
IPSJ SIG Technical Report

An Asynchronous Commit DMR Architecture for
Aggressive Low-Power Fault Toleration

Yuttakon Yuttakonkit1,a) Jun Yao1,b) Yasuhiko Nakashima1,c)

Abstract: Dual modular redundancy (DMR) execution is commonly used in many high-end processor platforms to
tolerate the increasing transient faults caused by single event effects (SEEs) along the advances of process technology.
As the operations must be performed twice to facilitate the comparison based error detection, the power consumption
efficiency is always an important issue for dependable systems. To reduce the power consumption, dynamic voltage
scaling (DVS), together with Razor FF, have been proposed and well used to lower the voltage to a balancing point
for an optimal energy reduction. However, simply combining a DMR and Razor-FF will easily have performance
impact as the synchronous committing logic in the traditional DMR architecture does not work well with the dynamic
frequency in a Razor FF processor.
In this research, we propose a globally asynchronous locally synchronous DMR architecture that uses dedicated clocks
on each DMR module. FIFOs and delay buffers are additionally added and well controlled to guarantee the data
checking inside this asynchronous system for both soft and timing error. Compared to the traditional synchronous
DMR system, we can have around 10% performance improvement by this asynchronous committing scheme when a
same power reduction ratio is assumed. On the other hand, voltage can be aggressively tuned in either DMR module
to achieve 12% better MIPS/W without major down-gradation of the performance.

1. Introduction
In the past decades, the design, manufacturing and utilization

of microprocessors have been extensively improved for an op-
timal performance under a limited power budget, or a minimal
energy consumption which can still meet the throughput require-
ment. The architecture designers work towards this target via
optimally arranging microprocessor elements and their working
configurations and modes. The working frequency was firstly im-
proved by the state-of-art tunings on the critical paths, and now
many-core architecture is well used to increase the per area com-
putation density for higher performance. Meanwhile, material
technologies on semiconductor fabrication provide an exponen-
tially scaling of design improvement opportunities. However, so
far with all these improvement scenarios being applied, CMOS
size is now miniaturized and the working voltage is low enough
to be easily effected by particle and radiations, which is then re-
flected as transient errors and causes system failures [1]. The
up-scaled integrity adds to this pressure as exponentially more
vulnerable transistors are inside the system. A research, which
studies the single event effects (SEEs) on supercomputing ma-
chines, pointed out the more than tens of transient errors can be
visible in a supercomputing system consisted of many GPGPUs,
leading to a mean time to failure (MTTF) in a several hours’ or-

1 Computing Architecture Lab, Graduate School of Information Sci-
ence, Nara Institute of Science and Technology, Takayama-Cho 8916-5,
Ikoma, Nara 630-0192, Japan

a) yuttakon-y@is.naist.jp
b) yaojun@is.naist.jp
c) nakashim@is.naist.jp

der [2]. Also, another example gives that with the large number
of cores in K-computer, achieving a peak performance for more
than 30 hours’ calculation requires that each node can deliver a
MTTF longer than 500 years, which is an extremely high pressure
to the yielding.

With the increasing correctness challenges from SEEs, dual or
triple modular redundancies (DMR/TMR) are largely used to pro-
tect critical units in high end platforms, such as IBM g5 micro-
processor and its successors, part of circuits in Fujitsu SPARC
platforms [3], and so on. In paper [1], a dynamic adaptive redun-
dancy architecture (DARA) that uses mainly DMR to achieve the
TMR equivalent reliability is given in detail. However, all these
reliable systems require multiple circuit or unit sets to perform
redundant executions either per operation or per thread granular-
ity. The low energy efficiency, which comes from the use of at
least twice energy and the delivery of an only 1x throughput, is
always a big concern in this field. In an environment where the
total energy budget is given, such as in the satellite where depend-
ability is highly required while the electricity is powered by the
solar panels, or an environment where power utilization is con-
strained by the utilization wall, the drawback of this low energy
efficiency will easily be visible, as additional performance will
be traded-off to meet both the power constrains and dependabil-
ity requirements. Therefore, in this research, we are targeting at
the goal to add back some power efficiency for such high depend-
ability requirement systems.

