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Impr oved Protein-Ligand Prediction Using
Kernel Weighted Canonical Correlation Analysis

RaissaRelator1,a) Tsuyoshi Kato1,b) Richard Lemence2

Abstract: Protein-ligand interaction prediction plays an important role in drug design and discovery. However, wet
lab procedures are inherently time consuming and expensive due to the vast number of candidate compounds and target
genes. Hence, computational approaches became imperative and have become popular due to their promising results
and practicality. Such methods require high accuracy and precision outputs for them to be useful, thus, the problem of
devising such an algorithm remains very challenging. In this paper we propose an algorithm employing both support
vector machines (SVM) and an extension of canonical correlation analysis (CCA). Following assumptions of recent
chemogenomic approaches, we explore the effects of incorporating bias on similarity of compounds. We introduce
kernel weighted CCA as a means of uncovering any underlying relationship between similarity of ligands and known
ligands of target proteins. Experimental results indicate statistically significant improvement in the area under the ROC
curve (AUC) and F-measure values obtained as opposed to those gathered when only SVM, or SVM with kernel CCA
is employed, which translates to better quality of prediction.
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1. Introduction

Drug discovery is a multi-staged process which involves the
determination of existing interactions between a compound and
a protein. Many drugs are developed depending on the reaction
they produce when coupled with the respective proteins acting
during a biological process in the body. However, only a few
existing interactions have actually been validated through experi-
ments. Moreover, wet lab procedures are inherently time consum-
ing and expensive due to the vast number of candidate compounds
and target genes. Hence, computational approaches became im-
perative and have become popular due to their promising results
and practicality.

The protein-ligand interaction prediction problem can be
viewed as a task of filling up a protein-ligand matrix whose rows
represent the candidate compounds and the columns represent the
target proteins as shown in the example in Figure 1(a). A matrix
entry is+1 if there is interaction between the corresponding drug
and target. Otherwise,−1. Only a few interactions have actually
been verified and recorded which makes the protein-ligand ma-
trix sparse. Termed as the ‘chemogenomic approach’ by Rognan
[13], the ultimate goal of this task is to identify all the ligands of
each target, thus, fully matching the ligand and target spaces [1].

Many in silico methods have already been developed to address
this problem. We can classify these methods into two: the struc-
ture or docking approach and the ligand-based approach. Dock-
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ing approaches make use of 3D structures of the chemical com-
pounds or the proteins to find protein-ligand pairs which are more
likely to bind [2], [3]. On the other hand, ligand-based techniques
usually employ machine learning algorithms in comparing known
ligands and candidate ligands of a certain target even without any
prior information regarding their structure [7], [8]. In this study,
we shall make use of the ligand-based approach.

There are two ways of approaching the task of interaction pre-
diction: one is by using the global model [11], and another one
is via the local model [1], [8]. The global model utilizes a large
interaction matrix and imputation of missing values is done si-
multaneously. Each cell in the interaction matrix is considered
as a sample to which statistical methods are applied. Descriptors
of ligands in the form of a feature matrix and some information
for target proteins are combined to generate a fused profile for
each cell in the interaction matrix. An advantage is that inter-
action prediction for target proteins with few known interactions
can still be formed. However, since the model aims to exploit
information from similar columns, some useful information for
learning the rule for prediction may be corrupted by information
from irrelevant columns.

Meanwhile, in the local model approach, prediction is made
for each column of the protein-ligand table independently — the
approach finds unknown chemical compounds which are simi-
lar to known ligands interacting with the target protein of inter-
est. The local model often suffers from a small-sample problem.
Many columns in the protein-ligand interaction matrix include
few positive interactions, causing machine learning algorithms to
be trained with few positive samples despite very high dimen-
sionality of ligand descriptors.

The goal of determining interactions between targets and com-
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(a) Problem (b) Specialized descriptors

Fig. 1 Protein-ligand matrix and descriptors. In the example depicted in (a),
the prediction task is to impute 11 missing entries in the 6×5 protein-
ligand matrix using 10-dimensional raw descriptors of ligands. The
problem can be divided into six sub-problems, each of which is to
complete a row in the protein-ligand matrix. Our algorithm extracts
compact descriptors specialized in each sub-problem.

pounds is established under twofold assumptions [1], [13]: First
is that compounds with similar properties tend to share targets.
And, targets with similar ligands share similarities in structures
such as binding sites. These have been verified by recent stud-
ies by considering drug side effects [5] and similarities among
ligands [10]. Moreover, integrated approaches exploring both
protein and compound similarities have also been investigated
[4], [8]. Thus, recent methodologies have allowed us to make
predictions on interactions based on similarity measures for lig-
ands and targets.

