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This paper studies a static task mapping algorithm with dynamic task switching for embedded many-core SoCs. The task mapping 
technique proposed in this paper takes into account both inter-application and intra-application parallelisms in order to fully utilize the 
potential parallelism of the many-core architecture. We set a limit to the pair of cores that a single task can be mapped on in the previous 
research. In this research, we extend the previous technique to make the mapping pattern have variety and improve the mapping results. 
We evaluate the mapping results obtained by proposed technique by comparing them with those of existing technique which is based on 
ILP. 

1. Introduction 

 Embedded System-on-Chip (SoC) architecture has 
shifted from single-core to multi-core paradigm because 
of improved power/performance efficiency, and it is now 
heading towards the many-core era. In order to fully 
utilize the high parallelism in the many-core architecture, 
mapping of application software onto cores is one of the 
important technologies. Especially in embedded SoCs, 
application mapping needs to take into account not only 
application-level parallelism (inter-application 
parallelism) but also data parallelism within applications 
(intra-application parallelism). One reason is that, unlike 
scientific applications, the amount of data parallelism 
inherent in individual embedded applications is limited. 
Another reason is that many embedded applications are 
inherently parallel.  

 This paper proposes extension of a static task 
mapping technique for homogeneous many-core SoCs 
proposed in [6]. The proposed technique considers both 
data and task parallelisms of applications, and maps 
tasks to the cores. The proposed technique maps tasks to 
the same cores if the tasks do not have to run in parallel. 
The tasks mapped onto the same cores are switched to 

each other at runtime. However, in [6], we set a limit to 
the pair of cores that a single task can be mapped on. In 
this paper, we make the mapping pattern have variety to 
improve the mapping results. 

 The rest of this paper is structured as follows. 
Related works are reviewed in Section 2. A task mapping 
technique with dynamic task switching, which is our 
previous work is explained in Section 3. Extension of the 
existing mapping technique is done in Section 4 and 
experimental results are shown in Section 5. Finally, 
Section 6 concludes this paper. 

2. Related Work 

 Application mapping for multi/many-core 
architectures has been an important research topic for 
many years. Recent studies include [1] which proposes a 
heuristic algorithm for static task mapping on multi-core 
embedded systems. The work supports task mapping to 
hardware accelerators as well as CPU cores, but data 
parallelism is not considered. In other words, a task is 
assigned a single core. Techniques presented in 
[2][3][4][5] take into account data parallelism within 
tasks as well as task parallelism. Their methods take a 
task graph as input and perform task scheduling and 
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mapping simultaneously, aiming at minimization of 
schedule length or pipeline throughput. Our work 
presented in this paper is similar to their works in a sense 
that we try to find the optimal number of cores for each 
task or application. However, our software model is 
different from theirs in that they take a task graph (i.e., a 
set of dependent tasks) of a single application as input 
and try to minimize the execution time of a single 
activation of the application or to maximize the pipeline 
throughput, while we target embedded systems where 
multiple applications run concurrently and repeatedly at 
different execution rates. The applications may be 
independent or dependent.   

 For application mapping for such embedded 
systems, we proposed static mapping techniques with 
dynamic task switching [6][7]. The dynamic task 
switching supports to switch the tasks mapped onto the 
same cores at runtime. In our previous techniques, tasks 
can be mapped on a limited number of combinations of 
the cores. In this paper, we relax the location restrictions 
of the mapping to aim for the improvement of the 
mapping result. 

3. Previous Work: Static Task Mapping with 
Dynamic Task Switching 

 This section explains a static mapping technique 
with dynamic task switching, which is our previous 
research[6]. The technique determines, for each task, the 
number of cores onto which the task is mapped, 
considering both task and data parallelisms of individual 
tasks. The mapping technique supports dynamic task 
switching, and maps tasks to the same cores if the tasks 
do not have to run in parallel. 

3.1 Many-core Architecture and Task Models 

 In this paper, we assume homogeneous many-core 
architectures with shared memory such as SMYLEref 
architecture presented in [8]. It is also assumed that the 
execution time of an application does not depend on the 
physical position of the application unless the 
application is assigned the same number of cores.  

 We assume embedded systems where multiple 
applications run in parallel. The applications are 
repeatedly executed at runtime in a cyclic way. Their 
execution can be periodic, aperiodic or sporadic, and 
their execution repetition rates may differ among 
applications. We implicitly assume that the applications 
are independent of each other. It is still possible to apply 
this work to dependent applications, but the obtained 
mapping results may not be optimal depending on how 
much the applications communicate with each other. 

