
Electronic Preprint for Journal of Information Processing Vol.22 No.2

Regular Paper

A Method of Software Development Tool and Hardware
Generation for ASIP with a Co-processor based on the

Derivative ASIP Approach

Agus Bejo1,a) Dongju Li1 Tsuyoshi Isshiki1 Hiroaki Kunieda1

Received: May 6, 2013, Accepted: November 1, 2013

Abstract: In this paper, a processor design method using the Derivative ASIP approach is introduced. The concept of
Derivative ASIP is basically to develop an ASIP architecture based on existing GPP processor architecture in order to
diminish the design effort and shorten the design time. In this approach, the base processor architecture can be enhanced
with more co-processor/instruction extensions quickly since all the required development tools have been available for
the base processor. In order to support the Derivative ASIP approach, a new tool called the Co-processor/Instruction
Extension Generator Tool is developed. This tool generates complementary files suitable for updating the base proces-
sor architecture with co-processor/instruction extensions. A complete set of software development tools consisting of
a compiler, assembler, disassembler, linker, debugger, simulator and also hardware implementation for the modified
ASIP architecture can be generated automatically by using these complementary files. With our proposed tool, a new
co-processor/instruction extension can be designed and added to the base architecture more easily. It contributes to the
reduction of the architecture exploration time in the design stage. Derivative ARM ASIP architecture enhanced with
instruction extensions for the AES algorithm and a co-processor for the fingerprint navigation algorithm is given to
demonstrate the effectiveness of our approach.

Keywords: ASIP, LISA, GCC Compiler, ImpulseC, instruction extension.

1. Introduction

Nowadays the need for Application Specific Instruction-set
Processors (ASIPs) for embedded system applications has been
increasing significantly because of the boom in portable elec-
tronic products in the market. It demands higher and higher per-
formance everyday. ASIP is a common method which is effec-
tively used to improve the hardware performance without losing
its flexibility. Therefore, ASIP designers are insist on creating a
methodology which offers faster design time, less design effort,
re-usability and flexibility against architecture modification.

In the conventional design methodology, ASIP is developed
by a hardware description language such as VHDL or Verilog.
This approach requires big effort, a long design cycle and expe-
rienced engineers because it is hard work to describe an archi-
tecture model in the hardware description language. There is a
bottle-neck in the application software development stage since
the application software can not be developed unless the software
development tool set has been made available. Meanwhile the
software development tool set itself can not be created before the
processor architecture design has been accomplished. Moreover,
architecture exploration and design verification are usually done
manually and iteratively. It consumes a lot of time and tends to be

1 Kunieda-Isshiki Laboratory, Department of Communications and Com-
puter Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152–
8550, Japan

a) agusbj.aa@m.titech.ac.jp

error-prone. Because of these reasons, recently the ASIP design
method has been changed from a hardware description language
(HDL) to an architecture description language (ADL). ADL of-
fers better flexibility and easiness in term of architecture explo-
ration since it describes the hardware behavior with a higher level
of abstraction in term of the description language.

There have been several ADL-based ASIP design approaches
proposed such as MIMOLA [1], ISDL [2], nML [3] and LISA [4].
MIMOLA is a structural-based ADL which describes processor
architecture in a similar structure as hardware description lan-
guage. Therefore, MIMOLA is suitable for automatic hardware
generation. The drawback of structural-based ADL is that it does
not contain instruction-set information which can be extracted
to assist automatic compiler generation. In contrast, ISDL is a
behavioral-based ADL that allows architecture designer to de-
scribe processor architecture with a set of instructions including
the behavior of each instruction. This makes behavioral-based
ADL more suitable for compiler generation but not for hardware
synthesis generation.

It is challenging work to compromise the benefit of those two
structures into a single design framework. nML and LISA are two
examples among several approaches that try to mix structural-
based and behavioral-based ADL. Even though nML is capa-
ble of generating hardware implementation and software devel-
opment tool set consisting of a compiler, assembler, linker and
simulator, it suffers from a cycle accurate model (in particular,
a pipelining mechanism). nML can not describe processor ar-

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

chitecture in a cycle-based model. LISA is another mixed ADL
approach whose features are almost perfect. It can generate hard-
ware implementation and a complete set of software development
tool. It can also describe cycle-based models. However, LISA
compiler generation is not suitable for ASIP and it can not sup-
port co-processor extensions.

Another problem among those approaches is none of them has
a concept to reuse existing processor models and existing soft-
ware development tool sets. All mentioned approaches must be-
gin the development step from scratch. Whenever new processor
architecture will be created, a new set of software development
tools must also be developed. This condition causes current ASIP
design approaches to consume a longer design time.

There is one approach proposed by Kumura et al. [5] that
reuses existing software development tool sets. Their concept is
constructed based on the GCC toolchain [12]. It upgrades the ex-
isting GCC toolchain consisting of compiler, assembler, linker
and debugger by adding plugins to enhance existing processor
architecture with instruction extensions. However, it can not be
implemented in hardware because there is no solution to generate
hardware implementation for the modified processor architecture.

