
情報処理学会研究報告
IPSJ SIG Technical Report

ⓒ2014 Information Processing Society of Japan 1

Multi-level Temporal Blocking for Stencil Computation for Memory
Hierarchy on TSUBAME2.5

Guanghao Jin †1†2 Toshio Endo †1†2 Satoshi Matsuoka †1†2†3

The domain of the stencil computation is limited by the memory capacity of GPUs on a GPU cluster. As the domain grows to
cope with higher accuracy requirements, more GPUs need to be employed to extend the memory capacity. In this paper, we
propose new methods which apply temporal blocking method to device memory and registers of a set of GPUs to allow
computations on the domain that is bigger than the memory capacity of GPUs while maintaining high performance on
TSUBAME2.5. We also analyze the parameters and performance differences between TSUBAME2.0 and TSUBAME2.5 to
apply our methods to wide range GPU clusters.

1. Introduction

Stencil computation is one of the base kernels in various
scientific and engineering simulations [1], [2]. When using
stencil computation in those simulations, the computation
of each point depends on the value of nearby points at
each time step. Then, it updates the whole domain for
multiple time steps. In some simulations, it needs to
compute bigger domains. Bigger domain means bigger
computational area or higher accuracy which is important
to simulations like weather forecast.

The common way [2], [3] that uses GPU cluster to
compute bigger computational domain is to separate the
domain into sub-domains. Then, it employs multiple GPUs
to compute the sub-domains. In that case, it assigns each
sub-domain to each GPU. So, the domain size is limited
by the memory capacity of GPUs. To efficiently use the
GPUs, it should enable the computation on the domain
that is bigger than the memory capacity of GPUs.

There are existing methods that enable the computation
on the bigger domains. The first one is naive method [4]. It
separates the domain into sub-domains. It assigns some
sub-domains to each GPU. Then, it copies each of them to
GPU to compute and copy the result back. In stencil case,
it can only compute 1 time step because of the boundary
constraint. So, it causes frequent communication in stencil
case. Temporal blocking method [5], [6], [7], [8], [9], [10]
can solve the frequent communication problem. It also
separates the domain into sub-domains and assigns some
sub-domains to each GPU. When it copies each of them to
GPU side, it copies more ghost boundaries with the
sub-domain to compute multiple time steps on GPU side.
So, it can reduce the communication cost by reducing
communication times. But, the more ghost boundaries
cause redundant cost which degrades the performance.

In our previous papers [11], [12], we proposed the
optimization methods that use the buffer on GPU to avoid
the redundant cost. We also applied the optimization
methods to multi-GPU case. The evaluation on
TSUBAME2.0 shows that our optimization methods
achieve higher performance than existing optimization
methods.

 †1 東京工業大学

Tokyo Institute of Technology
 †2 JST-CREST

†3 国立情報学研究所
 National Institute of Informatics

In this paper, we propose the optimization methods that
efficiently use the registers of GPU to improve the
performance in kernel level. Furthermore, we analyze the
differences of performance and parameters on the
TSUBAME2.0 and TSUBAME2.5 to apply those
optimization methods on wide range GPU clusters.

2. Background

In this section, we introduce some backgrounds for
further explanation.

2.1 Stencil computation

Stencil computation is widely applied in scientific and
engineering simulations as one of the base kernels. When
it computes each point, it needs the value of nearby points.
We give two examples of stencil computation. When
computing each point in 7 point stencil case, it needs the
value of itself and nearby 6 points. When computing each
point in 19 point stencil case, it needs the value of itself
and nearby 18 points. In the 3×3×3 area, 19 point stencil
uses more nearby points than 7 point stencil.

Fig.1. 7 point, 19 point stencil.

To efficiently compute the whole domain on GPU, it
uses double buffering methods to read initial and save
result of the domain.

Fig.2. Double buffering method

Vol.2014-HPC-143 No.33
2014/3/4

情報処理学会研究報告
IPSJ SIG Technical Report

ⓒ2014 Information Processing Society of Japan 2

It allocates two grids. One grid read initial of the
domain while the other one save the result of the domain.
Then, it swaps the two grids to continue the computation.
As double buffering method uses two grids, it consumes
two times space on GPU side. To simplify the explanation,
we will not identify which grid contains the domain.
Double buffering is the method that how to read the initial
and save the result of domain.

