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The domain of the stencil computation is limited by the memory capacity of GPUs on a GPU cluster. As the domain grows to 
cope with higher accuracy requirements, more GPUs need to be employed to extend the memory capacity. In this paper, we 
propose new methods which apply temporal blocking method to device memory and registers of a set of GPUs to allow 
computations on the domain that is bigger than the memory capacity of GPUs while maintaining high performance on 
TSUBAME2.5. We also analyze the parameters and performance differences between TSUBAME2.0 and TSUBAME2.5 to 
apply our methods to wide range GPU clusters. 

 
 

1. Introduction  

Stencil computation is one of the base kernels in various 
scientific and engineering simulations [1], [2]. When using 
stencil computation in those simulations, the computation 
of each point depends on the value of nearby points at 
each time step. Then, it updates the whole domain for 
multiple time steps. In some simulations, it needs to 
compute bigger domains. Bigger domain means bigger 
computational area or higher accuracy which is important 
to simulations like weather forecast.  

The common way [2], [3] that uses GPU cluster to 
compute bigger computational domain is to separate the 
domain into sub-domains. Then, it employs multiple GPUs 
to compute the sub-domains. In that case, it assigns each 
sub-domain to each GPU. So, the domain size is limited 
by the memory capacity of GPUs. To efficiently use the 
GPUs, it should enable the computation on the domain 
that is bigger than the memory capacity of GPUs.  

There are existing methods that enable the computation 
on the bigger domains. The first one is naive method [4]. It 
separates the domain into sub-domains. It assigns some 
sub-domains to each GPU. Then, it copies each of them to 
GPU to compute and copy the result back. In stencil case, 
it can only compute 1 time step because of the boundary 
constraint. So, it causes frequent communication in stencil 
case. Temporal blocking method [5], [6], [7], [8], [9], [10] 
can solve the frequent communication problem. It also 
separates the domain into sub-domains and assigns some 
sub-domains to each GPU. When it copies each of them to 
GPU side, it copies more ghost boundaries with the 
sub-domain to compute multiple time steps on GPU side. 
So, it can reduce the communication cost by reducing 
communication times. But, the more ghost boundaries 
cause redundant cost which degrades the performance. 

In our previous papers [11], [12], we proposed the 
optimization methods that use the buffer on GPU to avoid 
the redundant cost. We also applied the optimization 
methods to multi-GPU case. The evaluation on 
TSUBAME2.0 shows that our optimization methods 
achieve higher performance than existing optimization 
methods. 
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In this paper, we propose the optimization methods that 
efficiently use the registers of GPU to improve the 
performance in kernel level. Furthermore, we analyze the 
differences of performance and parameters on the 
TSUBAME2.0 and TSUBAME2.5 to apply those 
optimization methods on wide range GPU clusters. 

2. Background 

In this section, we introduce some backgrounds for 
further explanation.  

2.1 Stencil computation 

Stencil computation is widely applied in scientific and 
engineering simulations as one of the base kernels. When 
it computes each point, it needs the value of nearby points. 
We give two examples of stencil computation. When 
computing each point in 7 point stencil case, it needs the 
value of itself and nearby 6 points. When computing each 
point in 19 point stencil case, it needs the value of itself 
and nearby 18 points. In the 3×3×3 area, 19 point stencil 
uses more nearby points than 7 point stencil.  

 

Fig.1. 7 point, 19 point stencil. 

To efficiently compute the whole domain on GPU, it 
uses double buffering methods to read initial and save 
result of the domain. 

 

Fig.2. Double buffering method 
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It allocates two grids. One grid read initial of the 
domain while the other one save the result of the domain. 
Then, it swaps the two grids to continue the computation. 
As double buffering method uses two grids, it consumes 
two times space on GPU side. To simplify the explanation, 
we will not identify which grid contains the domain. 
Double buffering is the method that how to read the initial 
and save the result of domain.  

If the domain is divided into sub-domains, each point of 
the boundary needs adjacent points which may belong to 
the other sub-domains. We call these adjacent points on 
the other sub-domains as ghost boundary. Next section, we 
will introduce how to implement the stencil computation 
by using CUDA program model on GPU. 

