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A GPU Implementation of a Bit-parallel Algorithm for
Computing Longest Common Subsequence
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Abstract: The longest common subsequence (LCS for short) for given two strings has various applications, e.g. com-
parison of DNAs. In the paper, we propose a GPU algorithm to accelerate Hirschberg’s LCS algorithm improved with
Crochemore et al.’s bit-parallel algorithm. Crochemore et al.’s algorithm includes bitwise logical operators, which can
be easily computed in parallel because they have bitwise parallelism. However, Crochemore et al.’s algorithm also
includes an operator with less parallelism, i.e. an arithmetic sum. In the paper, we focus on how to implement these
operators efficiently in parallel and experimentally show the following results. First, the proposed GPU algorithm with
2.67 GHz Intel Core i7 920 CPU and GeForce GTX 580 GPU runs maximum 15.14 times faster than the bit-parallel
CPU algorithm using a single core with 2.67 GHz Intel Xeon X5550 CPU. Next, the proposed GPU algorithm runs
maximum 4.09 times faster than the bit-parallel CPU algorithm using four cores with 2.67 GHz Intel Xeon X5550
CPU. Furthermore, the proposed algorithm with GeForce 8800 GTX runs 10.9 to 18.1 times faster than Kloetzli et al.’s
existing GPU algorithm with the same GPU.
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1. Introduction
There are various metrics of the similarity between two strings,

for example, the edit distance. The longest common subse-
quence [6] (LCS for short) is one of them. LCS can be applied
to various problems, e.g. comparison of DNAs, inexact string
matching, spell checking, and others.

When the lengths of given two strings are m and n, one of
the LCSs can be computed by dynamic programming in O(mn)
time and O(mn) space [7]. However, m and n can be huge for
comparison of DNAs. So, O(mn) space is not acceptable in
such applications. An algorithm to compute one of the LCSs
of given two strings with much less space complexity (and the
same time complexity) was proposed by Hirschberg. The algo-
rithm recursively computes an LCS while computing the length
of LCS (LLCS for short) between various substrings of the given
two strings. Hirschberg’s algorithm requires O(mn) time and
O(m + n) space. A method to compute the LLCS faster with bit-
parallelism is well-known. The method requires O(⌈m/w⌉n) time
and O(m + n) space [2] where w is the word size of a computer.
Using this method, Hirschberg’s LCS algorithm can be acceler-
ated. However, much faster algorithms are desirable for strings
of length more than one million characters, which are common in
the field of comparison of DNAs. So, we consider to accelerate
the bit-parallel algorithm with a GPU (Graphics Processing Unit).
The bit-parallel algorithm includes bitwise logical operations and
arithmetic sums. Bitwise logical operations are suitable for GPUs
because they have bitwise parallelism. However, arithmetic sums
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have less parallelism. So, we devise to compute them efficiently
in parallel.

As far as we know, except the literatures [3], [4], [9], [11], [12],
[16], there are no existing works for solving the LCS problem
and/or the related problems using a GPU. However, all literatures
except [9] do not address the LCS problem within O(m+n) space:
In [3], Deorowicz solved the LLCS problem only, not the LCS
problem; In [4] and [16], Dhraief et al. and Yang et al. solved
the LCS problem but their method requires O(mn) space; In [11]
and [12], Ozsoy et al. solved the multiple LCS (MLCS for short)
problem (one-to-many LCS matching problem), which can not be
used to lead an efficient algorithm to solve the LCS problem [16].
In [9], Kloetzli et al. proposed an LCS algorithm for a GPU with
O(m + n) space. So, we compare our proposed algorithm only
with Kloetzli et al.’s algorithm in the paper.

Kloetzli et al.’s algorithm is a GPU implementation of Chowd-
hury et al.’s algorithm [1] for CPUs. Kloetzli et al.’s algorithm
is based on dynamic programming without bit-parallelism. Their
algorithm divides an LCS problem into four subproblems. The
division is recursively performed until the size of a subproblem
becomes small enough to be executed on a GPU. In the algo-
rithm, one thread block on a GPU executes one subproblem and
one thread on a GPU executes 4 × 4 cells of the table of dynamic
programming.