Specifically, we target at both power reduction from the DMR
processor floor-planing stage and the low-power execution mode
of the baseline DMR processor. Traditional DMR architectures

1ⓒ 2014 Information Processing Society of Japan

Vol.2014-ARC-209 No.9
2014/3/7

IPSJ SIG Technical Report

such as IBM g5 [4] and DARA [1] use synchronous redundant
executions and data sanity checks. Many previous studied have
pointed out that the clock source is a dominant energy consumer
in modern micro processors [5]. This situation will be even worse
when the clock tree needs to reach the ends of duplicated mod-
ules in a DMR processor. Both the design constraint and working
clock skews will increase the power consumption. In our work,
we try an alternative way to ensure the use of dedicated clock
trees in each redundant module, removing the requirement for
a globally synchronous clock tree. Also, we try to extensively
lower the supply voltage until the unsafe zone of supply voltage
is reached, as our low-power execution mode. Razor FFs are con-
sidered to be used to tolerate the possible timing faults from these
overly lowered voltage. However, as will be introduced in lat-
ter sections, traditional synchronous DMR methods are not well
compatible with the bubble cycles in a system with Razor FF dur-
ing the timing fault recovery. Again, the dedicated clock signals
in individual DMR modules can be used and tuned to solve this
problem, making Razor FF compatible in the DMR logics.

In summary, the major contributions that this work provides
are:
(1) A alternative solution to combine both energy reduction

techniques and the transient fault toleration: Due to the
voltage-frequency interference, voltage down-scaling tech-
nology is hard to be combined with traditional synchronous
DMR architectures. With our work, the abilities of extreme
dynamic voltage scaling by Razor FF and the dependability
in addressing SEEs in DMR architecture can be achieved in
one system with very few performance impacts.

(2) The removal of global clock tree in the traditional syn-
chronous DMR architecture. Traditional duplicated DMR
logics extends the length of clock tree which further in-
creases the clock delay and manufacturing cost, especially
for complicated dependable processors. The schemes in
this work retires a strict synchronization between the dupli-
cated modules and allows to use different clock trees in the
DMR modules. This lowers the requirement for the tightly
coupling between DMR modules, which can expect to con-
tribute to the cost reduction in the processor yielding.

(3) Aggressive supply voltage change to make full use of the
asynchronous units: We also go one step further to aggres-
sively adjust the supply voltage to explicitly incur timing
faults for better MIPS/W in each DMR module. This sup-
ply voltage control can keep the asynchronous module near
to the saturate state. The performance interference is still
small, while the power can be saved for about 12% from the
additional voltage control.

The rest of this paper is organized as follows. Section 2 tries
to give the problem demonstration when both transient and tim-
ing faults are in consideration. Section 3 describes the proposed
architecture mainly focused on how to handle the error detection
and recovery in a locally asynchronous system for high depend-
ability. Section 4 shows the experiments, tools and evaluation
results. Section 5 concludes the paper.

2. Background: the Incompatibility between
Razor FF and Redundant Architecture

A traditional way to lower the power consumption of a mi-
croprocessor is via the supply voltage control, which is now
widely used in most commercial processors, known as the dy-
namic voltage scaling (DVS) technique. However, according to
the fundamental of value switching in a transistor, a state change
of the transistor is firstly triggered by the input electronic sig-
nals and then flips the connection between either the power and
ground to charge or discharge the capacitance, where the charg-
ing/discharging periods are thereby accumulated into the circuit
delay. This delay constrains the processor performance via the
definition of frequency. During the design and manufacturing
phases, processor will be configured in the optimal operation
point that has minimum sufficient supply voltage or top working
frequency to ensure that the whole circuits can operate correctly.
In addition, uncertain environments, such as the ambient tem-
perature and IR-Drops that affect the circuit performance, may
make circuits not able to catch up with the clock frequency and
then trigger the erroneous states, known as timing errors. These
possibilities of timing errors are also taking into account during
the manufacturing, which is represented as the voltage definition
margin. This voltage margin is a guard-band for tolerating the
possible IR-drops during the usage, which is against the energy
efficiency but is however necessary where worst cases may occur.