2.2 GPU and CUDA program model 

Graphics Processing Units for general-purpose 
computation (GPGPU) is proved to be a high-performance 
computing device to accelerate a wide variety of scientific 
and engineering simulations. In November 2006, NVIDIA 
introduced CUDA™, a general purpose parallel computing 
architecture – with a new parallel programming model and 
instruction set architecture – that leverages the parallel 
compute engine in NVIDIA GPUs to solve many complex 
computational problems in a more efficient way than on a 
CPU [13]. CUDA comes with a software environment that 
allows developers to use C as a high-level programming 
language. Other languages or application programming 
interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 

2D spatial blocking [2] is an efficient way to perform 
stencil computation on GPU. Since the computation 
involves a large number of memory accesses, it should 
reduce access to the global memory. Thus, it should 
efficiently reuse the data on registers. Moreover, it should 
invoke sufficiently larger number of threads than that of 
physical CUDA cores in order to hide latency of memory 
accesses. 

 

Fig.3. 2D spatial blocking method 

To fulfill those requirements, it designed a kernel 
function that calculates the points of a computational 
domain (Dx, Dy, Dz) for a single time step. The kernel 
function is invoked on a GPU with (Dx/Bx, Dy/By) blocks, 
each of which has (Bx, By) threads. Bx×By should no 
more than the number of threads that a single block can 
contain. It is better to set Bx more than By to improve data 
locality. It divides the given domain into pieces of size of 
(Bx, By, Dz) as shown in the upper figure.  

2.3 TSUBAME system 

TSUBAME supercomputer [14] is developed by Global 
Scientific Information and Computing Center (GSIC) at 
Tokyo Institute of Technology.  It consists of thin, 
medium and fat computing node which have different 
system specifications. The nodes are interconnected by 
dual QDR InfinitBand network with a full bisection- 
bandwidth fat-tree topology. There are 1408 thin nodes, 24 
medium nodes and 10 fat nodes. Each thin node has 54GB 
host memory. The nodes mainly consist of two Intel Xeon 
Westreme-EP 2.9 GHz CPUs and three NVIDIA GPUs. 
Each GPU of TSUBAME2.0 has 3GB device memory.  

Recently, TSUBME2.0 is upgraded to TSUBAME2.5. 
TSUBAME2.5 upgraded TSUBAME2.0 by exchanging 
the GPU series of Tesla M2050 to Tesla K20X to improve 
the throughput in the fall of 2013. The CPUs and the 
connections between nodes and inside nodes remain same. 
The Tesla M2050 is Fermi and Tesla K20X is Kepler in 
NVIDIA product series. 

 
Fig.4. TSUBAME2.5 architecture 

In Fermi, the shared memory and the L1 cache share the 
same physical on-chip storage, and a split of 48 KB shared 
memory / 16 KB L1 cache. Kepler continues this pattern 
and introduces an additional setting of 32 KB shared 
memory / 32 KB L1 cache, the use of which may benefit 
L1 hit rate in kernels that need more than 16 KB but less 
than 48 KB of shared memory per multiprocessor. L1 
caching in Kepler GPUs is reserved only for local memory 
accesses, such as register spills and stack data. In Kepler 
GPUs, global loads are only cached in L2 cache. In Fermi 
GPUs, the global loads are cached in L1 and L2 caches 
which mean more data locality in caches to improve data 
hit rate. Kepler has more computing units which are called 
SMs and has bigger L2 cache. So, Kepler ensures 
performance improvement in most application cases. 

3. Related works 

In this section, we introduce some related works. 
Temporal blocking method is to reduce the 
communication cost between CPU and GPU. Temporal 
blocking method also can efficiently use the registers of 
GPU to improve the performance of kernels.  
3.1 Temporal blocking method 

Leonardo Mattes [5], [6] proposed optimization method 
to overcome the GPU memory limitation by overlapping 
sub-domains. His solution is to divide the domain into 
small sub-domains. Then, it copies the initial that is bigger 
than the sub-domain to GPU side. On the GPU side, it can 
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compute more time steps to reduce the communication 
times between CPU and GPU. 