If the domain is divided into sub-domains, each point of
the boundary needs adjacent points which may belong to
the other sub-domains. We call these adjacent points on
the other sub-domains as ghost boundary. Next section, we
will introduce how to implement the stencil computation
by using CUDA program model on GPU.

2.2 GPU and CUDA program model

Graphics Processing Units for general-purpose
computation (GPGPU) is proved to be a high-performance
computing device to accelerate a wide variety of scientific
and engineering simulations. In November 2006, NVIDIA
introduced CUDA™, a general purpose parallel computing
architecture – with a new parallel programming model and
instruction set architecture – that leverages the parallel
compute engine in NVIDIA GPUs to solve many complex
computational problems in a more efficient way than on a
CPU [13]. CUDA comes with a software environment that
allows developers to use C as a high-level programming
language. Other languages or application programming
interfaces are supported, such as CUDA FORTRAN,
OpenCL, and DirectCompute.

2D spatial blocking [2] is an efficient way to perform
stencil computation on GPU. Since the computation
involves a large number of memory accesses, it should
reduce access to the global memory. Thus, it should
efficiently reuse the data on registers. Moreover, it should
invoke sufficiently larger number of threads than that of
physical CUDA cores in order to hide latency of memory
accesses.

Fig.3. 2D spatial blocking method

To fulfill those requirements, it designed a kernel
function that calculates the points of a computational
domain (Dx, Dy, Dz) for a single time step. The kernel
function is invoked on a GPU with (Dx/Bx, Dy/By) blocks,
each of which has (Bx, By) threads. Bx×By should no
more than the number of threads that a single block can
contain. It is better to set Bx more than By to improve data
locality. It divides the given domain into pieces of size of
(Bx, By, Dz) as shown in the upper figure.

2.3 TSUBAME system

TSUBAME supercomputer [14] is developed by Global
Scientific Information and Computing Center (GSIC) at
Tokyo Institute of Technology. It consists of thin,
medium and fat computing node which have different
system specifications. The nodes are interconnected by
dual QDR InfinitBand network with a full bisection-
bandwidth fat-tree topology. There are 1408 thin nodes, 24
medium nodes and 10 fat nodes. Each thin node has 54GB
host memory. The nodes mainly consist of two Intel Xeon
Westreme-EP 2.9 GHz CPUs and three NVIDIA GPUs.
Each GPU of TSUBAME2.0 has 3GB device memory.

Recently, TSUBME2.0 is upgraded to TSUBAME2.5.
TSUBAME2.5 upgraded TSUBAME2.0 by exchanging
the GPU series of Tesla M2050 to Tesla K20X to improve
the throughput in the fall of 2013. The CPUs and the
connections between nodes and inside nodes remain same.
The Tesla M2050 is Fermi and Tesla K20X is Kepler in
NVIDIA product series.

Fig.4. TSUBAME2.5 architecture

In Fermi, the shared memory and the L1 cache share the
same physical on-chip storage, and a split of 48 KB shared
memory / 16 KB L1 cache. Kepler continues this pattern
and introduces an additional setting of 32 KB shared
memory / 32 KB L1 cache, the use of which may benefit
L1 hit rate in kernels that need more than 16 KB but less
than 48 KB of shared memory per multiprocessor. L1
caching in Kepler GPUs is reserved only for local memory
accesses, such as register spills and stack data. In Kepler
GPUs, global loads are only cached in L2 cache. In Fermi
GPUs, the global loads are cached in L1 and L2 caches
which mean more data locality in caches to improve data
hit rate. Kepler has more computing units which are called
SMs and has bigger L2 cache. So, Kepler ensures
performance improvement in most application cases.

3. Related works

In this section, we introduce some related works.
Temporal blocking method is to reduce the
communication cost between CPU and GPU. Temporal
blocking method also can efficiently use the registers of
GPU to improve the performance of kernels.
3.1 Temporal blocking method

Leonardo Mattes [5], [6] proposed optimization method
to overcome the GPU memory limitation by overlapping
sub-domains. His solution is to divide the domain into
small sub-domains. Then, it copies the initial that is bigger
than the sub-domain to GPU side. On the GPU side, it can

Vol.2014-HPC-143 No.33
2014/3/4

情報処理学会研究報告
IPSJ SIG Technical Report

ⓒ2014 Information Processing Society of Japan 3

compute more time steps to reduce the communication
times between CPU and GPU.