Motivated by the assumption that similar ligands tend to have
similar target proteins [9], [15], our goal is to uncover any under-
lying relationship between a set of ligands and exploit this rela-
tionship, together with some known ligand-target interactions, to
predict new interactions. We search for ligands with strong asso-
ciations by finding correlations between them using their features.

In this paper, we present a weighted extension of canonical
correlation analysis (WCCA) in the reproducing kernel Hilbert
space (RKHS) in an attempt to introduce advantageous proper-
ties of local models to the global model approach. To estimate
the missing entries in each row of the interaction matrix, we use
kernel WCCA (KWCCA) to extract essential features which are
specialized in imputation of the corresponding row. The extracted
features are compact enough for local models to be trained with a
small training set composed from the column. Through the exper-
iments with data of GPCRs and odorant receptors, the prediction
performance is shown to be improved when our algorithm is ap-
plied compared to several existing methods.

2. Materials and Methods

2.1 Data
The data used for this study was originally from [14]. The

given interaction matrix consists of 62 mammalian odorant re-
ceptors (ORs) as target proteins and 63 odorants as candidate lig-
ands. It is binary in form and contains 340 positive interactions.
The number of known positive interactions for each target protein
is at least one and at most thirty-seven, while the median is three.
Some randomly selected protein-ligand pairs are assumed to be
unknown to test prediction methods, and the values of the cells
are set to zero. Each row in the interaction matrix provides an
interaction profileof the ligand.

From the chemical IDs supplied, we searched PubChem*1 for
the chemical structures of the odorants to obtain the descriptors
of the ligands. Frequent substructures are employed as descrip-
tors of ligands. The frequent substructures are mined with a soft-
ware namedgSpan[18]. The software is applied to the 63 chem-
ical structures, and the 60,311 binary descriptors are obtained as
chemical profiles.

2.2 Overview of the algorithm
Our approach consists of two stages: First, we consider sub-

problems, each of which involves imputation on a single row in
the interaction matrix, and use weighted CCA to extract a com-
pact vector representation for each sub-problem. Then, we apply
SVM for prediction of each cell using the corresponding descrip-
tor extracted in the previous stage. This technique is overviewed
as follows.

Chemical profilesobtained from chemical structures contain
numerous features that are not important for prediction. Extract-
ing significant features from such chemical profiles is crucial for
accurate prediction of protein-ligand interaction. To accomplish
this, we have to find effective low-dimensional representations
of the original chemical profiles lying in the extremely high-
dimensionalchemical space.

Interaction profilesdescribe the existence and the absence of
interactions with several target proteins. More often than not,
target proteins share similar properties. For this reason, inter-
action profiles approximately span a low-dimensional space, say
R

m, which we shall also extract from a high-dimensionalinterac-

tion space, in a similar fashion as the chemical profiles.
Canonical correlation analysis uses a set of chemical profiles

and interaction profiles to find two projection functions,φch and
φin, simultaneously: The projectionφch is from the chemical
space to the low-dimensional canonical spaceRm, andφin is from
the interaction space toRm. The images ofφch are used to ap-
proximate the images ofφin. The projections obtained by CCA
are shown mathematically to be the minimizer of the expected
deviation of the image ofφch from the image ofφin.

Figure 2(a) is an illustration of how CCA works with chemical
profiles and interaction profiles. In this figure, the shaded squares
are data representations of the feature vector of each ligand in the
chemical space. While the open circles are the data representation
of the interaction vector of each ligand in the interaction space.
The images underφch andφin of these data points are plotted in
the canonical space, and their corresponding images are linked
with a dashed line. CCA finds the projectionsφch andφin so that
the average squared length of the dashed lines is minimized.

