

SoC

 525-8577 1 1-1

E-mail: junya.kaida@tomiyama-lab.org, {i-tanigu, ht}@fc.ritsumei.ac.jp

SoC

SoC

Extension of a Static Task Mapping Technique with
Dynamic Task Switching for Embedded Many-core SoCs

Junya Kaida Ittetsu Taniguchi Hiroyuki Tomiyama

Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga, 525-8577 Japan

E-mail: junya.kaida@tomiyama-lab.org, {i-tanigu, ht}@fc.ritsumei.ac.jp

This paper studies a static task mapping algorithm with dynamic task switching for embedded many-core SoCs. The task mapping
technique proposed in this paper takes into account both inter-application and intra-application parallelisms in order to fully utilize the
potential parallelism of the many-core architecture. We set a limit to the pair of cores that a single task can be mapped on in the previous
research. In this research, we extend the previous technique to make the mapping pattern have variety and improve the mapping results.
We evaluate the mapping results obtained by proposed technique by comparing them with those of existing technique which is based on
ILP.

1. Introduction

 Embedded System-on-Chip (SoC) architecture has
shifted from single-core to multi-core paradigm because
of improved power/performance efficiency, and it is now
heading towards the many-core era. In order to fully
utilize the high parallelism in the many-core architecture,
mapping of application software onto cores is one of the
important technologies. Especially in embedded SoCs,
application mapping needs to take into account not only
application-level parallelism (inter-application
parallelism) but also data parallelism within applications
(intra-application parallelism). One reason is that, unlike
scientific applications, the amount of data parallelism
inherent in individual embedded applications is limited.
Another reason is that many embedded applications are
inherently parallel.

 This paper proposes extension of a static task
mapping technique for homogeneous many-core SoCs
proposed in [6]. The proposed technique considers both
data and task parallelisms of applications, and maps
tasks to the cores. The proposed technique maps tasks to
the same cores if the tasks do not have to run in parallel.
The tasks mapped onto the same cores are switched to

each other at runtime. However, in [6], we set a limit to
the pair of cores that a single task can be mapped on. In
this paper, we make the mapping pattern have variety to
improve the mapping results.

 The rest of this paper is structured as follows.
Related works are reviewed in Section 2. A task mapping
technique with dynamic task switching, which is our
previous work is explained in Section 3. Extension of the
existing mapping technique is done in Section 4 and
experimental results are shown in Section 5. Finally,
Section 6 concludes this paper.

2. Related Work

 Application mapping for multi/many-core
architectures has been an important research topic for
many years. Recent studies include [1] which proposes a
heuristic algorithm for static task mapping on multi-core
embedded systems. The work supports task mapping to
hardware accelerators as well as CPU cores, but data
parallelism is not considered. In other words, a task is
assigned a single core. Techniques presented in
[2][3][4][5] take into account data parallelism within
tasks as well as task parallelism. Their methods take a
task graph as input and perform task scheduling and

情報処理学会研究報告
IPSJ SIG Technical Report

ⓒ 2014 Information Processing Society of Japan 1

Vol.2014-SLDM-165 No.14
Vol.2014-EMB-32 No.14

2014/3/15

mapping simultaneously, aiming at minimization of
schedule length or pipeline throughput. Our work
presented in this paper is similar to their works in a sense
that we try to find the optimal number of cores for each
task or application. However, our software model is
different from theirs in that they take a task graph (i.e., a
set of dependent tasks) of a single application as input
and try to minimize the execution time of a single
activation of the application or to maximize the pipeline
throughput, while we target embedded systems where
multiple applications run concurrently and repeatedly at
different execution rates. The applications may be
independent or dependent.

 For application mapping for such embedded
systems, we proposed static mapping techniques with
dynamic task switching [6][7]. The dynamic task
switching supports to switch the tasks mapped onto the
same cores at runtime. In our previous techniques, tasks
can be mapped on a limited number of combinations of
the cores. In this paper, we relax the location restrictions
of the mapping to aim for the improvement of the
mapping result.

3. Previous Work: Static Task Mapping with
Dynamic Task Switching

 This section explains a static mapping technique
with dynamic task switching, which is our previous
research[6]. The technique determines, for each task, the
number of cores onto which the task is mapped,
considering both task and data parallelisms of individual
tasks. The mapping technique supports dynamic task
switching, and maps tasks to the same cores if the tasks
do not have to run in parallel.