Ernst et. al. [6] has proposed Razor Flip-Flop (FF) for the re-
moval of this voltage guard-band to achieve extreme high power
efficiency by intentionally reducing the voltage to below the safe
voltage point. A set of main and shadow FF/latch, called as Ra-
zor FF, which receives data from the same source at a controlled
timing phase shift, is assembled into each stage to detect timing
faults, as shown in Fig. 1(a). The lowered voltage without con-
sidering margins can still hold the delays for most operations,
which are referred as normal cases. In the worst cases, however,
the unsafe voltage will incur timing faults, which can be detected
by a comparison between the main and shadow memory. Under
timing faults, the shadow memory can provide the correct data
source for the latter stage. However, under this circumstance, a
one-cycle bubble will occur, as shown in Fig. 1(b). There are also
other recovery scheme of Razor FF which uses a pipeline flush-
like scheme to lower the increase of critical path from the error
detection signal. Either of these recovery phases can be regarded
as a dynamically changed frequency, which can be denoted as f
- Δ f where the part of Δ f is in proportion to the ratio of detected
timing faults.

However, this dynamically changing frequency, as f - Δ f , will
add difficulties to the combination of Razor FF for further volt-
age down-scaling and the DMR architecture for SEE addressing.
For a simple control, most DMR techniques, such as IBM g5 [4],
DMR/TMR in chip multiprocessors [7], and DARA [1], use a
synchronous execution of multiple threads to ensure strict com-
parison is performed at the timing that the data are generated.
The synchronous comparison and the simultaneous writeback in
the duplicated processor modules afterward also make the recov-
ery easier, which only requires to discard all uncommitted data

2ⓒ 2014 Information Processing Society of Japan

Vol.2014-ARC-209 No.9
2014/3/7

IPSJ SIG Technical Report

Inst. cc0 cc1 cc2 cc3 cc4 cc5 cc6
i1 IF ID EX MEM WB

i2 IF ID EX* Bb MEM WB

clk

clk+

clk

clk+

Err: 1 at

cc4

cc3 cc4

(a) Razor FF: error detection and recovery.

(b) Razor FF: Bubble cycle

Main FF: i2 (X)

Shadow: i2 (O)

EX (i2)

Fig. 1 The structure of Razor FF and its error detection/recovery.

Inst./
pipeline

cc0 cc1 cc2 cc3 cc4 cc5 cc6 cc7

i1 (A) IF ID EX MEM WB

i1’ (B) IF ID EX MEM WB

i2 (A) IF ID EX MEM Stall WB

i2’ (B) IF ID EX* Bb MEM WB

i3 (A) IF ID EX MEM WB

i3’ (B) IF ID EX MEM WB

Bubble cycle due to timing fault;

Shadow latch in Razor FF provide a correct data.

Stall due to the

synchronous WB.

Fig. 2 The synchronous hazard due to timing fault in a traditional DMR
processor.

in both processor modules and recover to the checkpoint states.
Applying Razor FF onto this synchronous checking and write-
back system will cause a hazard in the duplicated processor mod-
ules even when only one module has timing fault and a dynamic
frequency shift, as shown in Fig. 2. This kind of hazard due to
synchronous comparison will be even threatening when the two
modules have different manufacturing characteristics, which is
common in the current process technologies due to the high pro-
cessor variation. A simple calculation can be carried out by as-
suming that each processor core in a DMR architecture has a 30%
possibility of timing fault per operation when the voltage is ag-
gressively down-scaled. The chance for simultaneous correct ex-
ecution and simultaneous incorrect execution due to timing faults
is 49% and 9%. The other part of possibility, as 42%, falls into
different execution stats in individual processor cores, which will
thus cause synchronous comparison hazards in the synchronous
DMR architecture.

3. Our Proposal: Asynchronous DMR to Con-
ceal Synchronous Hazard under Timing
Faults

The major inconsistency between the DMR architecture and
the application of Razor FF for a better DVS utilization is in the
synchronous writeback. In addition, the large clock tree used

to synchronize the duplicated modules is also a possible power
consumer, which is against the purpose of low-power dependable
execution. In this research, we try to address the above prob-
lems by isolating the two duplicated modules into each individ-
ual zones, working under a globally asynchronous locally syn-
chronous (GALS) fashion. Each DMR component module works
with its own clock tree, which can thus have different dynamic
frequency shifts caused by Razor FF based timing fault recov-
ery. However, under the asynchronous execution, the comparison
and recovery become new problems as keeping an exact lock-step
fashioned execution [4] is now impossible. Accordingly, we have
the following solutions specially designed for this asynchronous
DMR architecture.