Based on the method proposed in the paper, we implement a
bit-parallel LCS algorithm on CUDA [5], [8], [10], [13] and con-
duct several experiments. In the experiments, our proposed GPU
algorithm with 2.67 GHz Intel Core i7 920 CPU and NVIDIA
GeForce GTX 580 GPU runs maximum 15.14 times faster than
our bit-parallel CPU algorithm with a single core of 2.67 GHz In-
tel Xeon X5550 CPU and maximum 4.56 times faster than our
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Fig. 1 An example of Hirschberg’s LLCS algorithm

bit-parallel CPU algorithm with four cores of 2.67 GHz Intel
Xeon X5550 CPU. Another experiment shows our algorithm is
10.9 to 18.1 times faster than Kloetzli et al.’s GPU algorithm over
the same GPU (GeForce 8800 GTX). Due to the limited space, we
illustrate neither the architecture nor the programming of GPUs
in the paper. Readers unfamiliar with them are recommended the
literatures [5], [8], [10], [13].

2. LCS
2.1 The Definition of LCS

Let C and A be strings c1 · · · cp and a1 · · · am respectively. In
the following, we assume without loss of generality that charac-
ters in the same string are different from each other. If there exists
a mapping from the indices of C to the indices of A subject to the
following conditions C1 and C2, C is called a subsequence of A.
C1: F(i) = k if and only if ci = ak.
C2: If i < j, then F(i) < F( j).
However, we define the null string, which is a string of length 0,
as a subsequence of any strings. We define a string which is a sub-
sequence of both string A and string B as a common subsequence
between A and B. The LCS between A and B is the longest one of
all the common subsequences between A and B. The LCS is not
always unique. For example, LCSs between ”abcde” and ”baexd”
are ”ad”, ”ae”, ”bd”, and ”be”.

2.2 How to Compute the Length of the LCS
The LLCS can be computed using the dynamic programming.

This algorithm stores the LLCS between A and B in L[m][n] if
we fill the table L with (m+1)× (n+1) cells based on the follow-
ing rules R1 to R3 where m is the length of A and n is the length
of B. To fill the table L, this algorithm requires O(mn) time and
O(mn) space.
R1: If i = 0 or j = 0, then L[i][ j] = 0.
R2: If A[i − 1] = B[ j − 1], then L[i][ j] = L[i − 1][ j − 1] + 1.
R3: Otherwise, L[i][ j] = max(L[i][ j − 1], L[i − 1][ j]).
The rules R2 and R3 imply that the ith row (1 ≤ i ≤ m) of L can
be computed only with the ith and (i − 1)th rows. This property
leads us to an algorithm which requires less memory, shown in
List.1 [7]. K is a temporary array of size 2× (n+ 1) cells. L is an
array for storing output of size 1× (n+ 1) cells. The 9th and 10th
lines in List.1 correspond to the rules R2 and R3.

Hirschberg’s LLCS algorithm shown in List.1 stores the LLCS
between string A and string B[0... j − 1] (the substring of B from
the 1st character to the jth character of B. When j = 0, B[0... j−1]
is the null string) in L[ j]. This implementation reduces the re-
quired space to O(m + n) with the same time complexity O(mn).

Listing 1 Hirschberg’s LLCS algorithm

1 I n p u t : s t r i n g A of l e n g t h m, B of l e n g t h n
2 Outpu t : LLCS L [ j ] o f A and B [ 0 . . . j −1]
3 f o r a l l j (0<= j<=n )
4 l l c s (A,m, B , n , L ) {
5 f o r ( j=0 t o n ) { K[ 1 ] [ j ] = 0 }
6 f o r ( i=1 t o m) {
7 f o r ( j=0 t o n ) { K[ 0 ] [ j ] = K[ 1 ] [ j ] }
8 f o r ( j=1 t o n ) {
9 i f (A[ i −1] == B[ j −1] ) K[ 1 ] [ j ] = K[ 0 ] [ j −1]+1