3.2 Problem Description 

 In this work, applications are mapped onto cores 
in a static way. Static mapping means that application 
mapping decision is made at a design time, and the 

applications never migrate over the cores at run time. 
This reduces the runtime overhead (in terms of 
performance and memory requirement) at the cost of 
lower CPU utilization compared with dynamic mapping. 
Also, our mapping supports dynamic task switching, 
which means the tasks mapped onto the same cores are 
switched to each other at runtime. Since some tasks may 
not be executed simultaneously, sharing of cores brings 
effective CPU utilization among these tasks. Therefore, 
proposed task mapping algorithm tries to utilize the 
cores to share with tasks exclusively executed.  

 

Figure 1. Normalized performance on different number of cores. 

 In general, the execution time and energy 
consumption of an application depend on the number of 
cores which the application uses. Figure 1 shows 
normalized performance of eight application programs 
from the SPLASH-2 benchmark suite executed on the 
Graphite cycle-accurate multi-core simulator [8]. For 
each program, we changed the number of cores from 1 to 
256, and measured the number of execution cycles. The 
graph shows that eight programs feature different 
performance scalability curves. For example, the 
performance of ocean_contiguous scales up nicely 
until 128 cores, but it drops at the point of 256 cores. 
Barnes continuously scales up to 256 cores, but the 
performance improvement is relatively lower than 
ocean_contiguous. Cholesky does not scale up at 
all.  

 As we seen in Figure 1, different applications 
present different performance scalability curves, 
meaning that the optimal number of cores to be assigned 
depends on the application. In addition, we have to 
remind that the total number of cores is limited. For 
example, let us consider a scenario where we need to 
map barnes and randix onto a 64-core SoC. Of course, 
we cannot allocate 64 cores to both of the two 
applications because we have only 64 cores in total. In 
this case, assigning 32 cores to each application is a 
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natural solution.  

 In the example above, we used the normalized 
performance as a metric for application mapping, but in 
practice we need to consider other factors such as energy 
consumption. Hereafter, for generality, let gain be a 
metric which indicates not only performance but also 
energy consumption and other important factors. 

 In order to describe mapping problem, we 
introduce a concept of tile. A tile is a set of cores on 
which a single task can be mapped. Figure 2 shows an 
SoC with four cores. Fore simplicity without loss of 
generality, we assume that each task may use one, two or 
four cores. In this case, the 4-core SoC has the following 
seven ways of tiling. 

 

Figure 2. Tiles. 

 Tile 1: Core 1 

 Tile 2: Core 2 
 Tile 3: Core 3 
 Tile 4: Core 4 
 Tile 5: Cores 1 and 2 

 Tile 6: Cores 3 and 4 
 Tile 7: Cores 1, 2, 3 and 4 

 We say that two tiles are overlapped if those tiles 
have at least one identical core. In case of Figure 2, Tiles 
1 and 5 are overlapped, but Tiles 3 and 5 are not 
overlapped. Apparently, if two tasks need to run in 
parallel, the tiles of the two tasks must not be 
overlapped. 

3.3 ILP Formulation of the Mapping Problem with 
Tile Constraints 

 In order to obtain optimal results of static task 
mapping with dynamic task switching, this session 
explain our previous research [6] based on ILP 
formulation. 

 Let gainij be the gain of task i in case it is mapped 
to tile j. Then we introduce a variable mapij: mapij takes 
1 if task i is mapped to tile j, otherwise 0. In order to 
describe feasibility of the mapping result, we introduce 
two symbols:  and . 

 indicates whether two tasks need to be 
executed in parallel or not.  takes 1 if tasks 

 and  need to be executed in parallel, and 0 
otherwise.  indicates whether two tiles are 

overlapped or not.   takes 1 if tiles  and 
 are overlapped, and 0 otherwise. We assume that 

values of ,  and  are 
given. 

 Then, the task mapping problem is formulated as 
objective function (1) under the constraints (2)-(3). 

maximize:  (1) 

subject to:  (2) 

 

 

 + 
 (3) 

 Formula (2) expresses that if the task i1 and task 
i2 need to run in parallel, two tiles, i.e., tile j1 on which 
task i1 is mapped and tile j2 on which task i2 is mapped, 
cannot be overlapped. If both  and 

 are 1, either  or  should 
be 0. Formula (3) expresses that if the task  and 
task  need to run in parallel, two tiles, i.e., tile   on 
which task  is mapped and tile   on which task  
is mapped, cannot be overlapped. If both  
and  are 1, either  or  
should be 0. 