 
Fig.5. Temporal blocking method to reduce communication cost 

His work can avoid communication cost between CPU 
and GPU and can overcome the memory limitation of 
GPU. Yet, as he mentioned, his method has to initialize a 
bigger initial for sub-domain which cause more 
communication and computation. We call his method as 
temporal blocking method and the more communication 
and computation is called as redundancy problem. It is 
important to solve the redundancy problem to improve the 
performance. 

3.2 Temporal blocking method for registers of GPU 

In Wai Teng Tang’s paper [15], he explores a different 
data access strategy to improve the performance of stencil 
kernels. In particular, he proposed a temporal blocking 
method to reuse the data on the registers. With the 
appropriate tuning, his method is able to obtain optimal 
parameters on different GPU platforms, and is able to 
achieve better performance than prior methods.  

 

Fig.6. Overlapped reading between two points on each thread. 

As we can see in the upper figure, it needs to read 
overlapped part when computing sequential points by each 
thread. His method tries to save overlapped part on the 
register of each thread and reuse when computing next 
point as below: 

Example of 7 point stencil of floating computation: 
__global__  void kernel (grid0, grid1,…) 
{ 
… 
int jx = blockDim.x * blockIdx.x + threadIdx.x;  
int jy = blockDim.y * blockIdx.y + threadIdx.y;  
float  tempo,tempc,tempb,tempt; 
… 
for(jz = 0;jz < Dz; jz++)  

  {  
    ji = Dx*Dy*jz + Dx*jy + jx;  
    je = ji+1;  jw = ji-1;  jn = ji+Dx;  js =ji-Dx;  
    tempt  = grid0[ji];  
    grid1[ji]= tempo+cc*tempc+ct*tempt+ cb*tempb; 
    tempb  = tempc;  

    tempc  = tempt;  
    tempo = ce*grid0[je] + cw*grid0[jw]  
          + cn*grid0[jn] + cs*grid0[js];  
  } 
… 

} 

As we can see, it only needs to allocate additional 4 
points on the register of each thread. Then, it can reuse 
those points to contain the overlapped part and continue 
the computation. It can easily improve the performance. 
But, it should allocate related number of points for 
different stencil which also consumes the space of 
registers. 

4. Supporting large domain on single node 

In this chapter, we first focus on the optimization 
methods on single node of GPU cluster. We only use 1 
GPU on each node. We select 7 point and 19 point on 3D 
domains of floating computation to implement and explain 
the optimization methods. We assume the points of the 
domain are stored in X, Y, Z order. To simplify the 
implementation, we only use 1D decomposition method 
(decompose the domain by Z dimension) in single node 
case. To simplify the explanation, we set number to each 
XY-plane of whole domain as below: 

 

Fig.7. Set number to each XY-plane of whole domain. 

Here, Dx, Dy, Dz are the size of X, Y, Z dimension. Plz 
is the dimension size of each XY-plane.  

4.1 Existing method: 1D-N, 1D-T 

1D-N is the 1D decomposition version of naive method. 
1D-T is the 1D decomposition version of temporal 
blocking method.  

 

Fig.8. The process of 1D-N and 1D-T 

As the upper figure shows, 1D-N or 1D-T separates the 
domain into sub-domains. Then, it copies each sub-domain 
to the GPU side. Here, TBT stands for temporal blocking 
times, NSD stands for the number of sub-domains, Cs 
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stands for the data dependence of boundary. In 7 point or 
19 point stencil case, Cs equals to 2.  

In 1D-N case, TBT equals to 1. So, it copies 
sub-domain with ghost boundary to GPU side and 
compute 1 time step. Then, it copies the result back. It 
only consumes Dx×Dy×(Dz/NSD+Cs)×2 space on the 
GPU side, but it causes frequent communication between 
CPU and GPU. 

In 1D-T case, TBT can be bigger than 1. It copies 
sub-domain with more ghost boundaries to GPU side and 
compute multiple time steps. Then, it copies the result 
back. It can reduce the communication cost between CPU 
and GPU. But, it consumes more space which equals to 
Dx×Dy×(Dz/NSD+Cs×TBT)×2 on GPU side.  Also, the 
more ghost boundaries may cause redundant 
communication and computation cost.   

4.2 Previous contribution: 1D-TBM 

In this section, we introduce the previous contribution 
that can reduce the communication cost and solve the 
redundancy problem of 1D-T. 

