problem is clarified. A flexible management
method with the execution control of application software is pro-
posed in Section 5. An implementation of the proposed method
is described in Section 6. Section 7 concludes this paper.

2. Management Cost of Educational PCs

In this section, the management cost of educational PCs in a
typical educational institution is formulated to prepare for the dis-
cussions in this paper. It is assumed that only a single version of
Windows is installed on all of the educational PCs and the multi-
boot feature is not used, as described in the previous section.

The number of educational PCs npc, the number of their users
nuser, and the number of PC rooms in that institution are assumed
to be fixed and given, for simplicity. Variables depending on these
fixed variables, such as license fees depending on npc, are thus
fixed too, if they do not depend on any of the other variables.
In addition, demands for use of each application software (who
uses it or where it is used) are also assumed to be fixed and given
though the administrators cannot always meet them.

Basically, the management cost c of educational PCs is ex-
pressed as the sum of the three types of costs as follows:

c = cs + cl + co, (1)

where cs is system cost, cl is license cost, and co is operating cost.

*1 This work is an extension of some of our previous work [6], [7], [8].
*2 Actually, the operating system on all of our current educational PCs is

Windows 7.

The system cost is the cost of introducing and maintaining the
educational system. It is assumed that software and hardware
maintenance contracts are required for the educational system.
When using a disk image distribution system, its initial and main-
tenance costs, including license fee of the system, are contained
in this category. The license cost is needed whenever any appli-
cation software whose license fee needs to be paid is used on the
educational PCs.

Moreover, the administrators have a responsibility to keep their
educational PCs up-to-date. Whenever any new patches are re-
leased, they have to apply them as soon as possible. Whenever
teachers ask them to install new application software, they have
to do it before their classes. With a disk image distribution sys-
tem, the administrators have to make these changes to all of the
related model disk images and redistribute them. These oper-
ations create the operating cost. In our university, we perform
these operations once a month, after periodic releases of patches
of the operating system. Other operations of the administrators
such as system upgrade, setting change, user education and sup-
port, and troubleshooting also add to the operating cost. System
upgrade cost is generated when a system requires any upgrades,
such as security upgrades. Setting change cost is created when
the administrators have to change settings of their systems. User
education and support, and troubleshooting costs get higher when
a system becomes more complex, usually due to integrating sev-
eral systems.

Since budget and human resources of the ICT department in
most universities have continued to decrease in recent years,
it is essential to establish a way to provide requested services
within the limited resources. To address this issue, the traditional
method using a disk image distribution system has been intro-
duced in many universities, reducing co. We first formulate the
management cost of the traditional method with only one model
disk image to make clear its characteristics.

The management cost of the traditional method with one model
disk image ctra(1) is expressed as follows:

ctra(1) = cs,tra(1) +

⎛⎜⎜⎜⎜⎜⎜⎝
∑

a∈Auser

nuser(a)cl,user(a, nuser(a))

+
∑

a∈Apc

npccl,pc(a, npc)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎝co,os +
∑

a∈A
co,app(a) + co,tra(1)

⎞⎟⎟⎟⎟⎟⎠ , (2)

where cs,tra(1) is the system cost of the traditional method with
one model disk image. It contains costs for educational PCs, var-
ious servers, storages, and so on. Auser and Apc are sets of installed
application software with user license options, such as floating li-
cense and campus license, and with device license options, such
as free license and volume license, in this institution, respectively.
A is a set of installed application software in this institution. That
is, Auser ∪ Apc = A and Auser ∩ Apc = ∅. nuser(a) is the number
of users for the application software a. That is, nuser(a) ≤ nuser.
cl,user(a, nuser(a)) is the per-user license cost for a with user license
options when nuser(a) users use a. cl,pc(a, npc) is the per-device li-
cense cost for a with device license options when a is installed on

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

npc (whole of) educational PCs. co,os is the operating cost for up-
dating and testing the operating system on the model disk image.
co,app(a) is the operating cost for installing, updating, testing, and
uninstalling a. co,tra(1) is the remaining operating costs of the tra-
ditional system with one model disk image. The costs include
system upgrades, setting changes, user education and support,
troubleshooting, and so on.

Equation (2) shows that the license cost for the application soft-
ware with device license options increases in proportion to npc

with this method. Since there have been a large number of edu-
cational PCs in most universities as described above, this method
wastes unnecessary license fees if just a limited group of users,
such as students from a department, uses certain application soft-
ware. As a result, the group usually gives up the use of the ap-
plication software if the group is asked to pay all of the license
fee. Otherwise, the administrators are requested to manage two
model disk images: one having the application software and the
other not having the application software. Multiple model disk
images are also requested, when certain application software that
the administrators hesitate to serve for all of their users is re-
quired. We thus formulate the management cost of the traditional
method with multiple model disk images.

The management cost of the traditional method with nm (≥ 2)
model disk images ctra(nm) is expressed as follows:

ctra(nm) =
(
cs,tra(1) + cs,tra(nm)

)

+

⎛⎜⎜⎜⎜⎜⎜⎝
∑

a∈Auser

nuser(a)cl,user(a, nuser(a))

+
∑

a∈Apc

npc,ins(a)cl,pc(a, npc,ins(a))

⎞⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎝
∑

m∈M

⎛⎜⎜⎜⎜⎜⎜⎝co,os +
∑

a∈Ains(m)

co,app(a)

⎞⎟⎟⎟⎟⎟⎟⎠

+ co,tra(1) + co,tra(nm)

⎞⎟⎟⎟⎟⎟⎟⎠ , (3)

where cs,tra(nm) is the additional system cost of the traditional
method with nm model disk images. It contains additional pro-
cessing and storage capacity of servers for disk image distribu-
tion or additional servers themselves for disk image distribution,
if required. npc,ins(a) is the number of educational PCs where
the application software a is installed. That is, npc,ins(a) ≤ npc.
cl,pc(a, npc,ins(a)) is the per-device license cost for a with device
license options when a is installed on npc,ins(a) educational PCs.
M is a set of managed model disk images. That is, the number
of elements in M is nm. Ains(m) is the set of installed application
software on the model disk image m. That is,

⋃
m∈M Ains(m) = A.

co,tra(nm) is the additional operating cost of the traditional method
with nm model disk images, such as additional system upgrades
(if required), setting change, and troubleshooting costs. Other
variable definitions are identical with those in Eq. (2). Since this
paper assumes that the operating system on all of the educational
PCs is a single version of Windows as described above, co,os is
considered to be fixed, for simplicity, though some efficiency
gains may be obtained in fact. Similarly, each co,app(a) is con-
sidered to be fixed.

Equation (3) shows that the operating costs for maintaining op-
erating systems and application software increase in proportion to
nm with this method. Not only budget but also human resources
of the ICT department have continued to decrease in recent years
as described above. This is not acceptable if many groups of users
have different demands. In that case, the administrators have to
decline some of those requests for specific model disk images to
keep nm small since co,os and each co,app(a) for each m are concen-
trated in a specific period of days along with taking a long time
for each and thus cause heavy burden on the administrators.

In practice, most application software requested from spe-
cific groups of users, especially small groups of users, will not
be served as a general rule with both methods due to cost-
effectiveness. Our university has this general rule currently. Both
methods also do not support real-time control of restriction poli-
cies by teachers during their classes.