4. Extension of Mapping with Dynamic Task 
Switching 

 In the previous research, we supposed that a single 
task is mapped on the tiles prepared on the SoC. In other 
words, the way of mapping for a single task was limited 
to neighboring 2n cores. In this paper, we extend the task 
mapping technique proposed in the previous research to 
make the mapping pattern have variety and improve the 
mapping results. The task mapping problem dealt in this 
paper only considers a constraint of the number of cores 
and remove the location restrictions, while previous 
research considered the both constraints. 

4.1 Relaxing Location Restrictions 

 In this section, we remove the restrictions on a 
position of the cores that single task can be mapped onto 
to find out how the location restrictions have an impact 
on the mapping results. We supposed that single task 
should be mapped to any tile (neighboring 2n cores) in 
the previous research. However, in this paper, we 
suppose that the tasks can use the cores in any 
combination. For example, the way of using two cores 
for a single task on SoC of 16 cores was limited to eight 
patterns as shown in Figure 3. In this paper, we do not 
put location limitation on the set of cores. Therefore, the 
way of using 2 cores on this SoC is 16C2 = 120. 

1 2

3 4
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Figure 3. The way to use two cores on SoC of 16 cores 

4.2 ILP Formulation of Tile Free Mapping Problem 

 The problem is formally defined as an ILP 
problem. By solving the ILP problem, optimal task 
mapping is obtained. 

  denotes the gain of task  in case it is 
mapped with core usage pattern . Core usage pattern  
is the index of the number of cores the task uses. For 
example, if a single task is allow to use 2n cores from 1 
to 256 cores, total number of core usage patterns are nine 
(1, 2, 4, 8, 16, 32, 64, 128 and 256 cores). In this 
example,  indicates the gain value when task 1 is 
executed on eight cores.  is 1 if  task  is 
mapped to core , and 0 otherwise.  
indicates whether two tasks need to be executed in 
parallel or not, similar to task mapping problem in the 
previous work. In addition, we define three symbols, , 

 and .  is 1 if task  is mapped 
with core usage pattern , otherwise 0.  
indicates the number of cores of the usage pattern . In 
the example above,  is eight.  is 
the sum of the number of cores used by task . We 
assume that values of ,  are given. 

 Then, the task mapping problem is formulated as 
objective function (4) under the constraints (5)-(9). 

maximize:  (4) 

Subject to:  (5) 

  (6) 

  (7) 

  (8) 

 
 

 

 

(9) 

 Objective function (4) expresses the total gain of 
the tasks and is the objective function to be maximized.
Formulas (5) and (6) defines the valuable  which 

indicates the sum of the number of cores used by task . 
Formula (7) says that each task should be mapped by 
using any core usage pattern. Formula (8) says that each 
task should be mapped on at least one core. Formula (9) 
expresses that if the task  and task  need to run in 
parallel, those two tasks cannot use the same core on the 
SoC. If  is 1, either  or  
should be 0. 

5. Experiments 

 Task mapping results are obtained by solving the 
ILP problem with an ILP solver. We compared the 
proposed technique with the ILP based technique 
explained in Section 3. The ILP problem was solved with 
IBM CPLEX12.5 [10], and all experiment was 
performed on Intel Xeon 2.0GHz and 128GB memory 
machine. We performed three experiments changing the 
core usage pattern of a single task. In the first 
experiment, a single task is allowed to use 2n cores 
ranging from 1 to 256 cores. In the second experiment, 
we add some new core usage patterns for a single task. 
In the third experiment, we allow the tasks to use from 1 
to 256 cores at an interval of 1 core. We performed the 
experiment on 2n cores ranging from the number of tasks 
to 1024 cores. We prepared three sets of application 
programs based on the SPLASH-2 benchmark suite. 
Task sets 1, 2, and 3 include 8, 4, and 16 tasks 
(application programs), respectively. Task set 1 includes 
eight application programs shown in Figure 1, and task 
set 2 includes lu_non_contiguous, 
ocean_contiguous, ocean_non_contiguous, and 
water-nsquared from these eight application 
programs. Task set 3 includes the same two programs for 
each application program. Values of the two-dimensional 
matrix paralleli1i2 are randomly decided based on density 
d, which indicates the percentage of value 1. d=100% 
indicates paralleli1i2=1 for any two tasks, meaning that 
all tasks should run in parallel. On the other hand, d=0% 
indicates that all cores are available to every task. 