Fig.5. Temporal blocking method to reduce communication cost

His work can avoid communication cost between CPU
and GPU and can overcome the memory limitation of
GPU. Yet, as he mentioned, his method has to initialize a
bigger initial for sub-domain which cause more
communication and computation. We call his method as
temporal blocking method and the more communication
and computation is called as redundancy problem. It is
important to solve the redundancy problem to improve the
performance.

3.2 Temporal blocking method for registers of GPU

In Wai Teng Tang’s paper [15], he explores a different
data access strategy to improve the performance of stencil
kernels. In particular, he proposed a temporal blocking
method to reuse the data on the registers. With the
appropriate tuning, his method is able to obtain optimal
parameters on different GPU platforms, and is able to
achieve better performance than prior methods.

Fig.6. Overlapped reading between two points on each thread.

As we can see in the upper figure, it needs to read
overlapped part when computing sequential points by each
thread. His method tries to save overlapped part on the
register of each thread and reuse when computing next
point as below:

Example of 7 point stencil of floating computation:
__global__ void kernel (grid0, grid1,…)
{
…
int jx = blockDim.x * blockIdx.x + threadIdx.x;
int jy = blockDim.y * blockIdx.y + threadIdx.y;
float tempo,tempc,tempb,tempt;
…
for(jz = 0;jz < Dz; jz++)

 {
 ji = Dx*Dy*jz + Dx*jy + jx;
 je = ji+1; jw = ji-1; jn = ji+Dx; js =ji-Dx;
 tempt = grid0[ji];
 grid1[ji]= tempo+cc*tempc+ct*tempt+ cb*tempb;
 tempb = tempc;

 tempc = tempt;
 tempo = ce*grid0[je] + cw*grid0[jw]
 + cn*grid0[jn] + cs*grid0[js];
 }
…

}

As we can see, it only needs to allocate additional 4
points on the register of each thread. Then, it can reuse
those points to contain the overlapped part and continue
the computation. It can easily improve the performance.
But, it should allocate related number of points for
different stencil which also consumes the space of
registers.

4. Supporting large domain on single node

In this chapter, we first focus on the optimization
methods on single node of GPU cluster. We only use 1
GPU on each node. We select 7 point and 19 point on 3D
domains of floating computation to implement and explain
the optimization methods. We assume the points of the
domain are stored in X, Y, Z order. To simplify the
implementation, we only use 1D decomposition method
(decompose the domain by Z dimension) in single node
case. To simplify the explanation, we set number to each
XY-plane of whole domain as below:

Fig.7. Set number to each XY-plane of whole domain.

Here, Dx, Dy, Dz are the size of X, Y, Z dimension. Plz
is the dimension size of each XY-plane.

4.1 Existing method: 1D-N, 1D-T

1D-N is the 1D decomposition version of naive method.
1D-T is the 1D decomposition version of temporal
blocking method.

Fig.8. The process of 1D-N and 1D-T

As the upper figure shows, 1D-N or 1D-T separates the
domain into sub-domains. Then, it copies each sub-domain
to the GPU side. Here, TBT stands for temporal blocking
times, NSD stands for the number of sub-domains, Cs

Vol.2014-HPC-143 No.33
2014/3/4

情報処理学会研究報告
IPSJ SIG Technical Report

ⓒ2014 Information Processing Society of Japan 4

stands for the data dependence of boundary. In 7 point or
19 point stencil case, Cs equals to 2.

In 1D-N case, TBT equals to 1. So, it copies
sub-domain with ghost boundary to GPU side and
compute 1 time step. Then, it copies the result back. It
only consumes Dx×Dy×(Dz/NSD+Cs)×2 space on the
GPU side, but it causes frequent communication between
CPU and GPU.

In 1D-T case, TBT can be bigger than 1. It copies
sub-domain with more ghost boundaries to GPU side and
compute multiple time steps. Then, it copies the result
back. It can reduce the communication cost between CPU
and GPU. But, it consumes more space which equals to
Dx×Dy×(Dz/NSD+Cs×TBT)×2 on GPU side. Also, the
more ghost boundaries may cause redundant
communication and computation cost.