3.1 FIFO based error detection
We used DARA processor as our baseline architecture of a

DMR execution processor with full error detection and roll-back
based recovery abilities. DARA processor contains two proces-
sor pipelines which are driven by a global clock. The instructions
are duplicated at the fetch stage by maintaining two copies of
program counter (PC). At the beginning of the writeback phase,
the committing data, include register file writeback and store ad-
dress/data, will be compared from the two simultaneous execu-
tion. When the values are not identical, a fast recovery will be
triggered, following the same scheme of a branch mis-prediction
resolution. In this section, we extend the comparison in the write-
back stage by using the asynchronous scheme.

Fig. 3 shows the major change in the error detection logic
and the related units between the synchronous and asynchronous
DARA processor. In the synchronous mode, the two pipeline
registers in the writeback stage in DARA work on the same in-
structions and work under a same clock. The comparison can be
performed directly by using the two outputs from the flip flips
before the write back logics, and a lock-step signal will be given
when the comparison gives a sign of different data. All the logics
in Fig. 3(a) are thus very straightforward and simple.

When the asynchronous mode is introduced, the two pipelines
are deliberately designed to be running under their own clock
zone. The two clocks can be of a same frequency with some
phase shifts between the clock edges. With this asynchronous
design, the data to compare for the detection of transient faults
are thus from two writeback stages triggered by their own ded-
icated clocks. There may be some time shift, either within one
cycle or several cycles, between the data arrivals of the dupli-
cated instruction set. This time shift may not only comes from
the dedicated clocks. As has been introduced in Section 2, the
application of Razor-FF can also result into a potential frequency
shift. Fig. 2(b) gives a demonstration of this scenario, as in the
cc3-th cycle, a timing fault is detected by the Razor-FF in the
execution stage and a bubble is therefore added into the pipeline
B. In the cc4-th cycle, the recovery takes place by using the data
in the shadow latch inside the Razor-FF. By this way, pipeline
B looses track with pipeline A, which now respectively makes a
slower and a faster cores.

To handle this clock signal mismatch and data verification af-
terward, a synchronization module to re-stabilize the two copies

3ⓒ 2014 Information Processing Society of Japan

Vol.2014-ARC-209 No.9
2014/3/7

IPSJ SIG Technical Report

Pipeline Register Pipeline Register

==?

Err_A

==?

Err_B

(2)

Regfile
(lock-step
write)

Regfile
(lock-step
write)w_en?

W
B

(2)

IF

ID

RR

EX

MA

WB

IF

ID

RR

EX

MA

WB

A B Pipeline A (clock) Pipeline B (clock)

write enable to block incorrect update
==?

(a) Synchronous comparison and committing.

Pipeline Register

==?

Regfile
(non-
blocking)

Regfile
(non-
blocking)

IF

ID

RR

EX

MA

WB

IF

ID

RR

EX

MA

WB

A B Pipeline A (clock A) Pipeline B (clock B)

==? ==?

Err (A) Err (B)

Pipeline Register

syncFIFOdelayBuf

(b) Asynchronous data check, clock A != clock B

syncFIFO

Fig. 3 Synchronous data check/committing (previous work) vs. asyn-
chronous data check/committing (proposal).

of identical execution is given in Fig. 3(b). Specifically, we use
first in first out (FIFO) memory to store data for comparison be-
tween the two cores. Each core will have their own out-bound
and in-bound FIFOs. The FIFOs are basically a working mod-
ule for synchronization, sending values under the clock of data
generator pipeline, and reading data at the clock of data receiver
pipeline. Note that the out-bound FIFO from pipeline A becomes
the in-bound FIFO in pipeline B side, and vice versa. In addition
to the data transferring FIFOs, each pipeline will have a delay
buffer to store its own values of the processed instructions, which
is triggered by its local clock.

As shown in Fig. 3(a) and Fig. 2(b), the synchronous data check
scheme will stop the execution of the fast core, to let it wait for
the data arrival of the slow core so that simultaneous data commit
is guaranteed. Differently, in the asynchronous DMR architec-
ture (Fig. 3(b)), the fast core will commit the processed instruc-
tion as soon as possible, while pushing the data values of the
committed instruction into its own delay buffer and the out-bound
FIFO simultaneously. The slow core, as pipeline B, fetches the
oldest instruction result from the in-bound FIFO, comparing with
its own execution result for a transient fault detection. The delay
buffer in the slow core is not active, as its store depth is zero now
under this scenario. Meanwhile, the slow core will also update
its execution result with the fast core via another FIFO link. The
fast core compares this result with its oldest instruction result in
the program order in the delay buffer to detect an execution error.
For each FIFO and delay buffer, it requires to have a tail and a
head pointer to help write in the local newest data and read out
the oldest instruction in the program order. For an out-of-order
execution processor, as this FIFO and delay buffer are put inside
the WB stage, the order to update these units can still strictly
follow the program order, which thus make this asynchronous

method applicable even when out-of-order issuing is assumed.
When there is an SEE in either of the two executions, both of
these two asynchronous pipelines will detect the error if the fault
becomes visible.