3.1 Many-core Architecture and Task Models

 In this paper, we assume homogeneous many-core
architectures with shared memory such as SMYLEref
architecture presented in [8]. It is also assumed that the
execution time of an application does not depend on the
physical position of the application unless the
application is assigned the same number of cores.

 We assume embedded systems where multiple
applications run in parallel. The applications are
repeatedly executed at runtime in a cyclic way. Their
execution can be periodic, aperiodic or sporadic, and
their execution repetition rates may differ among
applications. We implicitly assume that the applications
are independent of each other. It is still possible to apply
this work to dependent applications, but the obtained
mapping results may not be optimal depending on how
much the applications communicate with each other.

3.2 Problem Description

 In this work, applications are mapped onto cores
in a static way. Static mapping means that application
mapping decision is made at a design time, and the

applications never migrate over the cores at run time.
This reduces the runtime overhead (in terms of
performance and memory requirement) at the cost of
lower CPU utilization compared with dynamic mapping.
Also, our mapping supports dynamic task switching,
which means the tasks mapped onto the same cores are
switched to each other at runtime. Since some tasks may
not be executed simultaneously, sharing of cores brings
effective CPU utilization among these tasks. Therefore,
proposed task mapping algorithm tries to utilize the
cores to share with tasks exclusively executed.

Figure 1. Normalized performance on different number of cores.

 In general, the execution time and energy
consumption of an application depend on the number of
cores which the application uses. Figure 1 shows
normalized performance of eight application programs
from the SPLASH-2 benchmark suite executed on the
Graphite cycle-accurate multi-core simulator [8]. For
each program, we changed the number of cores from 1 to
256, and measured the number of execution cycles. The
graph shows that eight programs feature different
performance scalability curves. For example, the
performance of ocean_contiguous scales up nicely
until 128 cores, but it drops at the point of 256 cores.
Barnes continuously scales up to 256 cores, but the
performance improvement is relatively lower than
ocean_contiguous. Cholesky does not scale up at
all.

 As we seen in Figure 1, different applications
present different performance scalability curves,
meaning that the optimal number of cores to be assigned
depends on the application. In addition, we have to
remind that the total number of cores is limited. For
example, let us consider a scenario where we need to
map barnes and randix onto a 64-core SoC. Of course,
we cannot allocate 64 cores to both of the two
applications because we have only 64 cores in total. In
this case, assigning 32 cores to each application is a

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32 64 128 256

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of cores

barnes

cholesky

lu_contiguous

lu_non_contiguous

ocean_contiguous

ocean_non_contiguous

randix

water-nsquared

情報処理学会研究報告
IPSJ SIG Technical Report

ⓒ 2014 Information Processing Society of Japan 2

Vol.2014-SLDM-165 No.14
Vol.2014-EMB-32 No.14

2014/3/15

natural solution.

 In the example above, we used the normalized
performance as a metric for application mapping, but in
practice we need to consider other factors such as energy
consumption. Hereafter, for generality, let gain be a
metric which indicates not only performance but also
energy consumption and other important factors.

 In order to describe mapping problem, we
introduce a concept of tile. A tile is a set of cores on
which a single task can be mapped. Figure 2 shows an
SoC with four cores. Fore simplicity without loss of
generality, we assume that each task may use one, two or
four cores. In this case, the 4-core SoC has the following
seven ways of tiling.

Figure 2. Tiles.

 Tile 1: Core 1

 Tile 2: Core 2
 Tile 3: Core 3
 Tile 4: Core 4
 Tile 5: Cores 1 and 2

 Tile 6: Cores 3 and 4
 Tile 7: Cores 1, 2, 3 and 4

 We say that two tiles are overlapped if those tiles
have at least one identical core. In case of Figure 2, Tiles
1 and 5 are overlapped, but Tiles 3 and 5 are not
overlapped. Apparently, if two tasks need to run in
parallel, the tiles of the two tasks must not be
overlapped.

3.3 ILP Formulation of the Mapping Problem with
Tile Constraints

 In order to obtain optimal results of static task
mapping with dynamic task switching, this session
explain our previous research [6] based on ILP
formulation.