 

Fig.9. Overlapped part between two sub-domains. 

In 1D-T case, we found that there is overlapped part 
between sequential sub-domains as the upper figure shows. 
To solve the redundancy problem, we try to save the 
overlapped part and reuse when computing next 
sub-domain.  

 

Fig.10. The process of 1D-TBM 

When computing sub-domain0 on GPU side, it saves Cs 
= 2 XY-planes to buffer on GPU at each time step as the 
upper figure shows. When computing sub-domain1, it 
reuses the XY-planes (size equals to Dx×Dy×Cs) at each 
time step. It should allocate Dx×Dy×Cs×TBT size of 

buffer on the GPU side. We call this method as 
buffer-copy method. 

When it saves the result to the grid, it also shifts the 
result as the upper figure shows. So, the space for each 
grid equals to Dx×Dy×(Dz/NSD+Cs). We call this as 
memory-saving method. It can save DxDy(CsTBT-Cs) 
space than 1D-T method. We call 1D-T method with 
buffer-copy method and memory-saving method as 
1D-TBM method. 

4.3 Discussion 

In this section, we discuss the performance model of 
1D-T and 1D-TBM. We build the model by counting the 
amount of communication and computation as below: 

1D-T, Minimize TTBT×Iteration/TBT 
TTBT 

=TC2G(domain)+TC2G(ghost boundaries)+TG2C(domain) 
+ Tcomputation (domain)+Tcomputation(ghost boundaries)

 
1D-TBM, Minimize TTBT×Iteration/TBT 
TTBT=TC2G(domain)+TG2C(domain)+Tcomputation (domain)

To achieve higher performance, it should try to 
minimize TTBT×Iteration/TBT. We evaluate the actual time 
on the single node of TSUBAME2.5 to compare with the 
model. The domain is 640×640×640; the number of 
sub-domains is 2. 

 
Fig.11. The model and actual time on TSUBAME2.5       

As we can see in the upper figure, the models are 
similar to the actual evaluations which can be used to 
decide the parameters. As the temporal blocking times 
grow, TTBT×Iteration/TBT degrades in 1D-TBM case. It 
shows that it can get higher performance as the temporal 
blocking times grow. To implement 1D-TBM method, it 
should allocate 2 grids and 1 buffer. We can get max TBT 
in 1D-TBM case as below: 

DxDy(Dz/NSD+Cs)2+ DxDyCsTBT  

                   <=GPU memory capacity 

TBT <= Dz/NSD, Get max TBT. 

4.4 Contribution: 1D-TBMR 

In this section, we propose our optimization method 
which is named as 1D-TBMR. As we introduced in the 
upper section, temporal blocking method is used to reduce 
the communication cost between CPU and GPU. To 
improve the performance of the kernel, it applies the 
temporal blocking method for the registers of GPU to 
1D-TBM method. So, we can get 1D-TBMR method. We 
give the example of the kernel of 7 point stencil in 
1D-TBMR method case as below:  
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Example of 7 point stencil of floating computation: 
__global__  void  kernel(grid0, grid1,…) 
{ 
… 
int jx = blockDim.x * blockIdx.x + threadIdx.x;  
int jy = blockDim.y * blockIdx.y + threadIdx.y;  
float  tempo,tempc,tempb,tempt; 
for(jz = 0;jz < Dz; jz++)  

  {  
    ji = Dx*Dy*jz + Dx*jy + jx;  
    je = ji+1;  jw = ji-1;  jn = ji+Dx;  js =ji-Dx;  
    tempt  = grid0[ji];  
    grid1[jt]= tempo+cc*tempc+ct*tempt+ cb*tempb; 
    tempb  = tempc;  
    tempc  = tempt;  
    tempo = ce*grid0[je] + cw*grid0[jw]  
          + cn*grid0[jn] + cs*grid0[js];  
  } 
… 

} 

As the upper example shows, it improves the 
performance of the kernel by saving some points to the 
register of each thread and reusing them. Also, we can see 
that memory-saving method saves the result to grid1[jt] 
instead of grid1[ji]. So, it can shift the result to save space 
and does not affect the performance of the kernel. So, we 
can give the whole process of 1D-TBMR method. 