As can be expected, the depth of the delay buffer and the FI-
FOs become the major limitation of the timing gap between the
two pipelines. If one of the two DMR modules is always working
under a lower frequency, the always slow core will easily saturate
the FIFOs and the whole system will work under the limited low
frequency. However, as has been previously roughly analyzed,
in an environment where each operation gets 30% possibility for
a timing fault, there is a 42% possibility that only one pipeline
is with timing fault. It means that either pipeline A and pipeline
B will be dynamically delayed due to timing faults, which can
respectively switch the roll of faster and slower cores on-the-fly.
This also makes the best expected scenario to apply our asyn-
chronous method. The goal of this research is to find the op-
timal buffer depth in different applications, which will be fully
discussed in the result sections.

3.2 Error recovery
The recovery is also complicated in this asynchronous system,

as the fast core may already update its incorrect data into its reg-
ister file and cache lines before the erroneous execution can be
detected. Usually, a checkpoint based recovery will be necessary,
as shown in most delay buffer based redundant systems [8]. How-
ever, under this situation, the memory and the register file in the
slow core, still represent the latest correctly executed instructions,
as the erroneous data has not been written back. The register file
and the data/instruction cache in the slow core now become the
real checkpoint data, which retires the necessity for an additional
checkpoint space. Fig. 4 gives a demonstration of this error re-
covery triggered by the transient fault detection. Specifically, an
control FSM will be used to writeback the D$ content from the
slow core to the L2 cache. After that, the FSM will synchronize
the data in the register file of the slow core to the fast core. All
other memory information can be discarded by invalidating the
cache lines then. After these steps, the program can be restarted
from the re-fetching of the PC of the latest un-executed instruc-
tion, as i2 in this example. The rollback scheme can be totally the
same as in the original DARA system [1]. Note that this method
is only possible when no dirty lines in the fast core are updated
into the lower caches. Before a dirty line replacement, the fast
core is necessary to be stalled to wait for the slow core to cache
up. After the memory synchronization, a roll-back based recov-
ery similar to the synchronous DARA can be scheduled to restore
the latest correct processor state.

3.3 Active voltage control to achieve more power reduction
The application of this asynchronous DMR system gives an-

other possible use of the voltage control. As the performance
of the asynchronous DMR is actually limited by the dynamically
slowed down core due to timing faults, the fast core which leads
the execution in a short instruction gap can safely take several
timing faults before it will influence the DMR performance. In
other viewpoints, if the delay buffer and the FIFOs are not satu-

4ⓒ 2014 Information Processing Society of Japan

Vol.2014-ARC-209 No.9
2014/3/7

IPSJ SIG Technical Report

IF (i10)

ID (i9)

RR (i8)

EX (i7)

MA (i6)

WB (i5)

Pipe A (fast)

IF (i7)

ID (i6)

RR (i5)

EX (i4)

MA (i3)

WB (i2)

Pipe B (slow)

 !=

 !=

I $ I $

D $D $

Invalidate

Invalidate

Invalidate

Writeback
as checkpoint buf

RF RF

Checkpoint buf

1. writeback pipe B D$ to L2$;
2. copy pipe B RF to pipe A;
3. invalidate other $, FIFOs;
4. restart from i2 in A/B.

Fig. 4 The recovery scenario in the asynchronous DMR architecture.

rated to trigger synchronization hazards, the performance of the
DMR performance will not be hurt by the timing faults in the
slow cores.