10 e l s e K[ 1 ] [ j ] = max (K[ 1 ] [ j −1] , K[ 0 ] [ j ] )
11 }
12 }
13 f o r ( j=0 t o n ) { L [ j ] = K[ 1 ] [ j ] }
14 }

Listing 2 Hirschberg’s LCS algorithm

1 I n p u t : s t r i n g A of l e n g t h m, B of l e n g t h n
2 Outpu t : LCS C of A and B
3 l c s (A,m, B , n , C) {
4 i f ( n==0) C = ” ” ( n u l l s t r i n g )
5 e l s e i f (m==1) {
6 f o r ( j=1 t o n )
7 i f (A[0]==B[ j −1] ) {
8 C = A[ 0 ]
9 re turn

10 }
11 C = ” ”
12 }
13 e l s e {
14 i = m/2
15 l l c s (A [ 0 . . . i −1] , i , B , n , L1 )
16 l l c s (A[m− 1 . . . i ] ,m− i , B[ n − 1 . . . 0 ] , n , L2 )
17 M = max { j : 0<= j <=n , L1 [ j ]+L2 [ n− j ] }
18 k = min { j : 0<= j <=n , L1 [ j ]+L2 [ n− j ] == M}
19 l c s (A [ 0 . . . i −1] , i , B [ 0 . . . k−1] , k , C1 )
20 l c s (A[ i . . . m−1] ,m− i , B[ k . . . n−1] , n−k , C2 )
21 C = s t r c a t ( C1 , C2 )
22 }
23 }

In Fig. 1, we show an example of Hirschberg’s LLCS algorithm
when A is ”BCAEDAC” and B is ”EABEDCBAAC”. The result
shows that the LLCS between A and B is five.

2.3 Hirschberg’s LCS Algorithm
List.2 shows the LCS algorithm proposed by Hirschberg [7]

where S[u...l] (u ≥ l) represents the reverse of the substring
S[l...u] of a string S. In the 15th and 16th lines, this algorithm in-
vokes Hirschberg’s LLCS algorithm shown in List.1. In the 19th
and 20th lines, this algorithm recursively invokes itself. The algo-
rithm recursively computes an LCS while computing the LLCS.
The algorithm requires O(mn) time and O(m+n) space. The dom-
inant part of the algorithm is Hirschberg’s LLCS algorithm llcs().

2.4 Computing the LLCS with Bit-parallelism
There is an efficient LLCS algorithm with bit-parallelism. The

algorithm shown in List.3 is Crochemore et al.’s bit-parallel
LLCS algorithm [2] where V is a variable to store a bit-vector
of length m. The notation & represents bitwise AND, | represents
bitwise OR, ˜ represents bitwise complement, and + represents
arithmetic sum. Note that, + regards V[0] as the least significant
bit. First of all, Crochemore et al.’s algorithm makes a pattern
match vector (PMV for short). PMV P of string S with respect to
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Listing 3 Crochemore et al.’s bit-parallel LLCS algorithm

1 I n p u t : s t r i n g A of l e n g t h m, B of l e n g t h n
2 Outpu t : LLCS L [ i ] o f A [ 0 . . . i −1] and B
3 f o r a l l i (0<= i<=m)
4 l l c s b p (A,m, B , n , L ) {
5 f o r ( c=0 t o 255) {
6 f o r ( i=0 t o m−1)
7 i f ( c==A[m− i −1] ) PM[ c ] [ i ] = 1
8 e l s e PM[ c ] [ i ] = 0
9 }

10 f o r ( i=0 t o m−1)
11 V[ i ] = 1
12 f o r ( j=1 t o n )
13 V = (V + (V & PM[B[ j ] ] ) ) | (V & ˜ (PM[B[ j − 1 ] ] ) )
14 L [ 0 ] = 0
15 f o r ( i=1 t o m)
16 L [ i ] = L [ i −1]+(1−V[ i −1] )
17 }

c is the bit-vector of length m which satisfies following conditions
C1 and C2.
C1: If S[i] = c, then P[i] = 1.
C2: Otherwise, P[i] = 0.
For example, PMV of string ”abbacbaacbac” with respect to ”a”
is 100100110010. In the 5th to 9th lines of List.3, PMV of string
A with respect to each character c is made. Because we assume
one byte character, 0 ≤ c ≤ 255. The reverse of PMV of string
A with respect to c is stored in PM[c] where a variable PM is a
two-dimensional bit array of size 256 × m.