In application to protein-ligand interaction prediction, estimat-
ing the images for all ligands is not necessary; it is only for the
ligand whose interactions we wish to predict that the image of the
chemical compound is desired to be well approximated. To ob-
tain a good approximation for a ligand of interest, it is sufficient
to estimate projections so that only the images of similar ligands
are approximated well. The precisions of the approximations for
ligands dissimilar to the ligand of interest barely affect the accu-

*1 http://pubchem.ncbi.nlm.nih.gov/
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(a) Classical CCA

(b) Weighted CCA

Fig. 2 Classical CCA and weighted CCA. Our approach projects chemical
and interaction profiles into a low-dimensional canonical space so
that the images are close to each other. The star point represents the
ligand of interest, and red points are ligands sharing similarities with
the ligand of interest. Although the classical CCA minimizes the av-
erage deviation over all the ligands, to achieve accurate prediction, it
is sufficient that the deviations between the images of the target lig-
and and the ligands similar to it are small. The weighted CCA works
with arbitrarily specified weights, which ensures small deviations for
red points by giving them larger weights.

racy of the solution. This consideration motivated us to assign
weights to ligands according to their similarity to the ligand of
interest, and to extend the classical CCA so that the weighted
average deviation is minimized. The weighted CCA almost dis-
regards ligands with small weights to find projections, achieving
more accurate approximations for the ligand of interest. We refer
to the extension of CCA as weighted CCA.

Figure 2(b) illustrates the effects of weighted CCA when
weights are added to similar ligands. In this context, we define
similarity as the measure of affinity between features of com-
pounds. This can be represented by the distance between the data
representation of the ligands in the chemical space. In the given
figure, the chemical profile for a ligand of interest is marked with
a star, and profiles of similar ligands are colored red. In a similar
manner, we interpret points of the same color as ligands shar-
ing similarities in their chemical properties, hence their grouping
in the chemical space. The two figures, (a) and (b), allow us to
compare classical CCA with weighted CCA: the deviations for
red points in (b) are smaller than those in (a). The deviations for
other ligands are larger, which hardly worsen the performance of
predicting the interaction of the protein of interest.

The final prediction result is obtained in the post-processing
stage using SVM. The images of the projections are used for

SVM learning. SVM is trained well if a good training set is
given. Hence, ligands with poor approximations by CCA, which
are noisy for SVM learning, are preferably excluded. The im-
ages are already in a low-dimensional space in which SVM learn-
ing works well even with a small training set, encouraging us to
assign smaller weights to ligands with poor approximations for
SVM learning.

2.3 Weighted CCA
In this subsection we present the details of weighted CCA. We

denote the chemical profile and the interaction profile, respec-
tively, by a pch-dimensional vectorxch and a pin-dimensional
vectorxin. Assuming that the functionsφch : Rpch → Rm and
φin : Rpin → Rm are affine transformations allows us to express
them as

φch(x
ch) =W ⊤

ch(x
ch − µch), φin(xin) =W ⊤

in (xin − µin),

whereWch ∈ R
pch×m, µch ∈ R

pch, Win ∈ R
pin×m, andµin ∈ R

pin

are their respective parameters. We wish to find the pair of pro-
jection functions minimizing the expected deviation between the
images given by

J(φch,φin) ≡ E
[

∥

∥

∥φch(x
ch) − φin(xin)

∥

∥

∥

2]
,

whereE is the expectation operator.
The expected deviation can be reduced arbitrarily by setting

the projections so that the images are scaled down. A trivial so-
lution isWch = 0 andWin = 0 at which the expected devia-
tion vanishes for any dataset. To avoid trivial solutions, the size
of the images is adjusted by fixing the second moment matrices,
E
[

φch(xch)φch(xch)⊤
]

andE
[

φin(xin)φin(xin)⊤
]

, to identity ma-
trices.

The expectation appearing in the derivation and the second mo-
ment matrices operates according to an empirical probabilistic
distribution. Supposingn ligands are given, the chemical pro-
files are denoted byxch

1 , . . . ,x
ch
n , and the interaction profiles by

xin
1 , . . . ,x

in
n . If we define an empirical distribution as

q(xch,xin) =
n
∑

j=1

v jδ
(

xch − xch
j
)

δ
(

xin − xin
j
)

,

with weightsv1, . . . , vn whose sum is one andδ(·) is the Dirac
delta function, then the expected deviation is reduced to the
weighted average of deviation and can be expressed as

J(φch,φin) =
n
∑

j=1

v j

∥

∥

∥φch
(

xch
j
)

− φin
(

xin
j
)

∥

∥

∥

2
. (1)

This implies that approximations are refined locally by setting the
weights so that ligands dissimilar from the target ligand are given
smaller weights.