4.2 Previous contribution: 1D-TBM

In this section, we introduce the previous contribution
that can reduce the communication cost and solve the
redundancy problem of 1D-T.

Fig.9. Overlapped part between two sub-domains.

In 1D-T case, we found that there is overlapped part
between sequential sub-domains as the upper figure shows.
To solve the redundancy problem, we try to save the
overlapped part and reuse when computing next
sub-domain.

Fig.10. The process of 1D-TBM

When computing sub-domain0 on GPU side, it saves Cs
= 2 XY-planes to buffer on GPU at each time step as the
upper figure shows. When computing sub-domain1, it
reuses the XY-planes (size equals to Dx×Dy×Cs) at each
time step. It should allocate Dx×Dy×Cs×TBT size of

buffer on the GPU side. We call this method as
buffer-copy method.

When it saves the result to the grid, it also shifts the
result as the upper figure shows. So, the space for each
grid equals to Dx×Dy×(Dz/NSD+Cs). We call this as
memory-saving method. It can save DxDy(CsTBT-Cs)
space than 1D-T method. We call 1D-T method with
buffer-copy method and memory-saving method as
1D-TBM method.

4.3 Discussion

In this section, we discuss the performance model of
1D-T and 1D-TBM. We build the model by counting the
amount of communication and computation as below:

1D-T, Minimize TTBT×Iteration/TBT
TTBT

=TC2G(domain)+TC2G(ghost boundaries)+TG2C(domain)
+ Tcomputation (domain)+Tcomputation(ghost boundaries)

1D-TBM, Minimize TTBT×Iteration/TBT
TTBT=TC2G(domain)+TG2C(domain)+Tcomputation (domain)

To achieve higher performance, it should try to
minimize TTBT×Iteration/TBT. We evaluate the actual time
on the single node of TSUBAME2.5 to compare with the
model. The domain is 640×640×640; the number of
sub-domains is 2.

Fig.11. The model and actual time on TSUBAME2.5

As we can see in the upper figure, the models are
similar to the actual evaluations which can be used to
decide the parameters. As the temporal blocking times
grow, TTBT×Iteration/TBT degrades in 1D-TBM case. It
shows that it can get higher performance as the temporal
blocking times grow. To implement 1D-TBM method, it
should allocate 2 grids and 1 buffer. We can get max TBT
in 1D-TBM case as below:

DxDy(Dz/NSD+Cs)2+ DxDyCsTBT

 <=GPU memory capacity

TBT <= Dz/NSD, Get max TBT.

4.4 Contribution: 1D-TBMR

In this section, we propose our optimization method
which is named as 1D-TBMR. As we introduced in the
upper section, temporal blocking method is used to reduce
the communication cost between CPU and GPU. To
improve the performance of the kernel, it applies the
temporal blocking method for the registers of GPU to
1D-TBM method. So, we can get 1D-TBMR method. We
give the example of the kernel of 7 point stencil in
1D-TBMR method case as below:

Vol.2014-HPC-143 No.33
2014/3/4

情報処理学会研究報告
IPSJ SIG Technical Report

ⓒ2014 Information Processing Society of Japan 5

Example of 7 point stencil of floating computation:
__global__ void kernel(grid0, grid1,…)
{
…
int jx = blockDim.x * blockIdx.x + threadIdx.x;
int jy = blockDim.y * blockIdx.y + threadIdx.y;
float tempo,tempc,tempb,tempt;
for(jz = 0;jz < Dz; jz++)

 {
 ji = Dx*Dy*jz + Dx*jy + jx;
 je = ji+1; jw = ji-1; jn = ji+Dx; js =ji-Dx;
 tempt = grid0[ji];
 grid1[jt]= tempo+cc*tempc+ct*tempt+ cb*tempb;
 tempb = tempc;
 tempc = tempt;
 tempo = ce*grid0[je] + cw*grid0[jw]
 + cn*grid0[jn] + cs*grid0[js];
 }
…

}

As the upper example shows, it improves the
performance of the kernel by saving some points to the
register of each thread and reusing them. Also, we can see
that memory-saving method saves the result to grid1[jt]
instead of grid1[ji]. So, it can shift the result to save space
and does not affect the performance of the kernel. So, we
can give the whole process of 1D-TBMR method.