The method proposed in this paper prevents co from exces-
sively increasing while providing flexible application software
environments including real-time execution control which is not
fulfilled with the traditional method. The execution control of ap-
plication software on each educational PC described later in Sec-
tion 5 helps this. If due to only the policies in the institution, the
administrators do not have to manage multiple model disk images
unlike the traditional method. This prevents co from excessively
increasing.

In addition, the proposed method reduces cl if some soft-
ware vendors with only device license options in their standard
(and thus have no special scheme to control the execution of
their application software) accept the assumption of the proposed
method: just installing certain application software on educa-
tional PCs do not consume licenses if its execution is restricted.
Multiple software vendors, especially small software vendors or
individuals, will be willing to provide the institution with a non-
standard contract following the above assumption, as long as rea-
sonable and convincing execution control is performed and they
can trust the institution, without passing up on their sales op-
portunities. In this case, the license cost for certain application
software is reduced to the amount of the number of possible ex-
ecution. Note that the proposed method supports both user and
device license options with its execution control mechanism de-
scribed later in Section 5.

The management costs of the proposed method with one model
disk image cpro(1) and with nm (≥ 2) model disk images cpro(nm)
are expressed as follows:

cpro(1) =
(
cs,tra(1) + cs,pro(1)

)

+

⎛⎜⎜⎜⎜⎜⎜⎝
∑

a∈Auser

nuser(a)cl,user(a, nuser(a))

+
∑

a∈Apc,ins

npccl,pc(a, npc)

+
∑

a∈Apc,exe

nexe(a)cl,exe(a, nexe(a))

⎞⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎝co,os +
∑

a∈A
co,app(a) + co,tra(1) + co,pro(1)

⎞⎟⎟⎟⎟⎟⎠ ,

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

cpro(nm) =
(
cs,tra(1) + cs,tra(nm) + cs,pro(nm)

)

+

⎛⎜⎜⎜⎜⎜⎜⎝
∑

a∈Auser

nuser(a)cl,user(a, nuser(a))

+
∑

a∈Apc,ins

npc,ins(a)cl,pc(a, npc,ins(a))

+
∑

a∈Apc,exe

nexe(a)cl,exe(a, nexe(a))

⎞⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎝
∑

m∈M

⎛⎜⎜⎜⎜⎜⎜⎝co,os +
∑

a∈Ains(m)

co,app(a)

⎞⎟⎟⎟⎟⎟⎟⎠

+ co,tra(1) + co,tra(nm) + co,pro(nm)

⎞⎟⎟⎟⎟⎟⎟⎠ , (4)

where cs,pro(1) and cs,pro(nm) are the additional system costs of
the proposed method with one and nm model disk images, re-
spectively. They contain additional server cost and additional
system maintenance cost to improve the proposed system dur-
ing its operation. Apc,ins and Apc,exe are sets of application soft-
ware, in this institution, with only device license options in its
standard. Certain application software is classified into Apc,exe if
its software vendor provides the institution with a non-standard
contract following the assumption of the proposed method. Oth-
erwise, the application software is classified into Apc,ins. That is,
Apc,ins ∪ Apc,exe = Apc and Apc,ins ∩ Apc,exe = ∅. nexe(a) is the num-
ber of users who can execute the application software a or the
number of educational PCs where a can be executable. That is,
nexe(a) ≤ npc,ins(a). cl,exe(a, nexe(a)) is the per-user or per-device
license cost for a when nexe(a) users can execute a or a can be exe-
cutable on nexe(a) educational PCs. co,pro(1) and co,pro(nm) are the
additional operating costs of the proposed method with one and
nm model disk images, respectively. They contain costs to ne-
gotiate with application software vendors and additional system
upgrade, setting change, user education and support, and trou-
bleshooting costs. Other variable definitions are identical with
those in Eqs. (2) and (3).

Equation (4) shows that the operating costs for maintaining
operating systems and application software also increase in pro-
portion to nm with the proposed method with nm model disk im-
ages. In addition, if no requested software vendors accept the pro-
posed system, the proposed method cannot save cl. The proposed
method, however, reduces nm itself compared to the traditional
method when the administrators have to restrict use of each ap-
plication software to specific groups of users or educational PCs,
preventing co from excessively increasing, as described above. It
can save a limited number of licenses for students who actually
need the application software. The proposed method can also
provide real-time execution control for application software by
teachers as well as the administrators without losing definitive
decisions of the administrators, as described later in Section 5.3.

In terms of usefulness, cs,pro(1), cs,pro(nm), co,pro(1) and
co,pro(nm) have to be kept low against the benefit of the proposed
method. We tried to prevent cs,pro(1) and cs,pro(nm) from increas-
ing by implementing the system without additional license fees
as far as possible, as described later in the next section. The pro-
posed method does not require an additional powerful server ac-

cording to the results of its fundamental performance evaluations
with its prototypes described later in Section 6.4. We also tried
to prevent setting change cost in co,pro(1) and co,pro(nm) from in-
creasing by involving teachers which have their own requests into
the operation, as described later in Section 5.2, though it creates
additional user education and support costs and additional trou-
bleshooting cost. The sum of additional user education and sup-
port costs and additional troubleshooting cost will get lower than
the additional setting cost for changing policies for each applica-
tion software, every time, as soon as teachers request for it.

3. Related Work

Computer-Based Testing (CBT) is a form of testing to measure
the proficiency of students [13], [14]. Instead of papers, it uses
computers for testing to improve overall efficiency. When a strict
examination is held with computers, the use of application soft-
ware that is not needed for the examination has to be restricted.
For this purpose, a special system to prohibit the execution of
unnecessary application software is sometimes provided by the
examination authority.

This kind of system usually statically changes the rights of the
execution of application software, while our method dynamically
controls it. Any teacher during class can create strict examination
environments in real time with the proposed method.

Application streaming is another method to create individual
application software environments [15], [16], [17]. Images of ap-
plication software can be distributed from a central server to edu-
cational PCs on demand with this method. If all of the application
software used in an institution could be streamed, the administra-
tors in the institution could theoretically create arbitrary appli-
cation software environments on their educational PCs with one
model disk image.

A major drawback of this method, currently, is system cost. A
powerful central server is needed to stream application software.
The license cost of streaming software itself is also high. The
procedure to maintain application software images creates new
operating cost. Moreover, in most systems, teachers, not admin-
istrators, cannot change application software environments dy-
namically during class. This method also does not control locally
installed application software.

There are some commercial products to control the execution
of installed application software on Windows PCs [18], [19], [20].
We, however, implemented a new system to show the feasibility
of our method for some reasons. First, most of them were not
originally made for the purpose of the reduction of the adminis-
trative burden with a disk image distribution system. Thus, to the
best of our knowledge, none of them satisfied all of our demands
which includes those of our future work. One system does not
manage the number of occupied licenses and thus cannot restrict
the execution of application software depending on the number
of remaining licenses. Another system does not have a user in-
terface for teachers to change application software environments
dynamically. Moreover, we tried to reduce the system cost cs in
Eq. (1), by implementing the system without additional license
fee. To ease future customization is also one of our reasons.