This algorithm represents the table of dynamic programming
as a sequence of bit-vectors such that each bit-vector corresponds
to a column of the table. The ith bit of each bit-vector represents
the difference between the ith cell and the (i− 1)th cell of the cor-
responding column. Repeating bitwise operations, the algorithm
performs the computation which is equal to computing the table
L from left to right.

The last column of the table L output by this algorithm is
a bit-vector. However, we can easily convert it into an ordi-
nary array of integer in O(m) time in the 14th to 16th lines in
List.3. Crochemore et al.’s algorithm requires O(⌈m/w⌉n) time
and O(m + n) space where w is the word size of a computer.

3. The Proposed Algorithm
3.1 The CPU Algorithm to be Implemented on a GPU

As we mentioned in Section 2.3, the dominant part of the LCS
algorithm shown in List.2 is a function llcs(). In the paper, we
aim to accelerate the LCS algorithm shown in List.2 improved
with the bit-parallel LLCS algorithm shown in List.3 on a GPU
(in other words, we replace invocation of llcs() in List.2 with
llcs bp() in List.3). The algorithm requires O(⌈m/w⌉n + m + n)
time and O(m + n) space. For this purpose, we propose a method
to accelerate the LCS algorithm with a GPU. Even if we use 64
bit mode on a GPU, the length of every integer register is still 32
bits. So, the word size w is 32.

In the 16th line of List.2, llcs() computes the LLCS between
the reverse of string A and the reverse of string B. However, if we
reverse A and B in every invocation of llcs(), the overhead of re-
versing becomes significant. So, we make a new function llcs’()
which traverses strings from tail to head. llcs’() is the same as

llcs() except the order of string traverse. We also make the bit-
parallel algorithm llcs bp’() corresponding to llcs’().

The output of Hirschberg’s LLCS algorithm shown in List.1
is the mth row of the table L. However, Crochemore et al.’s al-
gorithm shown in List.3 represents a column of the table as a
bit-vector and computes the table from 0th column to nth column.
Hence, Crochemore et al.’s algorithm outputs the nth column. So,
we change the original row-wise LLCS algorithm shown in List.1
into column-wise algorithm. In addition, we have to change the
original LCS algorithm shown in List.2 into another form corre-
sponding to the column-wise LLCS algorithm.

Because our algorithm embeds 32 characters into one variable
of unsigned integer, we have to pad string A and make its length
a multiple of 32 when length of A is not a multiple of 32. For this
padding, we can use characters not included in both of string A
and B (e.g. control characters).

3.2 Outline of the Proposed Algorithm
A GPU executes only llcs() in the 15th and 16th lines of List.2.

Other parts of List.2 are executed on a CPU. The reason is that
GPUs support recursive calls only within some levels although
the algorithm shown in List.2 has recursive calls of lcs() in the
19th and 20th lines.

The LLCS algorithm shown in List.3 includes bitwise logical
operators (&, |, )̃ and arithmetic sums (+) on bit-vectors of length
m. Bitwise logical operators are easily parallelized. However, an
arithmetic sum has carries. Because carries propagate from the
least significant bit to the most significant bit in the worst case,
an arithmetic sum has less parallelism. So, we have to devise
in order to extract higher parallelism from the computation of an
arithmetic sum.