 Let gainij be the gain of task i in case it is mapped
to tile j. Then we introduce a variable mapij: mapij takes
1 if task i is mapped to tile j, otherwise 0. In order to
describe feasibility of the mapping result, we introduce
two symbols: and .

 indicates whether two tasks need to be
executed in parallel or not. takes 1 if tasks

 and need to be executed in parallel, and 0
otherwise. indicates whether two tiles are

overlapped or not. takes 1 if tiles and
 are overlapped, and 0 otherwise. We assume that

values of , and are
given.

 Then, the task mapping problem is formulated as
objective function (1) under the constraints (2)-(3).

maximize: (1)

subject to: (2)

 +
 (3)

 Formula (2) expresses that if the task i1 and task
i2 need to run in parallel, two tiles, i.e., tile j1 on which
task i1 is mapped and tile j2 on which task i2 is mapped,
cannot be overlapped. If both and

 are 1, either or should
be 0. Formula (3) expresses that if the task and
task need to run in parallel, two tiles, i.e., tile on
which task is mapped and tile on which task
is mapped, cannot be overlapped. If both
and are 1, either or
should be 0.

4. Extension of Mapping with Dynamic Task
Switching

 In the previous research, we supposed that a single
task is mapped on the tiles prepared on the SoC. In other
words, the way of mapping for a single task was limited
to neighboring 2n cores. In this paper, we extend the task
mapping technique proposed in the previous research to
make the mapping pattern have variety and improve the
mapping results. The task mapping problem dealt in this
paper only considers a constraint of the number of cores
and remove the location restrictions, while previous
research considered the both constraints.

4.1 Relaxing Location Restrictions

 In this section, we remove the restrictions on a
position of the cores that single task can be mapped onto
to find out how the location restrictions have an impact
on the mapping results. We supposed that single task
should be mapped to any tile (neighboring 2n cores) in
the previous research. However, in this paper, we
suppose that the tasks can use the cores in any
combination. For example, the way of using two cores
for a single task on SoC of 16 cores was limited to eight
patterns as shown in Figure 3. In this paper, we do not
put location limitation on the set of cores. Therefore, the
way of using 2 cores on this SoC is 16C2 = 120.

1 2

3 4

情報処理学会研究報告
IPSJ SIG Technical Report

ⓒ 2014 Information Processing Society of Japan 3

Vol.2014-SLDM-165 No.14
Vol.2014-EMB-32 No.14

2014/3/15

Figure 3. The way to use two cores on SoC of 16 cores

4.2 ILP Formulation of Tile Free Mapping Problem

 The problem is formally defined as an ILP
problem. By solving the ILP problem, optimal task
mapping is obtained.

 denotes the gain of task in case it is
mapped with core usage pattern . Core usage pattern
is the index of the number of cores the task uses. For
example, if a single task is allow to use 2n cores from 1
to 256 cores, total number of core usage patterns are nine
(1, 2, 4, 8, 16, 32, 64, 128 and 256 cores). In this
example, indicates the gain value when task 1 is
executed on eight cores. is 1 if task is
mapped to core , and 0 otherwise.
indicates whether two tasks need to be executed in
parallel or not, similar to task mapping problem in the
previous work. In addition, we define three symbols, ,

 and . is 1 if task is mapped
with core usage pattern , otherwise 0.
indicates the number of cores of the usage pattern . In
the example above, is eight. is
the sum of the number of cores used by task . We
assume that values of , are given.

 Then, the task mapping problem is formulated as
objective function (4) under the constraints (5)-(9).

maximize: (4)

Subject to: (5)

 (6)

 (7)

 (8)

(9)

 Objective function (4) expresses the total gain of
the tasks and is the objective function to be maximized.
Formulas (5) and (6) defines the valuable which

indicates the sum of the number of cores used by task .
Formula (7) says that each task should be mapped by
using any core usage pattern. Formula (8) says that each
task should be mapped on at least one core. Formula (9)
expresses that if the task and task need to run in
parallel, those two tasks cannot use the same core on the
SoC. If is 1, either or
should be 0.