To make a full use of the FIFO depth, starting from the tim-
ing fault free execution, which requires a high voltage in both
pipelines, we intensionally increase the error rate inside the sys-
tem. Using the 30% timing fault possibility per operation in the
previous example, only for a 9% possibility, there will be a simul-
taneous fault pair in both pipelines. In other conditions, the delay
caused by timing fault will be buffered inside the asynchronous
FIFOs and delay buffers. This buffered delay will be high possi-
bly concealed in some other long pipeline hazards such as branch
mis-prediction and L2 cache miss. Especially for the L2 cache
miss, when there is no dirty line writeback, the cache miss can be
safely triggered by the fast core, providing a fast resolution for
the slow core. The possibility of this further voltage reduction
by fully using the depth of the FIFOs and delay buffers will be
discussed in Section 4.

4. Results
4.1 Methodology

We use a cycle accurate processor simulator to mimic the
GALS DMR processor, especially putting emphasis on the asyn-
chronous committing when occasional timing faults are applied
onto either DMR module. The ISA that we used in this simulator
is SH-2 [9]. The processor parameters are listed in Table 1.

To simulate correct timing error, it needs fine-grain data sim-
ulation that can access and calculate all of data bit by bit with
amounts of environments variable such as voltage drop, tempera-
ture dissipating or clock slack with all of these variable precisely
concerned This complicated simulation can however be largely
accelerated by using VARIUS [10], which provides a statistic
model for timing error. VARIUS is based on processor floor-
plan that is physical blueprint of processor with environment vari-
able such as transistor fabrication technology, voltage threshold
in each transistor and heat dissipating rate. It provides precisely
voltage that processor circuit can operate under frequency or vice-
versa. Also with the statistic model it can provide error probabil-
ity in varies of configuration without data simulation. The model
was verified with real-world test data from Razor data [6] that
it’s precise enough to use as a reference data. Fig. 5 shows the
voltage and timing fault rate configurations that we used in this

Feature Description
Architecture 32-bit internal data bus
General-register file 32-bit general registers × 16

Instruction set
16-bit fixed length
Load-store architecture
Delayed branch implemented

ALU execution delay 1 cycle for each instruction

Pipeline 6 stages pipeline
IF,ID,RR,EX,MEM,WB

Instruction issuing 2 Issue
Instruction commit In-Order

Instruction Cache
size/assoc/repl = 64kB/4-way/LRU
line size = 16 kB
miss penalty = 8

Data I1 Cache
size/assoc/repl = 64kB/4-way/LRU
line size = 32 kB
miss penalty = 8

I2 Cache
size/repl = 2MB/Direct-map/LRU
line size = 64 kB
miss penalty = 40

Table 1 SH2 Simulator Features Description

0%

20%

40%

60%

80%

100%

0.7 0.74 0.78 0.82 0.86 0.9 0.94 0.98

Er
ro

r R
at

e
(%

)

Voltage (V)

VARIUS Statistic Model
Timing error rate f =1.1 GHz
arch ev6 floorplan@45 nm

Tempature 70 oF

Fig. 5 Supply voltage vs. timing fault rate, from VARIUS model.
.

work.

4.2 Benchmarks and energy results
We used 10 benchmarks, as Bubble, FFT, Intmm, Mm, Perm,

Puzzle, Queens, Quick, Towers, and Trees, from Stanford Bench-
mark suite to evaluate the performance of our proposed architec-
ture. The timing fault free IPCs of these benchmarks are given in
Table 2. The timing faults are injected in the execution units in
each pipeline individually, following an error rate given by VAR-
IUS system.

Fig. 6 and Fig. 7 demonstrate the IPC results of our asyn-
chronous DMR architecture, where a 10% and 30% fault rates
are respectively assumed. All IPC data are normalized to the IPC
of the synchronous committing DMR architecture, which are also
listed under the x-axis in the figures. Note that the rate of the tran-
sient fault is influenced mainly from the environment and voltage.
Our previous research [1] shows that even under a reduced volt-
age, an transient fault acceleration can get about 2 errors per sec-
ond, which is a far low fault rate as compared to the timing fault.
The system needs to be tested under transient faults to verify a
correct error detection and recovery. However, in these experi-
ments, transient faults are not simulated due to its minor impacts
on the performance.

From the figure, it can be easily observed that the depth of

5ⓒ 2014 Information Processing Society of Japan

Vol.2014-ARC-209 No.9
2014/3/7

IPSJ SIG Technical Report

bench. IPC bench. IPC
Bubble 1.16 FFT 1.10
Intmm 1.26 Mm 1.14
Perm 1.36 Puzzle 1.08
Queens 0.86 Quick 1.17
Towers 1.27 Tree 0.97

Table 2 IPC of the two-issue processor under timing fault free execution.