We think to process the bit-vectors of length m in parallel by
dividing them into sub-bit-vectors. On a GPU, each bit-vector
is represented as an array of unsigned integer of length ⌈m/32⌉
where the word size is 32. The size of one variable of unsigned
integer on a GPU is 32 bits. In CUDA architecture, 32 threads in
the same warp are synchronized at instruction level (SIMD exe-
cution). So, we set the number of threads in one thread block at
32 so that threads in one thread block can be synchronized with
no cost. Since one thread processes one unsigned integer, one
thread block processes 1024 bits of the bit-vector of length m.

During one invocation of the kernel function, our algorithm
performs only 1024 iterations of n iterations. We call a group of
those 1024 iterations one step in the remainder of the paper. For
example, the jth step represents 1024 iterations from (1024 × j)
to (1024 × ( j + 1) − 1). We set the number of bits processed in
one thread block and the number of iterations in one invocation at
the same value so that each thread can transfer carries by reading
from or writing to only one variable.

Fig. 2 is an example of block-step partition in case of m = 3072
and n = 4096. Each rectangle represents one step of one block.
We call it a computing block in the remainder of the paper. Each
computing block can not be executed until its left and lower com-
puting blocks have been executed. So, only the lowest leftmost
computing block can be executed in the 1st invocation of the ker-
nel function. The computing block is the 0th step of the block
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Fig. 2 Block-step partition in case of m = 3072 and n = 4096

covering sub-bit-vector V[2048 · · · 3071]. In Fig. 2, the number
in each rectangle represents execution order. For example, the 1st
step of the block covering V[2048 · · · 3071] and the 0th step of
the block covering V[1024 · · · 2047] can be executed in the 2nd
invocation of the kernel function. Based on the above ideas, we
invoke the kernel function (⌈m/1024⌉+ ⌈n/1024⌉−1) times to get
the LLCS (For example, we have to invoke the kernel function
six times in Fig. 2).

Black arrows in Fig. 2 indicate that the block covering sub-bit-
vector V[i · · · i + 1023] gives the value of V[i · · · i + 1023] to the
( j + 1)th step of itself at the end of the jth step. White arrows
indicate that the block covering sub-bit-vector V[i · · · i + 1023]
gives carries in each iteration to the jth step of the block cover-
ing V[i − 1024 · · · i − 1]. Transfers of values from a computing
block to another computing block, shown as black or white ar-
rows in Fig. 2, are performed out of the loop processing bitwise
operations. During the loop, carries are stored in an array on the
shared memory. After the loop, carries on the shared memory are
copied into the global memory. Reading is similar to this. Before
the loop, carries on the global memory are loaded into the shared
memory. During the loop, we use carries on the shared memory,
not on the global memory. The reason is that the cost of transfer
between registers and the global memory is larger than the cost
of transfer between registers and the shared memory.

3.3 The Kernel Function
This section describes the kernel function llcs kernel() which

performs one step (1024 iterations) and the host function
llcs gpu() which invokes llcs kernel(). List.4 is a pseudo code
of llcs kernel() and llcs gpu(). List.4 is a GPU implementa-
tion of llcs bp() shown in List.3. In addition to them, we make
llcs kernel’() and llcs gpu’() which is a GPU implementation of
llcs bp’(). However, they are quite similar to llcs kernel() and
llcs gpu(). So, we skip to explain them.

First, we explain the kernel function llcs kernel(). Argument
m and n respectively represent the length of string A and B. dstr2
represents the copy of string B on the global memory. g V is
an array to store the bit-vector V. g PM is a two-dimensional ar-
ray to store PMV of string A with respect to each character c
(0 ≤ c ≤ 255). g PM[c] is PMV of string A with respect to
c. g Carry is an array to store carries. When we use g Carry,
we regard g Carry as a two-dimensional array and do double
buffering. Argument num represents the number of invocations

Listing 4 A pseudo code of llcs kernel() and llcs gpu()

1 g l o b a l vo id l l c s k e r n e l
2 ( c h a r ∗ d s t r 2 , num ,
3 i n t m, n ,
4 unsigned i n t ∗g V , ∗g PM , g ∗Car ry ) {
5 i n d e x = g l o b a l t h r e a d ID ;
6 c o u n t = s t e p number o f t h i s b l o c k ;
7 c u r s o r = 1024 ∗ c o u n t ;
8 V = g V [ i n d e x ] ;
9 Load c a r r i e s from g C a r r y on g l o b a l memory ;