Group Policy, a feature of Windows, provides an infrastruc-

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

ture for centralized configuration management of the operating
system [21]. When used in conjunction with Active Directory,
Group Policy (Domain Group Policy) lets the administrators con-
trol the security and permissions for Organizational Units (OUs),
certain groups of users or computers, within the domain [22]. As
one of many features, Group Policy has a function to control
the execution of application software (Software Restriction Poli-
cies) [23]. The centralized software restriction using this function
in conjunction with Active Directory is a general countermeasure
against malware in many business enterprises. Although Soft-
ware Restriction Policies are changed in almost real time with the
Group Policy Management Console (GPMC), it is not realistic to
let teachers use it since it is a tool for administrators [24]. Note
that our prototype utilizes Group Policy (Local Group Policy) as
described later in Section 6.1.

4. Management of Educational PCs

This section presents an overview of the management of edu-
cational PCs using a disk image distribution system. Its problem
is also clarified.

4.1 Management with Disk Image Distribution System
In order to let students use every educational PC in an insti-

tution in the same way, the administrators have to configure all
of the educational PCs in the same state beforehand. If the ad-
ministrators configured them individually, the management cost
became high. A disk image distribution system is used in most
institutions to address this issue. With the disk image distribu-
tion system, the administrators can distribute a disk image of one
model educational PC to all of their educational PCs at once.

Depending on the timing of disk image distribution, there are
two types of systems. One (former type) has to distribute a model
disk image before actual use. The other (latter type) can distribute
it when educational PCs are started. Since our university has a
former system, we distribute a model disk image at midnight once
a month.

Figure 1 shows a conceptual structure of disk image distribu-
tion systems. The image distribution server is introduced in the
server room and stores model disk images. Each model disk im-
age is distributed from the server to each educational PC in each
PC room. Multicast distribution is usually deployed with the for-
mer system to distribute to groups of educational PCs.

4.2 Problem with Disk Image Distribution System
In higher educational institutions like universities, it is always

Fig. 1 A conceptual structure of the disk image distribution systems.

required to create individual application software environments
depending on requests from each department or each teacher.

Each department has its own educational policies. Suppose that
one department hopes to allow its students to use certain applica-
tion software while the other departments have no interest in the
application software. If no additional license fee is needed, the
administrators can include the application software in the model
disk image and distribute it to all of their educational PCs. How-
ever, if the same number of paid-for licenses as the number of
installations is needed, it creates fruitless license cost. Essen-
tially, it is reasonable to have the same number of licenses as the
number of educational PCs in the PC room of the corresponding
department in this case.

If the application software has floating license options, the li-
cense cost can be reduced [25]. However, if no sophisticated li-
cense servers are provided, it is difficult for students who actually
need the application software to be allowed to use it. Students
who do not belong to the corresponding department can waste a
limited number of licenses. In addition, if the requested appli-
cation software should be used after sufficient ethics and com-
pliance education, the administrators will not want the other stu-
dents to use it.

Note that, as described above, if a disk image distribution sys-
tem is used with two or more images, the above problem is solv-
able to some extent [26]. Individual application software environ-
ments can be created by distributing a different disk image for the
PC room in every department. This method, however, increases
the number of model disk images which the administrators have
to maintain. This leads to an increase in co in Eq. (1), as shown
in Section 2. Moreover, if the target is changed into a subset of
students in that department and the former type of image distri-
bution system described in the previous subsection is used in that
institution, this method cannot address the situation.

There is a way to allow teachers, or perhaps students, to create
their own disk images and maintain them [27], [28], [29]. This
method, however, is not universal since it requires the teachers,
or the students, to have certain amount of skill and knowledge
about computers. Instead of having flexibility, the cost to support
them becomes high.

Furthermore, even when the latter type of the image distribu-
tion system described in the previous subsection is used, appli-
cation software environments on the educational PCs are fixed
after they are started. Teachers cannot dynamically change the
environments during their classes.

5. Proposed Flexible Management Method
with Execution Control

To address the problem described in the previous section, a
flexible method to create individual application software environ-
ments, which does not rely on creating specific model disk im-
ages, is proposed in this paper. The proposed method controls
the execution of application software on each educational PC in
accordance with policies from departments or teachers. Teachers
as well as administrators can directly and dynamically change its
configuration during class.

A functional structure of the proposed method is shown in

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

Fig. 2 A functional structure of the proposed method.

Fig. 2. The proposed method has three components. One is Pol-

icy Enforcement Point (PEP). Another is Policy Administration

Point (PAP). The other is Policy Decision Point (PDP).
PEP is deployed on each educational PC. It actually controls

the execution of application software in accordance with decided
policies from its PDP. PAP submits changes in policies to its
PDP on behalf of teachers. The teachers can modify their poli-
cies using their PAP. PDP on the policy decision server has a re-
sponsibility for policy decisions. It stores policies from its PAPs
with its policy database. When a PEP requests policies for the
corresponding educational PC or student, PDP searches its policy
database, and replies with the result. PDP also actively notifies
its PEPs of changes to its policy database.

Details of these components are described in the following sub-
sections.

5.1 Policy Enforcement Point (PEP)
PEP is deployed on each educational PC to directly control

the execution of application software in accordance with decided
policies from its PDP. Since it is indispensable for the proposed
method, it is configured to start automatically as a service when
each educational PC is started. Students must not be allowed to
terminate the service.

When starting up, each PEP requests initial policies (initial re-
quest) associated with the combination of corresponding user ID
and IP address of its educational PC. After receiving a reply,
the PEP enforces the initial policies on the educational PC. The
received initial policies contain a default policy for the combina-
tion. It determines default rules for unspecified application soft-
ware. Students have rights to execute all of the application soft-
ware except for those which are expressly denied if retrieval of
the default policy is set to permit. They cannot use all of the ap-
plication software except for those which are expressly allowed
if their default policy is set to deny.

After initial setup, the PEP waits for additional instructions
from its PDP. If associated policies stored in the policy database
are changed, the PEP receives the modifications from the PDP.
The PEP then enforces the new policies on its educational PC.
If the use of certain application software running on the educa-
tional PC is changed into prohibition, the PEP urges its student to
quit it and finally forces it. The PEP also requests policies (on-
demand request) to its PDP each time the student tries to use the

application software whose simultaneous use is limited. Without
obtaining permission, the PEP continues restricting the use of the
corresponding application software.

As for the identification of certain application software, there
are possibly two ways. One is based on the name or path of the
corresponding executable file. The other is based on its hash.
The proposed method employs the latter to prevent students from
spoofing allowed application software. A file that is renamed or
moved to other folders results in an identical hash [23]. Thus,
students cannot avoid deny rules just by renaming or moving ex-
ecutable files.

Note that if the students could change unused bytes of these
executable files, the students could avoid the deny rules. This
problem could be solved by restricting the execution of all of the
application software whose executable file does not have valid
digital signatures. Our prototype, described later in Section 6, did
not employ this method for the following reasons. First, there is a
lot of application software whose executable file is not digitally-
signed at present and thus it is hard to manage educational PCs
based on this method. Next, according to the warning on their
user interface, certificate rules in Software Restriction Policies,
described later in Section 6.1, have a performance issue. Also,
individual rules cannot be defined for multiple executable files
digitally signed by the identical software vendor using certificate
rules in the Software Restriction Policies. Finally, we thought that
the risk was acceptable for the management of educational PCs
as the attacks require a certain level of skills and many students
will not attempt the attacks by taking risks.