 

Fig.12. The process of 1D-TBMR 

As it only improves the performance of kernel of 
1D-TBM, the parameters are decided by the same way as 
section 4.3 introduced. 

4.5 Contribution: 1D-P-TBMR 

The temporal blocking times are limited as section 4.3 
explains. To improve the performance, 1D-P-TBMR 
method tries to overlap the communication with the 
computation. It first allocates 2 more grids on the GPU 
side. One grid contains the result of former sub-domain; 
the other grid accepts the initial of the next sub-domain. 
Both of them perform the communication when computing 
current sub-domain as the below figure shows.  

 

Fig.13. The process of 1D-P-TBMR 

5. Supporting large domain on multiple nodes 

In this chapter, we introduce how to apply optimization 
methods to multiple nodes. We also select 7 point and 19 
point stencil of floating computation. We also assume the 
points of the domain are stored in X, Y, Z order. 

5.1 Previous contribution: Decomposition method 

As we introduced in the upper chapter, our optimization 
methods achieves scalability in one dimension. In 7 point 
or 19 point case, it computes 3D domain. To achieve 
scalability in 3D domain, it should decompose the domain 
by other two dimensions among the nodes. Then, it 
separates each sub-domain into smaller parts and applies 
the 1D optimization methods between sub-domain and 
parts.  

 

Fig.14. Common decomposition VS our decomposition 

Sx, Sy, Sz is the size of each dimension in the upper 
figure. The common 2D decomposition method is to 
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separate the domain by Y and Z dimensions. As it saves 
the domain points in X, Y, Z order, 2D decomposition by 
Y and Z dimension can benefit the implementation and 
boundary exchange in the common way case. 

When using 1D optimization method between 
sub-domain and parts, the computational part on the GPU 
is changed at each time step. To contain the points in 
continuous space on GPU side, it is better to separate the 
domain by X, Y dimension among the nodes. 

5.2 Previous contribution: apply optimization method 

As the upper section explains, our 2D decomposition 
method separates the whole domain into sub-domains by 
X, Y dimension. Then, we use 1D-decompsition to 
separate the sub-domain into parts by Z dimension as the 
below figure shows. Then, it can apply 1D optimization 
methods between sub-domain and parts. So, we can get 
optimization methods for multiple nodes by combining 2D 
decomposition method with 1D optimization methods: 
2D-1D-N, 2D-1D-T, 2D-1D-TBM. 

 

Fig.15. Apply 1D optimization method 

Here, NPS is the number of parts. We set the number of 
nodes as Nx×Ny. Then, the size of each sub-domain is 
(Dx/Nx)×(Dy/Ny)×Dz; the size of each part is  
(Dx/Nx)×(Dy/Ny)×(Dz/NPS).  

5.3 Contribution: 2D-1D-TBMR 

In this section, we propose our optimization method 
2D-1D-TBMR. We give the example of the kernel of 7 
point stencil as below: 

Example of 7 point stencil of floating computation: 
__global__  void  kernel(grid0, grid1,…) 
{ 

int jx = blockDim.x * blockIdx.x + threadIdx.x;  
int jy = blockDim.y * blockIdx.y + threadIdx.y;  
float  tempo,tempc,tempb,tempt; 
for(jz = zstart;jz < zend; jz++)  

  {  
    ji = Sx*Sy*jz + Sx*jy + jx;  
    je = ji+1;  jw = ji-1;  jn = ji+Sx;  js =ji-Sx;  
    tempt  = grid0[ji];  
    grid1[jt]= tempo+cc*tempc+ct*tempt+ cb*tempb; 
    tempb  = tempc;  
    tempc  = tempt;  
    tempo = ce*grid0[je] + cw*grid0[jw]  
          + cn*grid0[jn] + cs*grid0[js];  
  } 
} 

It decomposes the whole domain by X, Y dimension. So, 
it adjusts the position of the points that are computed by 
the kernel as the upper shows. It also uses memory-saving 

method in the kernel. Then, we can give the process of 
2D-1D-TBMR method as below: 

 

Fig.16. The process of 2D-1D-P-TBMR 

It should exchange the boundary of the part to continue 
the computation at each time step. To reduce the 
communication cost of exchanging boundary, it overlaps 
the communication with the inside computation at each 
time step.  