10 f o r ( j=0 t o 1023) {
11 i f ( c u r s o r+ j >= n ) r e t u r n ;
12 PM = g PM [ d s t r 2 [ c u r s o r+ j ] ] [ i n d e x ] ;
13 V = (V & ( ˜PM) ) | (V + (V & PM ) ) ;
14 }
15 g V [ i n d e x ] = V;
16 Save c a r r i e s t o g C a r r y on g l o b a l memory ;
17 }
18
19 void l l c s g p u
20 ( c h a r ∗A, ∗B , ∗ d s t r 1 , ∗ d s t r 2 ,
21 i n t m, n , ∗ f O u t p u t ,
22 unsigned i n t ∗g V , ∗ g Car ry , ∗g PM ) {
23 d s t r 1 = padded copy of A;
24 d s t r 2 = B ;
25 num x = (m+1 0 2 3 ) /1 0 2 4 ;
26 num y = ( n+1 0 2 3 ) /1 0 2 4 ;
27 f o r ( i=0 t o ( (m+31) /32) −1)
28 g V [ i ] = 0xFFFFFFFF ;
29 Make PMVs and s t o r e PMVs i n g PM ;
30 f o r ( i=1 t o num x+num y−1)
31 l l c s k e r n e l ( ) i n P a r a l l e l on a GPU
32 ( gr idDim=num x , blockDim =32 ) ;
33 f o r ( i=0 t o m)
34 f O u t p u t [ i ] = t h e amount o f z e r o s
35 from 0 t h b i t t o i t h b i t i n g V ;
36 }

of llcs kernel(). num is used to compute which step the block
should process in llcs kernel(). The for-loop in the 10th to 14th
lines represents the process of one step. The 8th and 15th lines
are transfers of values shown as black arrows in Fig. 2. The 9th
and 16th lines are transfers of values shown as white arrows in
Fig. 2.

Next, We explain the function llcs gpu(). llcs gpu() invokes
the kernel function llcs kernel() (num x+num y−1) times in the
for-loop of the 30th to 32nd lines. The 23rd to 29th lines are pre-
processing. The string A is padded in the 23rd line. The number
num x of blocks and the number num y of steps are computed
in the 25th and 26th lines. In the 27th and 28th lines, all bits
of the bit-vector V are initialized to one. The 33rd to 35th lines
are post-processing where the bit-vector V is converted into an
ordinary array and written in the output-array f Output.

3.4 Parallelization of an Arithmetic Sum
As we state in Section 3.2, + has less parallelism because it has

carries. To parallelize +, we applied Sklansky’s method to paral-
lelize the full adder named conditional-sum addition [14]. Sklan-
sky’s method uses the fact that every carry is either 0 or 1. To
compute the addition of n-bit-numbers, each half adder computes
a sum and a carry to the upper bit in the both cases in advance.
Then, carries are propagated in parallel. In our algorithm, we use
32 bit width half adders rather than one bit width half adders.

Using an example in Fig. 3, we explain the method to paral-
lelize the n-bit full adder. Fig. 3 shows a 32 bit addition performed
by four full adders of 8 bit width. Note that Fig. 3 is illustrative
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Fig. 3 Parallelization of an n-bit full adder (in the case of n = 32)