5.2 Policy Administration Point (PAP)
PAP is used to configure policies in the policy database. Au-

thorized teachers as well as the administrators can create indi-
vidual application software environments at any time using their
PAP. If a teacher wants to change the enforcement policies in
his or her class, the teacher submits a new policy along with the
specified user ID or IP address (or subnet address). We tried to
prevent co,pro(1) and co,pro(nm) in Eq. (4) from increasing, by al-
lowing teachers themselves to directly configure their policies.

Since the subnet address for a specific classroom is always
fixed, using subnet addresses is simple for normal classes. As
for using user IDs, the current version of the proposed system
assumes that teachers have the lists of user IDs of registered stu-
dents for their classes in advance. For example, in our university,
the teachers can get the lists of student IDs of registered students
from the academic affairs system, and they can convert the lists
into the lists of user IDs using another web-based tool. A way to
cooperate with other systems to simplify this operation has to be
discussed in our future work.

PAP also has functions to specify the number of simultaneous
use for certain application software. Floating license options are
supported with this function even when no special license servers
are provided. Although there is a case where multiple applica-
tions (or multiple versions of application software) are associated
with a single license (e.g., a software suite which consists of mul-
tiple applications), the proposed method does not currently sup-
port this case. To handle this, a sophisticated application group-

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

ing technique is needed, which we have started to address [30].
Details will be considered in our future work. PAP also has a
function to register the default policy.

Moreover, as described in the previous subsection, the pro-
posed method employs the hash of the executable file for appli-
cation software to identify and control its execution. Teachers
have to register the hash of the executable file for the application
software before they can configure policies for the application
software. Hence, PAP has another function to help the teachers
calculate and register the hash.

When teachers log out, their PAP notifies its PDP of it to delete
their policies from the policy database since it is considered that
they finished their class.

5.3 Policy Decision Point (PDP)
PDP on the policy decision server stores policies in the policy

database and has the responsibility for policy decisions. When
a request from each PEP arrives, the PDP searches its policy
database with the specified user ID and IP address, and replies
with a result. The PDP checks the number of simultaneous use as
well if it is limited for the associated application software.

Since PDP can be a single point of failure, special care for
high availability is needed. Current virtualization and redundancy
technologies can help this. Note that, if PDP consists of two
servers for redundancy (e.g., an active PDP and a standby PDP),
the policy databases on both servers have to be synchronized [31].
Since how to treat the single point of failure affects cs in Eq. (1),
a countermeasure has to be carefully selected according to the
required service level.

PDP also has a function to notify its PEPs of changes in its

Fig. 3 A flowchart for determining the result.

policy database. If teachers add or delete their policy using their
PAP, the PDP checks whether certain PEP is affected with the
modification or not. First, the PDP creates the list of running
PEPs associated with the added or deleted policy. Then, for each
PEP on the list, the PDP searches its policy database again, and
sends its result.

PDP stores policies from administrators and from teachers sep-
arately in its policy database. More precisely, it separately stores
those policies for each default policy.

It first searches policies from administrators. As a resulting ac-
tion, the administrators can specify one of the following four ac-
tions: permit, deny, weak permit, or weak deny. If permit or deny
is selected in the matched policy, PDP replies with the resulting
action immediately. Otherwise, PDP subsequently searches for
policies from teachers. As a resulting action, teachers can specify
either of the following two actions: permit or deny. If a matched
policy is found in the policies from teachers, PDP replies with the
resulting action. Otherwise, PDP replies with permit (or deny)
when weak permit (or weak deny) was specified in the matched
policy from administrators. PDP finally replies with permit (or
deny) when the default policy is permit (or deny).

The proposed method employs this kind of hierarchy in order
for the administrators not to lose definitive decisions. The intro-
duction of weak permit and weak deny enables the administrators
to delegate their authority to the limited scope.

A flowchart of this determining process including considera-
tion of simultaneous use is summarized in Fig. 3. If the number of
simultaneous use for certain application software is limited when
an initial request arrives, PDP replies by tentatively denying to
save finite resources. PDP repeats this process when policies for

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

Fig. 4 An operation procedure of the proposed method.

multiple applications are requested (e.g., when receiving an initial
request).

5.4 Operation Procedure
An operation procedure of the proposed method is shown in

Fig. 4. It shows the procedure from before a student logs in to
an educational PC to after a teacher logs out of the system. The
teacher changes his or her policies during his or her class. Note
that Processing time 1 and Processing time 2 are referenced later
in Section 6.4. The operation procedure, consisting of three kinds
of procedures, is depicted in Fig. 4 and can be summarized as fol-
lows.

First, the initial procedure after the students’ login is described.
When a student logs in to an educational PC (1-1), the PEP on the
educational PC requests initial policies to its PDP by informing
the PDP of the associated user ID and IP address (1-2). Receiving
the request, the PDP searches its policy database (1-3) and replies
with the initial policies for the requesting PEP (1-4). Receiving
the reply, the PEP enforces the received initial policies (1-5).

Next, the policy configuration procedure during classes is de-
scribed. When a teacher logs in to another educational PC and
configures his or her policy (suppose that it is related to the stu-
dent) using the PAP on his or her educational PC (2-1), the PAP
submits the new policy to its PDP (2-2). Receiving the submis-
sion, the PDP adds the new policy to its policy database (2-3) and
acknowledges the submission to the PAP (2-4). The PDP then
searches its policy database to find related PEPs (2-5) and noti-
fies the PEPs of the modification of its policies (2-6). Receiving
the notification, each PEP enforces the received new policy (2-7).

Finally, the cleanup procedure after classes is described. When
the teacher logs out of the system after his or her class finishes
(3-1), the PAP notifies its PDP of it (3-2). Receiving the notifica-

tion, the PDP deletes his or her policies from its policy database
(3-3) and acknowledges the notification to the PAP (3-4). The
PDP then searches its policy database to find related PEPs (3-5)
and notifies the PEPs of the modification of its policies (3-6). Re-
ceiving the notification, each PEP enforces the modified policies
(3-7).

6. Implementation

Execution Control Program, Configuration Tool, and Policy

Decision Server were implemented as prototypes of PEP, PAP,
and PDP, respectively. Since they were prototypes, they did not
have all required features including precise error management
features nor were not fully optimized for scalability yet. For ex-
ample, no indexes were created on the Policy Database. Mutual
authentication between those components was not implemented,
though use of SSL authentication and encryption will be a can-
didate. To prevent co,pro(1) and co,pro(nm) in Eq. (4) from increas-
ing, it would be reasonable to use long-lived (half or all of the
contract period of the educational system) certificates within rel-
atively closed networks like networks for educational systems.

We conducted some basic operation tests of these prototypes
and confirmed that they worked as we expected. We also evalu-
ated the fundamental performance of the prototypes.

Details of the prototypes, basic operation tests, and fundamen-
tal performance evaluations are shown in the following subsec-
tions.