5.1 Experiment to Investigate the Effects of Tile 
Constraints 

 In this experiment, a single task will be mapped on 
2n cores ranging from 1 to 256 cores. Therefore, the 
number of core usage patterns for a single task will be 
nine (1, 2, 4, 8, 16, 32, 64, 128 and 256 cores). Task 
mapping results are compared with the technique we 
proposed in previous work to see how the tile limitation 
has an impact on task mapping results. 

 We varied the density d from 0% to 100%, and the 
number of cores. Figures 4-8 show the comparison of 
total gain to the previous work. We normalized the total 
gain value and the baseline is the total gain value 
obtained by task mapping technique proposed in 
previous work [6]. Each figure shows the comparison for 
different d. 

 As shown in Figures 4-8, the total gain barely 
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changed in all of the cases and the improvement was 
only around 1-6%. Similar tendency were shown in the 
results of task set 3. The results of task set 2 did not 
change at all. It can be said that increasing the number of 
tiles with different shapes does not affect the mapping 
result a lot when the core usage patterns for a single task 
are not prepared enough.  

5.2 Increase the Core Usage Pattern 

 In the experiment so far, a single task can be 
mapped on 2n cores from 1 to 256 and the total number 
of core usage patterns for a single task were nine (1, 2, 4, 
8, 16, 32, 64, 128 and 256 cores). In this experiment, we 
add some new core usage patterns whose number of 
cores in use is intermediate value of existing patterns. 
Therefore, a single core can be mapped with 16 different 
patterns (1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 
192 and 256 cores). 

 We compared the mapping results with the results 
obtained by ILP based technique we proposed in the 
previous research in similar to experience 5.1. When we 
look at Figure 4-8, we can see larger improvement in the 
mapping results compared to that of previous experiment. 
Similar tendency are shown in the results of task sets 2 
and 3. It can be said that preparing the variety of core 
usage patterns is effective to improve the efficiency of 
the whole system. 

5.3 Let Task Use Any Number of Cores 

 In this experiment, we let the tasks to use any 
number of cores from 1 to 256. Therefore, the core usage 
patterns for a single task on this mapping problem are 
256. From the results of experiments in section 5.1 and 
5.2, the larger improvement can be expected. The value 
of the gain correspond to each number of cores are 
obtained by using statistical analysis software “R” [11]. 
We applied the spline interpolation to each task set to 
interpolate the gain data. 

 As shown in Figure 4-8, the mapping results 
improved larger than experiment in section 5.2 and some 
result shows improvement of about 40%. However, in 
some cases, results are smaller than those of experiment 
5.2. This happens because of the error of the 
interpolation of the gain value. 

 The core usage of the mapping result which 
showed the large improvement (Task set 1, d=25%, 64 
cores on SoC) is shown in Table 1. We compare the core 
usage of experiment in section 5.1 and 5.3. Each value 
expresses the number of cores the task uses in the 
mapping obtained with each experiment. 

 When we look at Table 1, we can see that the core 
usage is quite different between experience 5.1 and 
experience 5.3. We can see that core usage of each task 
in experience 5.1 is similar to each other, while the way 
of using cores varies in the result of experience 5.3. We 
found that tasks can use suitable amount of cores by 

preparing various patterns of core usage. 

Table 1. Comparison of core usage of two techniques 

Task Experiment A Experiment C 
water-nsquared 32cores 33cores 

randix 32cores 9cores 
ocean_non_contiguous 32cores 63cores 

ocean_contiguous 32cores 55cores 
lu_non_contiguous 32cores 63cores 

lu_contiguous 16cores 32cores 
cholesky 16cores 1core 

barnes 32cores 31cores 

6. Conclusions 

 In this paper, we have proposed static task 
mapping technique with dynamic task switching for 
embedded many-core SoCs. We extended the existing 
task mapping technique to make the mapping pattern 
have variety. The proposed technique takes into account 
both inter-application and intra-application parallelisms 
in order to efficiently utilize the potential parallelism of 
the many-core architecture. Experimental results show 
that preparing various task usage patterns for each task is 
effective to improve the efficiency of the whole system. 

 At present, this work does not assume that 
applications have deadline constraints. In future, we will 
take into account deadline constraints of individual 
applications.  
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Figure 4. Comparison of gain (d=0%) Figure 5. Comparison of gain (d=25%) 

Figure 6. Comparison of gain (d=50%) Figure 7. Comparison of gain (d=75%) 

Figure 8. Comparison of gain (d=100%) 
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