and our actual implementation uses 1024 bit full adders realized
by 32 full adders of 32 bit width. In Fig. 3, we compute the sum
and the carry of U, V, and l carry (a carry from the lower sub-bit-
vector). To compute U+V+l carry, first, we compute sums and
carries for every byte. S0(0) represents sums and carries for every
byte when a carry from the lower byte is 0. S0(1) represents them
when a carry from the lower byte is 1. Next, we consider com-
puting sums and carries for every two bytes (we call them S1(0)
and S1(1)) from S0(0) and S0(1). To compute S1(0) and S1(1),
we focus on a carry of the 4th byte of S0(1). Because the carry
is 0, the 3rd byte of S1(1) must be ”0D” (”0D” is the 3rd byte of
S0(0)). So, in the case, we copy the 3rd byte of S0(0) into the 3rd
byte of S0(1). In the same way, we focus on carries of the 4th
byte of S0(0), the 2nd byte of S0(0), and the 2nd byte of S0(1).
When a carry of the (2 × k)th byte of S0(0) is 1(k ∈ N), we copy
the (2 × k − 1)th byte of S0(1) into S0(0). When a carry of the
(2× k)th byte of S0(1) is 0, we copy the (2× k−1)th byte of S0(0)
into S0(1). As a result, we can get S1(0) and S1(1). Similarly, we
get sums and carries for every four bytes from S1(0) and S1(1).
The results are S2(0) and S2(1). S2(0) is U+V (the result when
l carry is 0). S2(1) is U+V+1(the result when l carry is 1). The
most important advantage of the method is to be able to execute
the computation of St(0) and St(1) from St−1(0) and St−1(1) with
2t-bytewise parallelism. When the number of elements in U and
V is l, we repeat this process (log2l) times to get U+V+l carry.

The implementation is based on the above ideas. The input
are two arrays of unsigned integer, which store sub-bit-vectors of
length 1024, and a carry from the lower sub-bit-vector. The out-
put are two arrays of unsigned integer and a carry to the upper
sub-bit-vector. The number of elements in one array is 32. In
addition to them, we make an array of bool to store carries to the
upper element on the shared memory. First, we compute sums
and carries for every 32 bits from two arrays of unsigned inte-
ger. When a sum is smaller than two operands, we set a carry
to the upper element at one. Next, we get sums and carries for
every 64 bits from neighboring two sums and carries for every 32

Fig. 4 Execution times for string A of length 20,000,000

bits. This process can be performed with one comparison and two
substitutions. In the same way, we get sums and carries for every
128 bits, 256 bits, 512 bits, and finally 1024 bits. ”A carry to the
upper element” of the most significant element is ”a carry to the
upper sub-bit-vector.”

3.5 Other Notes
cudaMemcpy() between host and device and cudaMalloc() of

each array are performed before the recursive calls in List.2. The
reason is that the overhead is too heavy in case that cudaMem-
cpy() and cudaMalloc() are performed in the recursive calls.

When we pad the string A on the device, we need the original A
on the host. However, host-to-device transfer is much slower than
device-to-device transfer or host-to-host transfer. To reduce the
number of host-to-device transfers, only once we perform host-
to-device transfer to make a copy of the original A on the global
memory. In llcs gpu() or llcs gpu’(), when we use the string, we
copy it into working memories on the device and pad it on the
device.

If the lengths of given strings are shorter than some constant
value, the cost of host-to-device transfers becomes larger than the
cost to compute the LLCS on a CPU. In such a case, execution
speed becomes slower when we use a GPU. So, we check the
lengths of strings before invoking llcs gpu(). If the sum of the
lengths of string A and B is at least 2048, we compute the LLCS
on a GPU. Otherwise, we compute the LLCS on a CPU. When
the length of A is less than 96 or the length of B is less than 256,
we compute the LLCS with dynamic programming on a CPU.
Otherwise, we compute the LLCS with bit-parallel algorithm on
a CPU.

4. Experiments
In the section, we compare the execution times of the proposed

algorithm on a GPU with the execution times of our bit-parallel
CPU algorithm and Kloetzli et al.’s GPU algorithm. We execute
our GPU program on 2.67 GHz Intel Core i7 920 CPU, NVIDIA
GeForce GTX 580 GPU, and Windows 7 Professional 64 bit. We
compile our GPU program with CUDA 5.0 and Visual Studio
2008 Professional. We execute CPU programs on 2.67 GHz Intel
Xeon X5550 CPU and Linux 2.6.27.29 (Fedora10 x86 64). We
compile CPU programs with Intel C++ compiler 14.0.1 without
SSE instructions.