6.1 Execution Control Program
The Execution Control Program was implemented in C#.
First of all, a function to control the execution of certain ap-

plication software was implemented using Software Restriction
Policies in Group Policy, as described above in Section 3. More
precisely, not those in Domain Group Policy for OUs, but those in
Local Group Policy for local computer were utilized, since OUs
are usually defined as relatively static units such as one’s organi-
zation for manageability.

Software Restriction Policies have four types of rules to con-
trol the execution of application software: hash rules, certificate
rules, path rules, and Internet zone rules [23]. Hash rules identify
application software based on the hash of associated executable
file. Certificate rules identify application software based on the
signer of the digital signature for the associated executable file.
Individual rules cannot be defined for multiple executable files
digitally signed by the identical software vendor using certificate
rules as described above in Section 5.1. Path rules identify ap-
plication software based on the path of the associated executable
file. Internet zone rules only apply to files with the .msi extension,
which are Windows Installer packages.

Rules for specific application software are implemented with
the execution control using hash rules in the Software Restriction
Policies as designed above in Section 5.1. The execution control
using hash rules in the Software Restriction Policies is performed
when the following three data are written in the registry. One
is HashAlg (for Hash Algorithm), another is ItemData, and the
other is ItemSize. Since MD5 is used for the calculation of the
hash, HashAlg is always 32,771 (in decimal). ItemData contains

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

the hash of the associated executable file. ItemSize includes the
size of the executable file. When receiving policies from its Pol-
icy Decision Server, each Execution Control Program adds these
three data into the registry or deletes them from the registry.

Default deny policies are implemented using the execution
controls using path rules in the Software Restriction Policies. An
asterisk representing a wild-card character is written into the reg-
istry as a specified path. This means use of all of the application
software is prohibited on that PC. Note that since hash rules have
priority over path rules, the execution of application software that
students are allowed to use is controllable using hash rules even
under default deny policies.

A feature to urge and force students to quit specified applica-
tion software was implemented as follows. First, each Execution
Control Program extracts all of the processes during execution by
using a class library of C#. Then it compares hashes of the ex-
ecutable files for these processes with the hash of the executable
file for the specified application software. If a matched process
is found, the Execution Control Program displays a message to
urge a student to quit the application software. The student can
preserve contents of the current work at this stage. After a definite
period of time, the program issues a close command to alert the
student that he or she does not have much time left. Nevertheless
the student still uses the application software after another defi-
nite period of time. Then, the Execution Control Program issues
a kill command to force the application software to quit.

Moreover, each Execution Control Program has a user inter-
face for students. Before using certain application software that
the institution has a limited number of licenses for, a student has
to push the button corresponding to the application software on
his or her Execution Control Program to issue an on-demand re-
quest. This button also has other roles to show the student current
policies and to let the student release the right of use when he
or she finishes using the associated application software whose
simultaneous use is limited. When the student logs out of the ed-
ucational PC, the Execution Control Program notifies the Policy
Decision Server of it using its closing procedure.

In actual environments, there are several cases when some error
management features are required, such as when the interruption
of power supply or network access for specific or all educational
PCs occurs. In these cases, the Execution Control Program can-
not complete its closing process to release the right of use for the
application software whose simultaneous use is limited or cannot
receive directions from the Policy Decision Server. Our current
prototypes do not have any specialized countermeasures for these.
This is a remaining implementation issue though timeout and re-
transmission mechanisms may address it.

6.2 Configuration Tool
The Configuration Tool was also implemented in C#.
A screenshot of the Configuration Tool is shown in Fig. 5. It

has six tabs: login tab, policy tab, simultaneous use tab, default

policy tab, application software tab, and logout tab. The login
tab and logout tab are used for teachers to log in to and logout
of their Configuration Tool, respectively. Currently, authentica-
tion and authorization mechanisms do not cooperate with the in-

Fig. 5 A screenshot of the Configuration Tool.

tegrated authentication system of our university. This extension
will be included in our future work. Well-used LDAP-based au-
thentication and authorization will be candidate solutions.

Figure 5 shows a screenshot when the policy tab is selected.
This tab is used for teachers to manage their current policies. Af-
ter inputting its configuration parameters into each combo box
and text box, a teacher pushes the add button. Then, the Configu-
ration Tool submits the input policy to its Policy Decision Server.
The Configuration tool also displays the input policy on the list
box on the lower part. To delete a submitted policy, the teacher se-
lects the corresponding policy and pushes the delete button. The
current prototype has not provided a way to reorder the regis-
tered policies in arbitrary order. A new policy is simply added as
the most prior policy. It also currently has no feature to apply the
same policy to groups of students without using subnet addresses.
These features will be included in our future work.

The simultaneous use tab is used for teachers to configure the
number of allowed simultaneous use of the specific application
software. After inputting its configuration parameters (the num-
ber of allowed simultaneous use, user ID, IP address (or subnet
address), and target application software) into each combo box
and text box, a teacher pushes the add button (it is on the simulta-
neous use tab and is not shown in Fig. 5). Then, the Configuration
Tool submits the input policy of the simultaneous use to its Policy
Decision Server. The Configuration Tool also displays the input
policy of simultaneous use on the list box on the lower part. To
delete a submitted policy of simultaneous use, the teacher selects
the corresponding policy and pushes the delete button (it is also
on the simultaneous use tab and is not shown in Fig. 5).

The default policy tab is used for teachers to change the default
policy for each student. After inputting its configuration parame-
ters (default policy, user ID, and IP address (or subnet address))
into each combo box and text box, a teacher pushes the add but-

ton (it is on the default policy tab and is not shown in Fig. 5).
Then, the Configuration Tool submits the input default policy to
its Policy Decision Server. The Configuration Tool also displays
the input default policy on the list box on the lower part. To delete
a submitted default policy, the teacher selects the corresponding
policy and pushes the delete button (it is also on the default policy
tab and is not shown in Fig. 5).

The application software tab is used for teachers to register the
hash of the executable file for unregistered application software.
The open button (it is on the application software tab and is not
shown in Fig. 5) helps each teacher to input its configuration pa-

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

Fig. 6 Tables in the Policy Database.

rameters: file name, file path, file hash, and file size. When the
teacher pushes this button, the list of all of the executable files
on his or her educational PC is displayed. All the teacher has to
do at this point is to select the intended executable file from this
list. Above four parameters are displayed automatically after the
calculation of the hash of the executable file. The Configuration
Tool submits these parameters when the teacher pushes the sub-

mit button (it is also on the application software tab and is not
shown in Fig. 5).

6.3 Policy Decision Server
The Policy Decision Server was implemented in Perl. MySQL

was selected as the DBMS for the Policy Database.
The following ten kinds of tables were created in the Pol-

icy Database: Policy Table for Administrators, Policy Table for

Teachers, Allowed Number Table for Administrators, Allowed

Number Table for Teachers, Allowed Student Table, Student Ta-

ble, Default Policy Table, Application Software Table, Adminis-

trator Table, and Teacher Table. Policy Table for Administrators
and Policy Table for Teachers exist for each default policy. A
figure of the tables in the Policy Database is shown in Fig. 6.