.

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

Bubble FFT IntMM Mm Perm Puzzle Queens Quick Towers Tree Avg.

N
or

m
al

iz
ed

 IP
C

im

pr
ov

em
en

ts

2-entry 4-entry 8-entry

IPC of
Sync. DMR 1.01 0.98 1.07 1.01 1.15 0.99 0.78 1.00 1.07 0.86 0.99

Fig. 6 IPC improvements from sync. to async. under 10% timing faults.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

Bubble FFT IntMM Mm Perm Puzzle Queens Quick Towers Tree Avg.

N
or

m
al

iz
ed

 IP
C

im

pr
ov

em
en

ts

2-entry 4-entry 8-entry

IPC of
Sync. DMR 0.86 0.84 0.90 0.87 0.95 0.86 0.69 0.85 0.88 0.74 0.84

Fig. 7 IPC improvements from sync. to async. under 30% timing faults.

the FIFOs and the delay buffers have a direct effect on the IPC
improvement when asynchronous DMR architecture is applied.
The reason is straightforward that with more depth, it can hold
a larger execution gap between the two asynchronous working
pipelines. Eventually, when the fast core gets some timing faults
during the period that the slow core is catching up, the FIFOs can
hold even longer before a synchronous hazard will be triggered.
However, a deep FIFO also requires more energy consumption
in the FIFO and buffer memories, and the control logics as well.
Meanwhile, it can also be directly observed from these data that
from the synchronous execution to the 2-entry FIFO execution,
the asynchronous system provides the major IPC improvements.
The efficiency of deep in FIFOs and delay buffers goes smaller
when the depth is continuously increased. The characteristics
of benchmarks also provide a key influence in the selection of
the FIFO depth. Other than the findings that different programs
will have different IPC improvements under same settings, Bub-
ble and Towers show a tendency to visibly require a deep FIFO
depth, while Queens and Puzzles present an image that FIFO
depth is easily saturated for IPC improvements. We believe that
these differences are mainly caused by the instruction level par-
allelism (ILP) and the cache miss ratio. Because the delay of the
timing fault only causes a one-cycle bubble, the performance im-
pact is highly possible to be hide under other pipeline hazards

99% 97%

94%
89%

79%

0%

20%

40%

60%

80%

100%

120%

0%

2%

4%

6%

8%

10%

12%

14%

2 5 10 20 40

N
or

m
al

iz
ed

 IP
C

N
or

m
al

iz
ed

 M
IP

S/
W

 im
pr

ov
em

en
t

Error rate (%)

MIPS/W
IPC

Fig. 8 MIPS/W and IPC of aggressive voltage control in the async. DMR
architecture.

before it results visible synchronous hazards. More detailed anal-
ysis based on the program characteristics will be one of our ma-
jor future work. This may also indicate a further possibility for
more detailed voltage control according to the understanding of
the program characteristics.

In average, the asynchronous execution can achieve around 6%
and 10% IPC improvements as compared to the traditional syn-
chronous DMR architecture by using the same voltages and fre-
quencies under these fault rates. The working power is not going
to change due to the voltage and frequency but the short execu-
tion time will finally make a contribution to the energy or other
energy metrics like EDP or EDDP.

In addition, from another viewpoint, we can try to make a full
use of the FIFO depth to achieve power reduction by aggressively
applying DVS on the proposed asynchronous DMR architecture.
we also provided a MIPS/W study by assuming that voltage is
aggressively lowered to increase the timing fault rate and use the
asynchronous FIFOs and delay buffers to wait for long pipeline
hazards to conceal the delay from the timing faults. Fig. 8 shows
the result of these aggressive voltage control results. Without ma-
jor IPC drop at the 10% fault rate, we can achieve a 12% MIPS/W
improvement as compared to the timing fault free execution by
aggressively setting the voltage control.

5. Conclusion

In this paper, a GALS DMR based processor architecture has
been purposed and described to optimally combine the abilities
from Razor-FF to extremely lower the working voltage and the
DMR architecture for an SEE addressing. By using dedicated
clock source on each core, it can help the DMR processor to add
back 6% to 10% performance when the voltage is down-scaled to
allow 10% and 30% possibility of timing faults. This also opens
a possibility to aggressively lower the supply voltage to make a
full use of the asynchronous logics. Our study gives that under an
8-entry FIFO depth, it is possible to allow 20% faults without ma-
jor performance down-gradation. The MIPS/W of the 20% timing
fault execution within our asynchronous architecture is 1.16x of
the original execution under a timing error free configuration.