4.1 A Comparison with the Existing CPU Algorithms
We show the result of comparison between the proposed algo-
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Fig. 5 A comparison with Kloetzli et al.’s GPU algorithm

rithm on a GPU and our bit-parallel algorithm on a CPU in Fig. 4.
We execute the bit-parallel algorithm on a CPU with a single core
and four cores. To make a multi-core version of the bit-parallel
algorithm, we use task parallelism in OpenMP. In List.2, we ex-
ecute 15th, 16th, 19th, and 20th lines with task parallelism in
OpenMP. In OpenMP 3.0 or later, we can use task parallelism
with the notation omp task. Then, the function llcs()s in 15th and
16th lines and lcs()s in 19th and 20th lines are executed respec-
tively in parallel. So, only two cores are used to execute llcs()s in
the 1st invocation of lcs(). In the 2nd or later invocation of lcs(),
all of four cores are used.

In Fig. 4, the green line shows the execution times on a GPU.
The red and blue lines respectively show the execution times on a
CPU with a single core and four cores. All of the execution times
are measured in seconds and shown in the primary y-axis. The or-
ange and purple lines respectively show the speedup ratio of the
proposed algorithm on a GPU to the single-core and multi-core
version on a CPU. The speedup ratio is shown in the secondary y-
axis. In Fig. 4, the length of string A is 20,000,000. The length of
string B shown in x-axis increases from 100,000 to 10,000,000.

First, we compare the proposed algorithm on a GPU with the
single-core version on a CPU. Fig. 4 shows that the proposed al-
gorithm is maximum 15.14 times faster than the single-core ver-
sion. When the length of B is more than 300,000, the speedup
ratio is more than one. Next, we compare the proposed algorithm
on a GPU with the multi-core version on a CPU. Fig. 4 shows that
the proposed algorithm is maximum 4.09 times faster than the
multi-core version . When the length of B is more than 700,000,
the speedup ratio is more than one. However, the multi-core ver-
sion on a CPU is at most 4.03 times faster than the single-core
version. The fact implies that the proposed algorithm on a GPU
is faster than the single-core version and the multi-core version
when lengths of given strings are long enough.

4.2 A Comparison with the Existing GPU Algorithm
We compared the proposed algorithm on a GPU with Kloet-

zli et al.’s GPU algorithm. Kloetzli et al. used AMD Athlon 64
CPU and GeForce 8800 GTX GPU. To Compare over the same
GPU, we used GeForce 8800 GTX GPU too. In the experiment,
we used 2.93 GHz Intel Core i3 530 CPU. The CPU we used in
the experiment is faster than Kloetzli et al.’s CPU. So, our en-
vironment is not completely equal to Kloetzli et al.’s. However,
our algorithm scarcely depends on a CPU. So, we can expect the
result does not become quite different.

Fig. 5 shows the result. The x-axis shows the length of strings

A and B measured in millions. The y-axis shows execution times
measured in minutes. In Fig. 5, blue bars represent the execution
times of Kloetzli et al.’s algorithm on a GPU. Red bars represent
the execution times of our proposed algorithm on a GPU.

In the shortest case (0.27 million and 1.80 million), the speedup
ratio is 12.0. In the longest case (1.51 million and 1.80 million),
the speedup ratio is 17.6. The speedup ratio ranges from 10.9
(0.41 million and 1.80 million) to 18.1 (1.49 million and 1.50
million).

5. Conclusions
In the paper, we have presented a method to implement the

bit-parallel LCS algorithm on a GPU and have conducted several
experiments on our program based on the method. As a result,
the proposed algorithm runs maximum 15.14 times faster than
the single-core version of the bit-parallel algorithm on a CPU and
maximum 4.09 times faster than the multi-core version of the bit-
parallel algorithm on a CPU. In addition, the proposed algorithm
runs 10.9 to 18.1 times faster than Kloetzli et al.’s algorithm on
a GPU. Future works includes optimization to the newest Kepler
architecture and measuring execution times on a Kepler GPU.
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