The optimal projections can be computed via the generalized
eigen-decomposition. When settingv j = 1/n, the algorithm is
shown to be equivalent to the classical CCA. Hence, we can say
that weighted CCA is an extension of the classical CCA.

Kernelization of weighted CCA is formulated with a similarity
function of chemical profilesKch(xch

i ,x
ch
j ) and a similarity func-

tion of interaction profilesKin(xin
i ,x

in
j ) without using the vec-

tors themselves explicitly. These similarity functions are said
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to be valid kernels guaranteeing the theory of the algorithms,
which map the profiles non-linearly into other (typically high-
dimensional) spacesHch andHin, respectively, called an RKHS.
Kernelized weighted CCA finds affine-transforms from RKHS to
a canonical spaceRm, so that the expected deviation between im-
ages inRm is minimized. If we denote the composite mapping
functions byψch andψin, respectively, the optimal solution is
given by

ψch(x
ch) = A⊤chD

1/2
v
k̄ch(x

ch), ψin(xin) = A⊤inD
1/2
v
k̄in(xin).

The algorithm for computing the two matrices,Ach ∈ R
m×n and

Ain ∈ R
m×n. The functionsk̄ch(·) andk̄in(·) are called the empir-

ical kernel mapping.

2.4 Weighted SVM
Prediction of the interaction between ligandi and targett is

performed with the SVM score given by

f
(

xch
i ; w(i,t),b(i,t)

)

= w⊤(i,t)ψch
(

xch
i
)

+ b(i,t),

wherexch
i is the chemical profile of ligandi. The SVM parame-

ters,w(i,t) andb(i,t), are obtained beforehand by the SVM learning
algorithm. This is performed only with ligands whose interaction
with the targett is known. This study employs the similarity of
ligands as weights in the learning process.

2.5 Weighting schemes
Ligands are given weights in both stages of the weighted CCA

and the weighted SVM. These weights are dependent on the lig-
and to be predicted. Larger weights are given for ligands that
are more similar to the ligand of interest. In predicting the inter-
action of theith ligand, the weight ofjth ligand is given by the
normalization of

v′j =
1

∥

∥

∥k̄ch
(

xch
j

)

− k̄ch
(

xch
i

)

∥

∥

∥ +
∥

∥

∥k̄in
(

xin
j

)

− k̄in
(

xin
i

)

∥

∥

∥ + ǫ
,

whereǫ is a positive constant and set to 10 in our analysis. Nor-
malization is done by setting

v j =
v′j

∑n
k=1 v

′
k

so that the sum of the weights is one.

3. Results

3.1 Experimental setting
To illustrate the effectiveness of the kernel weighted CCA

(KWCCA), we carried out experiments on an interaction dataset
of GPCRs and odorant receptors described in the previous sec-
tion. For evaluation of prediction performance, we applied a 10-
fold Monte-Carlo cross validation, where data is randomly di-
vided into 2 disjoint sets of training and test data for 10 repeti-
tions. Data was partitioned such that for each target protein, 50%
of the positive and negative interactions are used for training, and
the other half for testing. KCCA, KWCCA, and the weighted
SVM were implemented in Matlab, and LIBSVM [6] was used
for the classical SVM.

Table 1 Abbreviation of methods.
Abbreviation Description

WW KWCCA +Weighted SVM
WU KWCCA + Classical SVM
KW Classical KCCA+Weighted SVM
KU Classical KCCA+ Classical SVM
S SVM of local model

SGL Linear SVM of global model
SGR RBF SVM of global model

We also performed prediction using SVM in the global model
setting for comparison. The kernel function for the global model
here is defined as the product of the inner product among chemi-
cal profiles and the inner product among columns of the interac-
tion matrix.