5. Experiments

 Task mapping results are obtained by solving the
ILP problem with an ILP solver. We compared the
proposed technique with the ILP based technique
explained in Section 3. The ILP problem was solved with
IBM CPLEX12.5 [10], and all experiment was
performed on Intel Xeon 2.0GHz and 128GB memory
machine. We performed three experiments changing the
core usage pattern of a single task. In the first
experiment, a single task is allowed to use 2n cores
ranging from 1 to 256 cores. In the second experiment,
we add some new core usage patterns for a single task.
In the third experiment, we allow the tasks to use from 1
to 256 cores at an interval of 1 core. We performed the
experiment on 2n cores ranging from the number of tasks
to 1024 cores. We prepared three sets of application
programs based on the SPLASH-2 benchmark suite.
Task sets 1, 2, and 3 include 8, 4, and 16 tasks
(application programs), respectively. Task set 1 includes
eight application programs shown in Figure 1, and task
set 2 includes lu_non_contiguous,
ocean_contiguous, ocean_non_contiguous, and
water-nsquared from these eight application
programs. Task set 3 includes the same two programs for
each application program. Values of the two-dimensional
matrix paralleli1i2 are randomly decided based on density
d, which indicates the percentage of value 1. d=100%
indicates paralleli1i2=1 for any two tasks, meaning that
all tasks should run in parallel. On the other hand, d=0%
indicates that all cores are available to every task.

5.1 Experiment to Investigate the Effects of Tile
Constraints

 In this experiment, a single task will be mapped on
2n cores ranging from 1 to 256 cores. Therefore, the
number of core usage patterns for a single task will be
nine (1, 2, 4, 8, 16, 32, 64, 128 and 256 cores). Task
mapping results are compared with the technique we
proposed in previous work to see how the tile limitation
has an impact on task mapping results.

 We varied the density d from 0% to 100%, and the
number of cores. Figures 4-8 show the comparison of
total gain to the previous work. We normalized the total
gain value and the baseline is the total gain value
obtained by task mapping technique proposed in
previous work [6]. Each figure shows the comparison for
different d.

 As shown in Figures 4-8, the total gain barely

情報処理学会研究報告
IPSJ SIG Technical Report

ⓒ 2014 Information Processing Society of Japan 4

Vol.2014-SLDM-165 No.14
Vol.2014-EMB-32 No.14

2014/3/15

changed in all of the cases and the improvement was
only around 1-6%. Similar tendency were shown in the
results of task set 3. The results of task set 2 did not
change at all. It can be said that increasing the number of
tiles with different shapes does not affect the mapping
result a lot when the core usage patterns for a single task
are not prepared enough.

5.2 Increase the Core Usage Pattern

 In the experiment so far, a single task can be
mapped on 2n cores from 1 to 256 and the total number
of core usage patterns for a single task were nine (1, 2, 4,
8, 16, 32, 64, 128 and 256 cores). In this experiment, we
add some new core usage patterns whose number of
cores in use is intermediate value of existing patterns.
Therefore, a single core can be mapped with 16 different
patterns (1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128,
192 and 256 cores).

 We compared the mapping results with the results
obtained by ILP based technique we proposed in the
previous research in similar to experience 5.1. When we
look at Figure 4-8, we can see larger improvement in the
mapping results compared to that of previous experiment.
Similar tendency are shown in the results of task sets 2
and 3. It can be said that preparing the variety of core
usage patterns is effective to improve the efficiency of
the whole system.

5.3 Let Task Use Any Number of Cores

 In this experiment, we let the tasks to use any
number of cores from 1 to 256. Therefore, the core usage
patterns for a single task on this mapping problem are
256. From the results of experiments in section 5.1 and
5.2, the larger improvement can be expected. The value
of the gain correspond to each number of cores are
obtained by using statistical analysis software “R” [11].
We applied the spline interpolation to each task set to
interpolate the gain data.

 As shown in Figure 4-8, the mapping results
improved larger than experiment in section 5.2 and some
result shows improvement of about 40%. However, in
some cases, results are smaller than those of experiment
5.2. This happens because of the error of the
interpolation of the gain value.

 The core usage of the mapping result which
showed the large improvement (Task set 1, d=25%, 64
cores on SoC) is shown in Table 1. We compare the core
usage of experiment in section 5.1 and 5.3. Each value
expresses the number of cores the task uses in the
mapping obtained with each experiment.