Fig.12. The process of 1D-TBMR

As it only improves the performance of kernel of
1D-TBM, the parameters are decided by the same way as
section 4.3 introduced.

4.5 Contribution: 1D-P-TBMR

The temporal blocking times are limited as section 4.3
explains. To improve the performance, 1D-P-TBMR
method tries to overlap the communication with the
computation. It first allocates 2 more grids on the GPU
side. One grid contains the result of former sub-domain;
the other grid accepts the initial of the next sub-domain.
Both of them perform the communication when computing
current sub-domain as the below figure shows.

Fig.13. The process of 1D-P-TBMR

5. Supporting large domain on multiple nodes

In this chapter, we introduce how to apply optimization
methods to multiple nodes. We also select 7 point and 19
point stencil of floating computation. We also assume the
points of the domain are stored in X, Y, Z order.

5.1 Previous contribution: Decomposition method

As we introduced in the upper chapter, our optimization
methods achieves scalability in one dimension. In 7 point
or 19 point case, it computes 3D domain. To achieve
scalability in 3D domain, it should decompose the domain
by other two dimensions among the nodes. Then, it
separates each sub-domain into smaller parts and applies
the 1D optimization methods between sub-domain and
parts.

Fig.14. Common decomposition VS our decomposition

Sx, Sy, Sz is the size of each dimension in the upper
figure. The common 2D decomposition method is to

Vol.2014-HPC-143 No.33
2014/3/4

情報処理学会研究報告
IPSJ SIG Technical Report

ⓒ2014 Information Processing Society of Japan 6

separate the domain by Y and Z dimensions. As it saves
the domain points in X, Y, Z order, 2D decomposition by
Y and Z dimension can benefit the implementation and
boundary exchange in the common way case.

When using 1D optimization method between
sub-domain and parts, the computational part on the GPU
is changed at each time step. To contain the points in
continuous space on GPU side, it is better to separate the
domain by X, Y dimension among the nodes.

5.2 Previous contribution: apply optimization method

As the upper section explains, our 2D decomposition
method separates the whole domain into sub-domains by
X, Y dimension. Then, we use 1D-decompsition to
separate the sub-domain into parts by Z dimension as the
below figure shows. Then, it can apply 1D optimization
methods between sub-domain and parts. So, we can get
optimization methods for multiple nodes by combining 2D
decomposition method with 1D optimization methods:
2D-1D-N, 2D-1D-T, 2D-1D-TBM.

Fig.15. Apply 1D optimization method

Here, NPS is the number of parts. We set the number of
nodes as Nx×Ny. Then, the size of each sub-domain is
(Dx/Nx)×(Dy/Ny)×Dz; the size of each part is
(Dx/Nx)×(Dy/Ny)×(Dz/NPS).

5.3 Contribution: 2D-1D-TBMR

In this section, we propose our optimization method
2D-1D-TBMR. We give the example of the kernel of 7
point stencil as below:

Example of 7 point stencil of floating computation:
__global__ void kernel(grid0, grid1,…)
{

int jx = blockDim.x * blockIdx.x + threadIdx.x;
int jy = blockDim.y * blockIdx.y + threadIdx.y;
float tempo,tempc,tempb,tempt;
for(jz = zstart;jz < zend; jz++)

 {
 ji = Sx*Sy*jz + Sx*jy + jx;
 je = ji+1; jw = ji-1; jn = ji+Sx; js =ji-Sx;
 tempt = grid0[ji];
 grid1[jt]= tempo+cc*tempc+ct*tempt+ cb*tempb;
 tempb = tempc;
 tempc = tempt;
 tempo = ce*grid0[je] + cw*grid0[jw]
 + cn*grid0[jn] + cs*grid0[js];
 }
}

It decomposes the whole domain by X, Y dimension. So,
it adjusts the position of the points that are computed by
the kernel as the upper shows. It also uses memory-saving

method in the kernel. Then, we can give the process of
2D-1D-TBMR method as below:

Fig.16. The process of 2D-1D-P-TBMR

It should exchange the boundary of the part to continue
the computation at each time step. To reduce the
communication cost of exchanging boundary, it overlaps
the communication with the inside computation at each
time step.