Parameters of the local models are determined by finding re-
spective values where the test data perform best using SVM and
KCCA. Namely, the regularization parameterC and the kernel
function for SVM are chosen so that SVM achieves the highest
prediction performance, while the regularization parameters for
CCA γch andγin, and the number of dimensions of the canon-
ical spacem, are determined via the performance of KCCA.
As a result, the values of the parameters are set asC = 1000,
γch = γin = 1, andm= 4. The RBF kernel is applied and the ker-
nel width is determined as the mean of the distance within sets.
These mentioned parameters are then fed into the algorithm em-
ploying KWCCA. The parameters are not tuned specifically for
KWCCA. Thus, it is believed that there is a chance of improve-
ment in the perfomance of this algorithm if careful and suitable
parameter selection is done.

For the global model, the kernel which achieves the best per-
formance is the linear kernel. The regularization parameter is
chosen asC = 10, achieving the best performance among other
values. Results for the case of the RBF kernel with the bestC

value obtained are also reported for comparison.
The methods based on KWCCA involve two stages upon im-

plementation. First, we exploit KWCCA to extract a set of fea-
tures for each compound. Second, we use them for training a ma-
chine learning algorithm employing SVMs before testing them
to make predictions. In total, seven methods are implemented in
the experiments: two using SVM in the global model setting, and
the other five following the local model. One of the two global
model methods uses RBF kernel for SVM, and the other uses the
linear kernel. On the other hand, the methods used for the local
models are as follows: SVM, KCCA with classical SVM, KCCA
with weighted SVM, KWCCA with classical SVM, and KWCCA
with weighted SVM. For simplicity of notation, we shall refer to
each of the seven methods using the abbreviations in Table 1.

The area under the ROC curve (AUC) and F-measure values
were calculated to evaluate and compare the prediction perfor-
mance of the seven methods. Since the problem is presented as
a binary classification problem, only the maximum value of the
F-measure values for each target is considered. The scores ob-
tained via SVM are used as confidence levels, thus, changing the
threshold yields different predictions. These values are calculated
for each target protein and averaged over the ten data divisions.
However, there are instances when the test set does not contain
a true positive interaction, hence AUC and F-measures cannot be

c© 2014 Information Processing Society of Japan 4

Vol.2014-BIO-37 No.3
2014/3/5



IPSJ SIG Technical Report

Fig. 3 Average performance of the methods. Data was randomly split into
training and test sets, and 10 training-testing data divisions were used
for each method. Following the local model, AUC and F-measure
were computed for each of the 62 targets. The bar plots represent
the average AUC (green) and average F-measure (yellow) over the
10 cross validation sets and the 49 targets containing true positives.
The two KWCCA-based methods, WW and WU, and the other meth-
ods were implemented for comparison. The difference of the perfor-
mances of WW and WU from the other five methods showed to be
statistically significant in terms of the P-values (by Wilcoxon signed
rank test).

computed. Therefore, these values were disregarded and, out of
62 target proteins, AUC and F-measures were computed for 49
of them. The Wilcoxon signed test was used for the statistical
significance of the difference among the values of the evaluation
measures.

3.2 Effects of the use of CCA
The average AUCs and F-measures are reported in Figure 3.

Error bars are also included to present standard deviations. In
comparison with the local models, four CCA-based methods,
WW, WU, KW, and KU, achieve remarkably better AUCs and
F-measures compared to those of S: the differences between
the AUCs and F-measures of KW, the worst among the four
CCA-based methods, and S are 0.014 and 0.053, respectively,
(

P-values: 5.81× 10−7 and 9.49× 10−9 respectively
)

. The AUC
of the global model SGL is comparable to some of the local mod-
els, whereas the F-measure is not worse than that of S. A closer
inspection on the results of SGL indicate that it has the lowest av-
erage number of true positives over all cross-validations among
all models, around 161, which may be the reason behind a very
small F-measure value.

3.3 Improvement by weighting
The effects of the weighted extension of CCA are manifested

via comparison among four CCA-based methods. WW achieves
significantly higher AUC and F-measures in average compared to
KW and KU, where the P-values for the difference in the AUCs
are 4.85× 10−11 and 6.91× 10−10, and the P-values for the F-
measures are 3.59× 10−7 and 3.96× 10−6, respectively.