The Policy Tables for Administrators and Policy Tables for
Teachers are used to store policies from administrators and teach-
ers, respectively. Each record in these tables has the application
ID, resulting action (permit, deny, weak permit, and weak deny
for administrators, and permit or deny for teachers), associated
user ID and IP address (or subnet address), and registrant user
ID. When a policy from a teacher or an administrator has arrived,
the Policy Decision Server adds or deletes the associated record.

The Allowed Number Table for Administrators and Allowed
Number Table for Teachers store the number of allowed simulta-
neous use. The limitation of simultaneous use is controlled based
on these tables. Each record in those tables has application ID,
the number of allowed simultaneous use, associated user ID and
IP address (or subnet address), and registrant user ID. When a
policy of simultaneous use from a teacher or an administrator has
arrived, the Policy Decision Server adds or deletes the associated
record.

The Allowed Student Table holds the application ID and user
ID and IP address of all of the students who are currently al-
lowed to use the corresponding application software. Further use
of certain application software is prohibited when the number
of records corresponding to the application software reaches the
number of simultaneous use defined in the Allowed Number Ta-

bles. When the Policy Decision Server receives a notification of
the release of the right of use for application software whose si-
multaneous use is limited, from an Execution Control Program,
it deletes the corresponding record from the Allowed Student Ta-
ble. It also deletes the corresponding records from the Allowed
Student Table when it receives the notification of logout of a stu-
dent.

The Student Table holds user ID and IP address of all of the
students who currently log in to educational PCs. When a student
logs in to an educational PC, its Execution Control Program sends
an initial policy request. The Policy Decision Server obtains the
user ID and IP address of the student from this request and adds it
into the Student Table. When the Policy Decision Server receives
the notification of logout of the student, it deletes the correspond-
ing record from the Student Table.

The default action of students is specified in the Default Policy
Table. Each record holds the default action, associated user ID
and IP address (or subnet address), and registrant user ID.

The Application Software Table holds parameters to identify
specific application software and control its execution on each
Execution Control Program. Each record in this table has the ap-
plication ID, file name, file path, file hash, and file size of the
executable file for the corresponding application software.

The Administrator Table and Teacher Table hold the user ID
and password of all of the administrators and all of the teachers,
respectively. Each record in the Teacher Table also has the current
IP address of an associated teacher.

First, when a request (an initial or on-demand request) from
an Execution Control Program has arrived, the Policy Decision
Server decides a response based on the contents of its Policy Ta-
bles and Allowed Number Tables. If the current default policy
of the associated Execution Control Program represents permit,
then the Policy Tables for the default permit is used. Otherwise,
the Policy Decision Server refers to the Policy Tables for the de-
fault deny.

The Policy Decision Server determines the most appropriate
policy for the requesting Execution Control Program by sequen-
tially issuing SQL requests to these tables. For each table, it ex-
tracts matched policies using a select statement. As the subnet
addresses are stored as simple decimal digit sequences with dots
and a slash in the current prototypes, a Perl function checking
whether an IP address (also stored as a simple decimal digit se-
quence with dots) is within a subnet address or not is called when
the matched policies are described using subnet addresses.

Policy Tables for Administrators have priority over Policy Ta-
bles for Teachers in order for the administrators not to lose defini-
tive controls of the execution of application software, as already
described in Section 5.3. Administrators should not use permit
policies along with deny all policies to describe user or device li-
cense options so that teachers can disallow the use of correspond-
ing application software. The administrators should use weak
permit or weak deny policies instead.

The Allowed Number Table for Administrators also has pri-
ority over Allowed Number Table for Teachers, though we sup-
pose that it is quite rare that both an administrator and a teacher
configure the number of allowed simultaneous use for the same

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

Table 1 An example of Policy Table for Administrators for default permit.

Application ID Resulting action IP address (subnet address)

1 Weak permit 192.0.2.0/24
1 Deny 0.0.0.0/0

2 Weak deny 192.0.2.0/24
2 Deny 0.0.0.0/0

Table 2 An example of Allowed Number Table for Administrators.

Application ID Allowed number IP address (subnet address)

1 50 192.0.2.0/24

application software.
Tables 1 and 2 show examples of a part of the Policy Table

for Administrators for default permit and Allowed Number Table
for Administrators, respectively. Use of application 1 is restricted
only to a specific PC room and its simultaneous use is limited to
fifty. Teachers in the PC room can still disallow the execution of
the application in their classes. Use of application 2 is also re-
stricted only to the specific PC room. Students are, however, not
allowed to use the application even in the PC room without an
explicit allowance from teachers.

Next, when a request for adding or deleting a policy from the
Configuration Tool, the Policy Decision Server first specifies Exe-
cution Control Programs affected by the policy change. It utilizes
the Student Table to create the list of affected Execution Con-
trol Programs. It calls the above Perl check function for each
record in the Student Table to extract the affected Execution Con-
trol Programs when the added or deleted policy is described using
a subnet address to specify its targets. The Policy Decision Server
then reevaluates the policies for each affected Execution Control
Program and sends the resulting policies to the Execution Control
Program.

Moreover, when new managed application software is submit-
ted from a teacher, the Policy Decision Server searches its Appli-
cation Software Table. When the application software that has the
identical hash does not already exist, the Policy Decision Server
registers its application ID, file name, file path, file hash, and
file size on its Application Software Table. The Policy Decision
Server also sends these parameters to the Execution Control Pro-
grams and Configuration Tools currently running.

6.4 Basic Operation Tests and Fundamental Performance
Evaluations

We prepared two PCs having the Execution Control Program
as educational PCs for students, one PC having the Configuration
Tool as an educational PC for teachers, and one Policy Decision
Server within an experimental network. Some basic operation
tests including the following were conducted and all of the funda-
mental features of the proposed method were confirmed to work
as expected.
• Test for behavior against the initial request
• Test for behavior against the on-demand request
• Test for behavior against the change of policy
• Test for behavior against the change of managed application
Moreover, we evaluated the fundamental performance of the

prototypes within the above experimental environments. To in-
vestigate scalability of the proposed method, two kinds of pro-

cessing time of the Policy Decision Server were measured since
a large number of multiple simultaneous requests or notifications
were created within the associated processes, compared to the
other processes.

One is the time from just start receiving an initial request (after
the accept socket function and before the recv socket function in
the source code of the Policy Decision Server program, which is
omitted due to space limitations) and to just finish replying initial
policies (after the close socket function in the source code of the
Policy Decision Server program) [32]. It is the time to process
the operations (1-2)–(1-4) in Fig. 4, as shown as Processing time
1 in Fig. 4.

We measured this processing time to evaluate the tolerance for
simultaneous start of educational PCs. The parameters affect-
ing this measurement contain the number of educational PCs, the
number of rules on the Policy Tables and Allowed Number Ta-
bles, and the number of application software in the Application
Software Table. Among these parameters, the numbers of rules
and application software affect the database search time. The
number of rules is affected by the numbers of specific groups for
each application software, members of the groups, and PC rooms
(subnet addresses) in turn.