 When we look at Table 1, we can see that the core
usage is quite different between experience 5.1 and
experience 5.3. We can see that core usage of each task
in experience 5.1 is similar to each other, while the way
of using cores varies in the result of experience 5.3. We
found that tasks can use suitable amount of cores by

preparing various patterns of core usage.

Table 1. Comparison of core usage of two techniques

Task Experiment A Experiment C
water-nsquared 32cores 33cores

randix 32cores 9cores
ocean_non_contiguous 32cores 63cores

ocean_contiguous 32cores 55cores
lu_non_contiguous 32cores 63cores

lu_contiguous 16cores 32cores
cholesky 16cores 1core

barnes 32cores 31cores

6. Conclusions

 In this paper, we have proposed static task
mapping technique with dynamic task switching for
embedded many-core SoCs. We extended the existing
task mapping technique to make the mapping pattern
have variety. The proposed technique takes into account
both inter-application and intra-application parallelisms
in order to efficiently utilize the potential parallelism of
the many-core architecture. Experimental results show
that preparing various task usage patterns for each task is
effective to improve the efficiency of the whole system.

 At present, this work does not assume that
applications have deadline constraints. In future, we will
take into account deadline constraints of individual
applications.

Acknowledgment

 The authors would like to thank Professor Hiroshi
Sasaki for his supports to conduct the experiments. The
authors would also like to thank Professor Koji Inoue of
Kyushu University and Associate Professor Yuko
Hara-Azumi of Tokyo Institute of Technology for their
support for this work. This work was in part supported
by NEDO.

References
[1] Y. Ando, S. Shibata, S. Honda, H. Tomiyama, and H. Takada,

“Fast design space exploration for mixed hardware-software
embedded systems,” International SoC Design Conference
(ISOCC), 2011.

[2] S. Ramaswamy, S. Sapatnekar and P. Banerjee, “A framework
for exploiting task and data parallelism on distributed memory
multicomputers,” IEEE Trans. Parallel and Distributed Systems,
vol. 8, no. 11, pp. 1098-1116, Nov. 1997.

[3] H. Yang and S. Ha, “ILP based data parallel multi-task
mapping/scheduling technique for MPSoC,” International SoC
Design Conference (ISOCC), 2008.

[4] H. Yang and S. Ha, “Pipelined data parallel task
mapping/scheduling technique for MPSoC,” Design Automation
and Test in Europe (DATE), 2009.

[5] N. Vydyanathan, et al., “An integrated approach to
locality-conscious processor allocation and scheduling of
mixed-parallel applications,” IEEE Trans. on Parallel and
Distributed Systems, vol. 20, no. 8, pp. 1158-1172, Aug. 2009.

[6] J. Kaida, T. Hieda, I. Taniguchi, H. Tomiyama, Y. Hara-Azumi,
and K. Inoue, “Task Mapping Techniques for Embedded
Many-core SoCs,” International SoC Design Conference
(ISOCC), 2012.

情報処理学会研究報告
IPSJ SIG Technical Report

ⓒ 2014 Information Processing Society of Japan 5

Vol.2014-SLDM-165 No.14
Vol.2014-EMB-32 No.14

2014/3/15

[7] J. Kaida, I. Taniguchi, T. Hieda, and H. Tomiyama, “A Static
Task Mapping Algorithm with Dynamic Task Switching for
Embedded Many-core SoCs,” International Symposium on
Communications and Information Technologies(ISCIT), 2013.

[8] M. Kondo, et al., “SMYLEref: A reference architecture for
manycore-processor SoCs,” Asia and South Pacific Design
Automation Conference (ASP-DAC), 2013.

[9] J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed

parallel simulator for multicores,” High Performance Computer
Architecture (HPCA), 2010.

[10] IBM CPLEX Optimizer,
http://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/. [Access: 2014/02/10].

[11] The R Project for Statistical Computing
http://www.r-project.org/. [Access: 2014/02/10].

Figure 4. Comparison of gain (d=0%) Figure 5. Comparison of gain (d=25%)

Figure 6. Comparison of gain (d=50%) Figure 7. Comparison of gain (d=75%)

Figure 8. Comparison of gain (d=100%)

情報処理学会研究報告
IPSJ SIG Technical Report

ⓒ 2014 Information Processing Society of Japan 6

Vol.2014-SLDM-165 No.14
Vol.2014-EMB-32 No.14

2014/3/15