Acknowledgments This work is supported by VLSI Design
and Education Center (VDEC), University of Tokyo with the col-
laboration of Synopsys Corporation, Cadence Design Systems,

6ⓒ 2014 Information Processing Society of Japan

Vol.2014-ARC-209 No.9
2014/3/7

IPSJ SIG Technical Report

and Mentor Graphics. This work is supported by KAKENHI (No.
24240005, No. 24650020, and No. 2370060), and STARC IS
program.

References
[1] Yao, J., Okada, S., Masuda, M., Kobayashi, K. and Nakashima, Y.:

DARA: A Low-Cost Reliable Architecture Based on Unhardened De-
vices and Its Case Study of Radiation Stress Test, Nuclear Science,
IEEE Transactions on, Vol. 59, No. 6, pp. 2852–2858 (online), DOI:
10.1109/TNS.2012.2223715 (2012).

[2] Rech, P., Frost, C. and Carro, L.: Degree of Parallelism Variation Ef-
fects on GPUs Reliability, Radiation Effects on Components and Sys-
tems 2013 (2013).

[3] Kan, R., Tanaka, T., Sugizaki, G., Ishizaka, K., Nishiyama, R., Sak-
abayashi, S., Koyanagi, Y., Iwatsuki, R., Hayasaka, K., Uemura, T.,
Ito, G., Ozeki, Y., Adachi, H., Furuya, K. and Motokurumada, T.: The
10th Generation 16-Core SPARC64 TMProcessor for Mission Critical
UNIX Server, Solid-State Circuits, IEEE Journal of, Vol. 49, No. 1,
pp. 32–40 (online), DOI: 10.1109/JSSC.2013.2284650 (2014).

[4] Slegel, T. J., Averill, R. M., I., Check, M. A., Giamei, B. C., Krumm,
B. W., Krygowski, C. A., Li, W. H., Liptay, J. S., MacDougall, J. D.,
McPherson, T. J., Navarro, J. A., Schwarz, E. M., Shum, K. and Webb,
C. F.: IBM’s S/390 G5 Microprocessor Design, Micro, IEEE, Vol. 19,
No. 2, pp. 12–23 (online), DOI: 10.1109/40.755464 (1999).

[5] Tiwari, V., Singh, D., Rajgopal, S., Mehta, G., Patel, R. and Baez,
F.: Reducing power in high-performance microprocessors, Design Au-
tomation Conference, 1998. Proceedings, pp. 732–737 (1998).

[6] Ernst, D., Kim, N. S., Das, S., Pant, S., Rao, R., Pham, T., Ziesler, C.,
Blaauw, D., Austin, T., Flautner, K. and Mudge, T.: Razor: a low-
power pipeline based on circuit-level timing speculation, Microar-
chitecture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM
International Symposium on, pp. 7–18 (online), DOI: 10.1109/MI-
CRO.2003.1253179 (2003).

[7] Gomaa, M., Scarbrough, C., Vijaykumar, T. N. and Pomeranz, I.:
Transient-Fault Recovery for Chip Multiprocessors, Proceedings of
the 30th annual international symposium on Computer architecture,
pp. 98–109 (online), DOI: http://doi.acm.org/10.1145/859618.859631
(2003).

[8] Reinhardt, S. K. and Mukherjee, S. S.: Transient Fault Detection via
Simultaneous Multithreading, Proceedings of the 27th annual interna-
tional symposium on Computer architecture, pp. 25–36 (online), DOI:
http://doi.acm.org/10.1145/339647.339652 (2000).

[9] Renesas Technology: SH-1/SH-2/SH-DSP software manual Rev. 5.00
(2004).

[10] Sarangi, S., Greskamp, B., Teodorescu, R., Nakano, J., Tiwari, A.
and Torrellas, J.: VARIUS: A Model of Process Variation and Re-
sulting Timing Errors for Microarchitects, Semiconductor Manufac-
turing, IEEE Transactions on, Vol. 21, No. 1, pp. 3–13 (online), DOI:
10.1109/TSM.2007.913186 (2008).

7ⓒ 2014 Information Processing Society of Japan

Vol.2014-ARC-209 No.9
2014/3/7