As in a typical educational institution, this paper has the fol-
lowing presumptions. The number of application software whose
execution has to be separately controlled is within a dozen or a
few dozen at most. The number of specific groups for each appli-
cation software is within a dozen. The number of members of the
groups, such as the number of students taking a specific class, is
within several dozen or a few hundred at most. The number of PC
rooms is within a dozen or a few dozen at most. Recent database
servers can select specific records from several tens of thousands
of records in a short amount of time though it needs some per-
formance tuning of the database. We thus chose the number of
educational PCs as the only variable parameter in this paper. 50,
100, and 150 Execution Control Programs were emulated on one
PC, respectively. These numbers translate to 5, 10, and 15 per-
cent of the educational PCs in our university start almost simul-
taneously. Multiple initial requests were received almost simulta-
neously (within a few seconds) on the Policy Decision Server in
the experiments.

Following the above supposition, we prepared five kinds of
managed application software and ten records of policies for each
application (fifty records in total) within the Policy Table for
Teachers for default permit. The number of rules for each appli-
cation was chosen based on the number of maximum PC rooms
(subnet addresses) in our assumptions. This number may be a few
thousand at most when user IDs are used for describing the rules.
We let the Policy Table for Administrators for default permit and
both Allowed Number Tables have no records, for simplicity. We
had each record of policies within the Policy Table for Teach-
ers specify the corresponding Execution Control Programs using
only user IDs and only subnet addresses, respectively, and had
no record have a policy related to the requests. That is, all five
kinds of managed application software were allowed to use by
the default policy.

We evaluated whether or not the processing times were small

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

Table 3 Evaluation results when all of the policies were described using
only user IDs.

Operation # of Execution Processing time
Control Programs Ave. [s] Min. [s] Max. [s]

50 0.425 0.235 0.508
(1-2)–(1-4) 100 0.672 0.249 0.858

150 0.748 0.258 1.02

(2-3)–(2-5) 1 0.002 0.002 0.003

enough against the time to finish starting educational PCs, that is
about a few minutes.

The other is the time from just start adding a new policy and
to just finish searching the Policy Database to find the Execution
Control Programs affected by the modification. It is the time to
process the operations (2-3)–(2-5) in Fig. 4, as shown as Process-
ing time 2 in Fig. 4. We measured this processing time to evaluate
the response time to modify the policies during classes. Since we
have about a thousand educational PCs, we inserted a thousand
records into the Student Table in advance to emulate the maxi-
mum number of login user. We prepared five kinds of managed
application software including one corresponding to the newly
added policy and ten records of policies for each application (fifty
records in total) within the Policy Table for Teachers for default
permit, following the above assumption. We let the Policy Table
for Administrators for default permit and both Allowed Number
Tables have no records, for simplicity.

We had each policy including newly added specify the corre-
sponding Execution Control Programs using only user IDs and
only subnet addresses, respectively. A policy related to only one
of the Execution Control Program (the corresponding student was
listed in the last record in the Student Table) was added using
the Configuration Tool when these policies were described using
only user IDs. A policy related to 50, 100, and 150 Execution
Control Programs (the corresponding students were listed as the
last 50, 100, and 150 records in the Student Table, respectively)
was added, respectively, using the Configuration Tool when these
policies were described using only subnet addresses. As it was
difficult to prepare dozens of educational PCs for students within
the experimental environments, actual transmissions of the noti-
fication message to each corresponding Execution Control Pro-
gram (in operation (2-6) in Fig. 4) were omitted (by commenting
out connect and send socket functions) in this measurement.

We evaluated whether or not the processing times were small
enough against the time that teachers can wait during their
classes, that is within about a dozen seconds.

The results of the evaluations are shown in Tables 3 and 4.
Tables 3 and 4 show the results when all of the policies were de-
scribed using only user IDs and only subnet addresses, respec-
tively. They are averages, minimums, and maximums of fifty
measurements. Note that, some of them are average of averages,
average of minimums, and average of maximums of 50, 100, and
150 processing times, respectively. The specifications of the Pol-
icy Decision Server used for these evaluations are shown in Ta-
ble 5. It is not a high-performance computer but an average desk-
top computer.

As shown in Tables 3 and 4, the processing time of opera-
tions (1-2)–(1-4) was small, compared to about a few minutes.

Table 4 Evaluation results when all of the policies were described using
only subnet addresses.

Operation # of Execution Processing time
Control Programs Ave. [s] Min. [s] Max. [s]

50 0.802 0.592 0.902
(1-2)–(1-4) 100 1.49 0.941 1.70

150 1.84 0.963 2.21

50 0.130 0.008 0.252
(2-3)–(2-5) 100 0.260 0.009 0.503

150 0.380 0.009 0.747

Table 5 The specifications of the Policy Decision Server used for our ex-
periments.

OS Fedora 15

CPU Intel R© CoreTM2 Duo Processor E7500 (2.93 GHz)

Memory capacity 2 GB

Moreover, the processing time of operations (2-3)–(2-5) was also
small, compared to about a dozen seconds. These results show
that our prototype did not have significant scalability limitations
within these fundamental performance evaluations though we
have to further evaluate its performance with other remaining fea-
tures, such as mutual authentication between the components of
the proposed method.

7. Conclusions

In this paper, a flexible method to manage application software
on educational Windows PCs has been proposed and its prototype
was implemented.

First, the management cost of educational PCs was formulated
and related work was discussed. Then, the traditional method
using a disk image distribution system and its problem were de-
scribed. The problem was that it robbed the administrators of the
flexibility of management. It was hard for the administrators to
create individual application software environments without sig-
nificant efforts by the administrators.

To address this problem, the proposed method controls the exe-
cution of individual application software on each educational PC.
It lets the administrators restrict use of application software to
specific groups of users or educational PCs without relying on
creating specific model disk images, which causes heavy burden
on the administrators. Teachers as well as the administrators can
directly and dynamically change its configuration to apply any
policies at any time. The administrators do not lose definitive de-
cisions about the execution control of application software in the
proposed method.

In future work, we plan to conduct a field test to evaluate the
performance of the proposed system more precisely and to find
any administrative issues of the proposed method. Some already-
described future work including an application grouping tech-
nique described in Section 5.2 will be considered. A method to
detect changes in hashes of the executable files for managed ap-
plication software and update the corresponding registered hashes
automatically will also be established, which we also already
started to address [30]. We will have to consider a way to al-
leviate the burden on teachers newly created with the proposed
method as well.

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

References

[1] Bo, Y., Yingfang, L., Junsheng, L. and Jianhong, S.: The Impact of
Computer Based Education on Computer Education, Springer CCIS,
Vol.234, pp.1–9 (2011).

[2] Jianhong, S.: Solving Strategies Research for the Negative Impact
of Computer Technology on Education, Proc. ETCS 2010, Vol.1,
pp.671–674 (2010).

[3] Teramoto, T., Okada, T. and Kawata, S.: A Distributed Education-
Support PSE System, Proc. e-Science 2007, pp.516–520 (2007).

[4] Schaffer, H.E., Averitt, S.F., Hoit, M.I., Peeler, A., Sills, E.D. and
Vouk, M.A.: NCSU’s Virtual Computing Lab: A Cloud Computing
Solution, Computer, Vol.42, No.7, pp.94–97 (2009).

[5] Masuda, H.: The Large Scale Educational Computer Systems, IPSJ
Magazine, Vol.45, No.3, pp.225–226 (2004).