6. Evaluation 

6.1 1D-TBMR vs other methods on single node 

We evaluated the optimization methods for 7 point 
stencil on single node of TSUBAME2.5. The domain is 
from 240240240 to 216021602160 of floating 
computation. As we can see in the below figure, 
1D-P-TBMR method gets 2.63 times higher performance 
than 1D-T method. 

 

Fig.17. 1D-P-TBMR vs others 
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6.2 2D-1D-TBMR vs other methods on multiple nodes 

We evaluated the 2D-1D-TBMR, 2D-1D-TBM, 
2D-1D-T, 2D-1D-N method for 7 point stencil on multiple 
nodes of TSUBAME2.5. The domain is 512051202560 
of floating computation. The number of nodes is from 16 
to 256. 

 

Fig.18. 7 point stencil, 2D-1D-TBMR vs others 

As we can see in the upper figure, 2D-1D-TBMR 
method gets 1.59 times higher performance than 
2D-1D-TBM (previous) and 1.84 times higher 
performance than 2D-1D-T method. 

We evaluated the 2D-1D-TBMR, 2D-1D-TBM, 
2D-1D-T, 2D-1D-N method for 19 point stencil on 
multiple nodes of TSUBAME2.5.  

 

Fig.19. 19 point stencil, 2D-1D-TBMR vs others 

In 19 point stencil case, 2D-1D-TBMR method gets 
1.71 times higher performance than 2D-1D-TBM 
(previous) and 2.68 times higher performance than 
2D-1D-T. As 19 point stencil reads more nearby points, it 
is more important to use registers to reduce access time.  

6.3 Evaluation on TSUBAME2.0 and TSUBAME2.5 

We evaluated the 2D-1D-TBMR method for 7 point 
stencil on multiple nodes of TSUBAME2.5 and 
TSUBAME2.0. The domain is 512051202560 of 
floating computation.  

 

Fig.20. 7 point stencil, TSUBAME2.5 vs TSUBAME2.0 

As we can see in the upper figure, it gets 1.37 times 
higher on TSUBAME2.5 than on TSUBAME2.0. 
Although it increases memory capacity of GPU by 2 times, 
it still needs to use optimization methods to compute 
bigger domain. It can compute 20 times bigger domain on 
TSUBME2.5 and 40 times bigger domain on 
TSUBAME2.0 than the common way. The domain size of 
the common way depends on the memory capacity of 
GPUs. The domain size of our optimization methods 
depends on the memory capacity of CPUs. 

6.4 Parameters on TSUBAME2.0 and TSUBAME2.5 

In multiple nodes case, it separates the domain into 
sub-domains and each sub-domain into parts. We set NPS 
is the number of parts; TBT is the temporal blocking times. 
We set TBT is smaller than the size Z dimension of each 
part (Dzp). To reduce the communication cost, we should 
get max TBT. So, we can get formula as below: 

Dzp = Dz / NPS, Cs = 2

If use double buffering,  

(Dx/Nx)×(Dy/Nx)×(Dzp+Cs)×2 

+(Dx/Nx)×(Dy/Ny) ×TBT×Cs+(Dx+Dy)×(Dzp)×2   

         ≤GPU memory capacity          (1)

TBT < Dzp,  Get max TBT                   (2)

So, we can get the parameters in domain 5120×5120×
2560 as the below figure shows. It can get max point 2 
times earlier on TSUBAME2.5.   

 

Fig.21. Parameters on TSUBAME2.5 vs on TSUBAME2.0 
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7. Conclusion 

In this paper, we propose a series of new optimization 
methods which enable the computations on the domain 
that is bigger than the memory capacity of GPUs while 
maintaining high performance on TSUBAME GPU cluster. 
The result shows that our optimization method achieves 
1.59 times higher performance in 7 point case and 1.71 
times higher performance in 19 point case than other 
optimization methods on multiple nodes of TSUBAME2.5. 
Furthermore, our optimization method can compute 20 
times bigger domain than the common way on 
TUSBAME2.5. 

As a future work, we will try to lower programming 
difficulty by using tools like Physis [16]. To improve the 
performance and increase the memory capacity, we will 
also try to use 3 GPUs in each node. 
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