3.4 Histogram comparison
The frequencies of WW besting the AUC or F-measure val-

ues of the other methods in predicting interactions for a certain
target protein are shown in the histograms in Figure 4(a). These
values represent the number of target proteins such that the eval-
uated AUC and F-measure values for the method WW is better
than the AUC and F-measure values of the other method in com-
parison. Instances when there are ties between the methods were

(a) Histogram comparisons of the proposed method WW vs. other methods.

(b) Histogram comparisons of Weighted SVM using the weighting scheme
in (2) vs. Classical SVM

Fig. 4 Histogram comparisons between the proposed method WW and
other methods. Frequencies when the AUC (blue), AUC between 0
and 0.05 (green), and F-measure (red) values of WW outperform the
other methods, and vice-versa, are illustrated. It can be observed that
AUC and F-measure values histograms for WW are more desirable
than the rest.

unaccounted. For the evaluated AUC and F-measure values, WW
outputs are more desirable than most of the others which indicates
higher quality of prediction performance.

WU yields interesting results in the histogram (Fig. 4(a)): The
frequency of WW yielding better AUCs are comparable to that
of WU’s, although frequency of better F-measures are relatively
higher for WW than WU. To further investigate the comparison
between WW and WU, we compute the area under the curve of
the region of FPR between 0 and 0.05. This area, which we shall
refer to as AUC05, allows us to evaluate the true positive rate
with higher confidence. The histogram on AUC05 shows WW
bests WU more frequently than WU does, which implies the use
of weights in the SVM stage can find more true positives confi-
dently than the classical SVM.

The motivation to endow the weights with training data in
SVM learning is that the projections in the canonical space from
chemical profiles with larger weights are expected to be better
approximations of the projections from interaction profiles. It is
possible to directly evaluate how good the approximations are by
computing the distances among the projections. This motivation
leads to another weighting scheme using the normalization of

v′j =
1

∥

∥

∥φch
(

xch
j

)

− φin
(

xin
j

)

∥

∥

∥ + ǫ
(2)

insteadof (1) in the SVM learning stage. We investigate the per-
formance when the weighting scheme is changed to (2) in the
SVM learning stage. We refer to this approach as WWUW here-
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inafter. The average AUC and F-measure of WWUW are 0.802
and 0.649, respectively, which are slightly worse than those of
WW. The number of target proteins, for which the prediction per-
formance of WWUW is better than that of WW is not larger than
the number of WW besting WWUW, as depicted in Figure 4(b).
These facts imply that the changing weighting scheme in SVM
learning does not achieve significant improvements.

3.5 Using interaction profiles
When a sufficient number of known positive and negative inter-

actions are given for a certain ligand, the image of the interaction
profile in the canonical image can provide good descriptors for
predicting the remaining interactions. We further implemented
two methods, herein referred to as WWI and WWIC, to inves-
tigate the performance of the interaction profile. WWI replaces
the image of a chemical profile with the image of the interac-
tion profile in the SVM stage, while WWIC concatenates the
two images to feed them to the weighted SVM. The two meth-
ods achieved significant improvement. WWI achieved an average
AUC of 0.857 and average F-measure of 0.699, while WWIC ob-
tained a 0.835 average AUC and a 0.692 average F-measure. The
P-values of the differences on AUC from WW are 5.27×10−9 and
0.021, respectively, and P-values on F-measures are 1.05× 10−5

and 9.17× 10−7, respectively.

4. Conclusions

A kernel version of weighted canonical correlation analysis
is proposed, which is implemented using a derived form of the
generalized eigenvalue problem. Similar to the linear CCA and
its kernelized version, this can be applied to machine learning
problems for dimension reduction and feature extraction. The pa-
per presents an application to improving the prediction quality
obtained in the protein-ligand interaction problem setting. By
adding bias to more similar samples, better prediction can be
made which is evident on the higher AUC and F-measure val-
ues obtained. Weighting scheme on SVM based on CCA out-
puts were also explored and are judged to be better than classical
SVM.

Even in the field of computational biology, CCA for more than
two data sources has been widely used [12], [16], [17] and their
usual objectives involve maximizing the sum of correlations for
every pair of data sources. For future work, it could be worth
exploring the extension of weighted CCA for analysis of multi-
ple data sets in a biological setting. It could also be interesting
to investigate the effectiveness of applying the proposed method
to other biological problems aside from protein-ligand interaction
prediction.
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