6. Evaluation

6.1 1D-TBMR vs other methods on single node

We evaluated the optimization methods for 7 point
stencil on single node of TSUBAME2.5. The domain is
from 240240240 to 216021602160 of floating
computation. As we can see in the below figure,
1D-P-TBMR method gets 2.63 times higher performance
than 1D-T method.

Fig.17. 1D-P-TBMR vs others

Vol.2014-HPC-143 No.33
2014/3/4

情報処理学会研究報告
IPSJ SIG Technical Report

ⓒ2014 Information Processing Society of Japan 7

6.2 2D-1D-TBMR vs other methods on multiple nodes

We evaluated the 2D-1D-TBMR, 2D-1D-TBM,
2D-1D-T, 2D-1D-N method for 7 point stencil on multiple
nodes of TSUBAME2.5. The domain is 512051202560
of floating computation. The number of nodes is from 16
to 256.

Fig.18. 7 point stencil, 2D-1D-TBMR vs others

As we can see in the upper figure, 2D-1D-TBMR
method gets 1.59 times higher performance than
2D-1D-TBM (previous) and 1.84 times higher
performance than 2D-1D-T method.

We evaluated the 2D-1D-TBMR, 2D-1D-TBM,
2D-1D-T, 2D-1D-N method for 19 point stencil on
multiple nodes of TSUBAME2.5.

Fig.19. 19 point stencil, 2D-1D-TBMR vs others

In 19 point stencil case, 2D-1D-TBMR method gets
1.71 times higher performance than 2D-1D-TBM
(previous) and 2.68 times higher performance than
2D-1D-T. As 19 point stencil reads more nearby points, it
is more important to use registers to reduce access time.

6.3 Evaluation on TSUBAME2.0 and TSUBAME2.5

We evaluated the 2D-1D-TBMR method for 7 point
stencil on multiple nodes of TSUBAME2.5 and
TSUBAME2.0. The domain is 512051202560 of
floating computation.

Fig.20. 7 point stencil, TSUBAME2.5 vs TSUBAME2.0

As we can see in the upper figure, it gets 1.37 times
higher on TSUBAME2.5 than on TSUBAME2.0.
Although it increases memory capacity of GPU by 2 times,
it still needs to use optimization methods to compute
bigger domain. It can compute 20 times bigger domain on
TSUBME2.5 and 40 times bigger domain on
TSUBAME2.0 than the common way. The domain size of
the common way depends on the memory capacity of
GPUs. The domain size of our optimization methods
depends on the memory capacity of CPUs.

6.4 Parameters on TSUBAME2.0 and TSUBAME2.5

In multiple nodes case, it separates the domain into
sub-domains and each sub-domain into parts. We set NPS
is the number of parts; TBT is the temporal blocking times.
We set TBT is smaller than the size Z dimension of each
part (Dzp). To reduce the communication cost, we should
get max TBT. So, we can get formula as below:

Dzp = Dz / NPS, Cs = 2

If use double buffering,

(Dx/Nx)×(Dy/Nx)×(Dzp+Cs)×2

+(Dx/Nx)×(Dy/Ny) ×TBT×Cs+(Dx+Dy)×(Dzp)×2

 ≤GPU memory capacity (1)

TBT < Dzp, Get max TBT (2)

So, we can get the parameters in domain 5120×5120×
2560 as the below figure shows. It can get max point 2
times earlier on TSUBAME2.5.

Fig.21. Parameters on TSUBAME2.5 vs on TSUBAME2.0

Vol.2014-HPC-143 No.33
2014/3/4

情報処理学会研究報告
IPSJ SIG Technical Report

ⓒ2014 Information Processing Society of Japan 8

7. Conclusion

In this paper, we propose a series of new optimization
methods which enable the computations on the domain
that is bigger than the memory capacity of GPUs while
maintaining high performance on TSUBAME GPU cluster.
The result shows that our optimization method achieves
1.59 times higher performance in 7 point case and 1.71
times higher performance in 19 point case than other
optimization methods on multiple nodes of TSUBAME2.5.
Furthermore, our optimization method can compute 20
times bigger domain than the common way on
TUSBAME2.5.

As a future work, we will try to lower programming
difficulty by using tools like Physis [16]. To improve the
performance and increase the memory capacity, we will
also try to use 3 GPUs in each node.