[6] Fujiwara, M., Kawano, K. and Yamai, N.: An Execution Control Sys-
tem for Application Software Reducing Administrative Burden of Ed-
ucational PCs, Proc. C3NET 2012, pp.375–380 (2012).

[7] Fujiwara, M., Kawakami, T., Kawano, K. and Yamai, N.: On-demand
Configuration Feature of Target Programs Manageable for Teachers on
Application Execution Control System, Proc. IOTS 2011, Vol.2011,
pp.59–66 (2011).

[8] Kawakami, T., Kawano, K. and Yamai, N.: Teacher Configurable Exe-
cution Control System for Application Software on Educational Win-
dows PCs, Proc. IOTS 2010, Vol.2010, pp.1–8 (2010).

[9] Microsoft Windows, Microsoft (online), available from
〈http://windows.microsoft.com/en-us/windows/home〉 (accessed
2013-09-26).

[10] OS X Mountain Lion: Apple (online), available from 〈http://www.
apple.com/osx/〉 (accessed 2013-09-26).

[11] The Community ENTerprise Operating System: CentOS Project (on-
line), available from 〈http://www.centos.org/〉 (accessed 2013-09-26).

[12] The world’s most popular free OS | Ubuntu: Canonical (online), avail-
able from 〈http://www.ubuntu.com/〉 (accessed 2013-09-26).

[13] Akdemir, O. and Oguz, A.: Computer-Based Testing: An Alternative
for the Assessment of Turkish Undergraduate Students, Computers &
Education, Vol.51, No.3, pp.1198–1204 (2008).

[14] Papanastasiou, E.C.: Computer-Adaptive Testing in Science Educa-
tion, Proc. CBLIS 2003, pp.965–971 (2003).

[15] Application Virtualization: Microsoft (online), available from
〈http://technet.microsoft.com/en-us/appvirtualization/〉 (accessed
2013-05-27).

[16] XenApp: Citrix (online), available from 〈http://www.citrix.com/
products/xenapp/overview.html〉 (accessed 2013-05-27).

[17] VMware ThinApp: VMware (online), available from 〈http://www.
vmware.com/products/thinapp/overview.html〉 (accessed 2013-05-
27).

[18] Kaspersky Endpoint Security for Business Select: Kaspersky (online),
available from 〈http://usa.kaspersky.com/business-security/endpoint-
select〉 (accessed 2013-05-27).

[19] McAfee Application Control: McAfee (online), available from
〈http://www.mcafee.com/us/products/application-control.aspx〉
(accessed 2013-05-27).

[20] Wingnet: Computer Wing (online), available from 〈http://www.cwg.
co.jp/?page id=141〉 (accessed 2013-05-27).

[21] Group Policy: Microsoft (online), available from 〈http://technet.
microsoft.com/en-us/library/cc725828(WS.10).aspx〉 (accessed 2013-
05-27).

[22] What is the difference between a domain, a workgroup, and a home-
group?: Microsoft (online), available from 〈http://windows.
microsoft.com/en-us/windows7/what-is-the-difference-between-a-
domain-a-workgroup-and-a-homegroup〉 (accessed 2013-09-19).

[23] Software restriction policies overview: Microsoft (online), available
from 〈http://technet.microsoft.com/en-us/library/cc759106(v=ws.10).
aspx〉 (accessed 2013-09-19).

[24] Group Policy management for IT pros: Microsoft (online), available
from 〈http://windows.microsoft.com/en-us/windows7/group-policy-
management-for-it-pros〉 (accessed 2013-09-19).

[25] Jian-ping, C. and Li-ping, Q.: Research and Application of the Float-
ing License Management Strategy, Proc. ICISE 2009, pp.1797–1800
(2009).

[26] Burd, S.D., Gaillard, G., Rooney, E. and Seazzu, A.F.: Virtual Com-
puting Laboratories Using VMware Lab Manager, Proc. HICSS 2011,
pp.1–9 (2011).

[27] Rindos, A., Vouk, M., Vandenberg, A., Pitt, S., Harris, R., Gendron,
D. and Danford, T.: The Transformation of Education through State
Education Clouds, IBM Global Education (2010).

[28] Li, P.: Provisioning Virtualized Datacenters through Virtual Comput-
ing Lab, Proc. FIE 2010, T3C, pp.1–6 (2010).

[29] Vouk, M., Averitt, S., Bugaev, M., Kurth, A., Peeler, A., Shaffer, H.,
Sills, E., Stein, S. and Thompson, J.: “Powered by VCL” - Using Vir-

tual Computing Laboratory (VCL) Technology to Power Cloud Com-
puting, Proc. ICVCI 2008, pp.1–10 (2008).

[30] Okamoto, D., Fujiwara, M., Kawano, K. and Yamai, N.: Target Ap-
plication Grouping Function Considering Software Updates on Appli-
cation Execution Control System, Proc. ADMNET 2013, pp.627–632
(2013).

[31] MySQL 5.6 Reference Manual: 16 Replication, Oracle (online), avail-
able from 〈http://dev.mysql.com/doc/refman/5.6/en/replication.html〉
(accessed 2013-05-27).

[32] Sockets: Client/Server Communication, perldoc.perl.org (online),
available from 〈http://perldoc.perl.org/perlipc.html#Sockets
%3a-Client%2fServer-Communication〉 (accessed 2013-09-22).

Keita Kawano received his B.E., M.E.,
and Ph.D. degrees from Osaka Univer-
sity, Osaka, Japan, in 2000, 2002, and
2004, respectively. From October 2004 to
March 2010, he was an Assistant Profes-
sor of the Information Technology Center,
Okayama University, Okayama, Japan.
From April 2010 to March 2011, he was

an Assistant Professor of the Center for Information Technology
and Management, Okayama University. Since April 2011, he has
been an Associate Professor of the same center. His research in-
terests include mobile communication networks and distributed
systems. He is a member of IEEE and IEICE.

Daisuke Okamoto received his B.E. de-
gree in engineering from Okayama Uni-
versity, Japan, in 2012. He is cur-
rently a master’s student at the Graduate
School of Natural Science and Technol-
ogy, Okayama University. His research
interests include distributed systems.

Masanori Fujiwara received his B.E.
and M.E. degrees in engineering from
Okayama University, Japan, in 2011 and
2013, respectively. He is currently with
JR WEST IT Solutions Company. His
research interests include distributed sys-
tems.

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

Nariyoshi Yamai received his B.E. and
M.E. degrees in electronic engineering
and his Ph.D. degree in information and
computer science from Osaka University,
Osaka, Japan, in 1984, 1986 and 1993, re-
spectively. In April 1988, he joined the
Department of Information Engineering,
Nara National College of Technology, as

a Research Associate. From April 1990 to March 1994, he was
an Assistant Professor in the same department. In April 1994, he
joined the Education Center for Information Processing, Osaka
University, as a Research Associate. In April 1995, he joined the
Computation Center, Osaka University, as an Assistant Professor.
From November 1997 to March 2006, he joined the Computer
Center, Okayama University, as an Associate Professor. Since
April 2006, he has been a Professor in Information Technology
Center (at present, Center for Information Technology and Man-
agement), Okayama University. His research interests include
distributed systems, network architecture and the Internet. He is
a member of IEICE and IEEE.

c© 2014 Information Processing Society of Japan