Reference
[1] Christen, M. , Schenk, O., Yifeng Cui, “PATUS for Convenient

High-Performance Stencils: Evaluation in Earthquake
Simulations”, In Proceedings of IEEE/ACM International
Conference on Supercomputing (SC12), pp. 1-10, 2012.

[2] Takashi Shimokawabe, Takayuki Aoki, Tomohiro Takaki, Akinori
Yamanaka, Akira Nukada, Toshio Endo, Naoya Maruyama, and
Satoshi Matsuoka, “Peta-scale phase-field simulation for dendritic
solidification on the TSUBAME 2.0 supercomputer,”In
Proceedings of IEEE/ACM International Conference on
Supercomputing (SC11), pp. 1-11, 2011.

[3] K. Datta, M. Murphy, V. Volkov, S. Williams,J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick, “Stencil computation
optimization and autotuning on state-of-the-art multicore
architectures,”In Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing (SC08), pp. 1–12, 2008.

[4] Toshio Endo and Satoshi Matsuoka, “Massive supercomputing
coping with heterogeneity of modern accelerators,” In Proceedings
of IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2008), 10pages, April 2008.

[5] Leonardo Mattes and Sergio Kofuji, “Overcoming the GPU
memory limitation on FDTDthrough the use of
overlappingsubgrids,” ICMMT, pp.1536 – 1539, 2010.

[6] Leonardo Mattes and Sergio Kofuji, “The use of overlapping
subgrids to accelerate the FDTD on GPU devices,”Radar
Conference, pp. 807 – 810, 2010.

[7] Takeshi Minami，Takeshi Iwashita，Yasuhito Takahashi, and
Hiroshi Nakashima, “Cache-aware performance improvement of
FDTD kernel,” IPSJ SIG Technical Report，vol.2010-HPC-124
No.5, 7pages, 2010.

[8] M. Wittmann, G. Hager, and G. Wellein, “Multicore-aware
parallel temporal blocking of stencil codes for shared and
distributed memory,” Workshop on Large-Scale Parallel
Processing (LSPP10), in conjunction with IEEE IPDPS2010,
7pages, April 2010.

[9] Gerhard Wellein, Georg Hager, Thomas Zeiser, Markus Wittmann
and Holger Fehske, “Efficient temporal blocking for stencil
computations by multicore-aware wavefront parallelization,”
Computer Software and Applications Conference, vol.1, pp. 579 –
586, 2009.

[10] Tomoki Kawamura,Naoya Maruyama, and Satoshi Matsuoka,
“Performance model for automatic optimization of communication
in data-parallel stencil computations,” IPSJ SIG Technical
Report，vol.2012-HPC-135, 8pages, 2012

[11] Guanghao Jin, Toshio Endo and Satoshi Matsuoka, “ A
multi-level optimization method for stencil computation on the
domain that is bigger than memory capacity of GPU, ”
AsHES/IPDPS 2013, 2013.

[12] Guanghao Jin, Toshio Endo, Satoshi Matsuoka. A Parallel
Optimization Method for Stencil Computation on the Domain that
is Bigger than Memory Capacity of GPUs . In Proceedings of
IEEE Cluster 2013, Indianapolis, September 2013.

[13] NVIDIA CUDA C Programming Guide, Version 4.0, 2011.

[14] TSUBAME2.5 User’s Guide, 2013.

[15] Wai Teng Tang, Wen Jun Tan, Krishnamoorthy, R., Yi Wen Wong,
Shyh-hao Kuo, Goh, R.S.M. , Turner, S.J., Weng-Fai Wong,
“Optimizing and Auto-Tuning Iterative Stencil Loops for GPUs
with the In-Plane Method ”, Parallel & Distributed Processing
(IPDPS), pp. 452 – 462, 2013.

[16] Naoya Maruyama, Tatsuo Nomura, Kento Sato, and Satoshi
Matsuoka, “Physis: An implicitly-parallel programming model for
stencil computing on large-scale GPU-accelerated
supercomputers,” IEEE SC11,2011.

 Acknowledgments This work was partly supported by
"Software Technology that Deals with Deeper Memory
Hierarchy in Post-peta scale Era", JST-CREST.

Vol.2014-HPC-143 No.33
2014/3/4