Therefore, in this paper we propose an alternative approach
which not only can solve the problem on both LISA and Ku-
mura’s approaches but also expand the architecture exploration
space to cover co-processor extension. On the one side, our pro-
posed approach adopts Kumura’s concept to reuse existing soft-
ware development tools so that the architecture designer does
not have to design the software development tool from scratch.
This means the compiler development stage can be eliminated
and the overall design time becomes shorter. On the other hand,
the LISA design framework is used to create a processor architec-
ture because LISA has the ability to generate synthesizable RTL
code from a higher level abstraction language. Another impor-
tant feature in our approach is that it accommodates third-party
tools i.e. the ImpulseC [11] design framework is integrated with
the LISA-modeled ASIP architecture. ImpulseC is used to cre-
ate a co-processor which can not be realized for the LISA design
framework. By this approach, a comprehensive solution of the
ASIP design approach which covers the software development
tool generation and ASIP hardware implementation with wider
architecture coverage may satisfy today’s ASIP design demands.

In order to support our proposed approach, a tool called Co-
processor/Instruction Extension Generator is developed. The pur-
pose of this tool is basically to help the architecture designer
to create a new co-processor/instruction extension by shortening
turnaround time of each design exploration. In general, the con-
tribution of our proposed approach includes:
• Less overall design effort and shorter design time.
• More practical method to design an optimized ASIP archi-

tecture with additional co-processor or instruction extension.
• More flexible and wider architecture exploration space.

2. Derivative ASIP Approach

The Derivative ASIP approach reuses existing software devel-
opment tool sets in order to save the compiler development time.
It creates a processor architecture referring to an existing embed-

ded processor architecture as the base model so that the software
development tool set which is already available for the base pro-
cessor can be easily ported to the newly developed processor ar-
chitecture. In addition, the processor architecture can be simpli-
fied by removing unused features or enhanced with more hard-
ware resources such as registers, interfaces or extended instruc-
tions to optimize its performance. Because of this reason our de-
veloped processor is called Derivative ASIP which means derived
from certain processor architectures and enhanced with extended
co-processor/instructions.

The base processor architecture can be selected from any exist-
ing embedded processor model as long as it has been supported
by the GCC compiler. In other words, the base processor selec-
tion is actually constrained by the availability of the GCC com-
piler for the base processor being selected. In this paper, ARM
is chosen as the base processor architecture because of its supe-
riority among other embedded processors and the benefit of the
availability of the open source GNU Compiler arm-gcc.

Figure 1 shows the design flow of the Derivative ASIP ap-
proach. Basic LISA design framework is shown on the left side,
ImpulseC hardware design framework on the right side and our
proposed Co-processor/Instruction Extension Generator tool, in-
dicated by the dotted red box, is added in the middle.

The Derivative ASIP design flow begins with the modeling
processor architecture in the LISA description language. Since
our approach uses an existing embedded processor architecture
as the reference model, the Derivative ASIP instruction-set must
be designed equivalently to the base processor instruction-set. At
the same time the GCC compiler must be re-ported to the Deriva-
tive ASIP architecture. In this case, the GCC compiler porting
will not be a large portion of the work because the base processor
already includes the GCC compiler. A small modification is suf-
ficient to complete the GCC porting. The new GCC compiler for
the Derivative ASIP architecture will be named <dasip>-gcc.

To enhance the base processor architecture, a new co-processor

Fig. 1 Derivative ASIP design flow.

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

or instruction extension can be added. The design of co-processor
or instruction extension is usually decided by an architecture
designer based on application profiling information. The Co-
processor/Instruction Extension Generator tool is employed to
help the architecture designer to create the co-processor or in-
struction extension. It generates complementary files which
are used to update the LISA-modeled processor architecture,
GCC compiler, ImpulseC-modeled co-processor and application
source code. Once the LISA-modeled processor architecture is
available, LISA processor generator produces the RTL codes,
SystemC model, instruction-set simulator (ISS), LISA assembler
and LISA linker automatically.

A modified application’s source code that employs instruction
extensions, is compiled by <dasip>-gcc compiler to generate as-
sembly codes. In the GCC compiler updating process, actually
only cc1 (GNU C compiler) part is being updated. The gas (GNU
assembler) and ld (GNU linker) are not necessary to be updated.
These parts will be replaced by lasm (LISA assembler) and llnk

(LISA linker). Therefore, the GCC source code must be pre-
modified so that the assembly code generated by the <dasip>-gcc

compiler must be compatible with LISA assembler. This is a ben-
efit of our approach because in order to update the GCC compiler,
we do not need to modify the GNU assembler, GNU linker and
GNU debugger as what is done in Kumura’s approach [5]. Fig-
ure 2 clearly shows the difference between Kumura’s toolchain
flow and Derivative ASIP toolchain flow.

To generate an executable file for the Derivative ASIP pro-
cessor, there are two ways. First is using Kumura’s toolchain
flow as indicated by the black arrows. Second is using
Derivative ASIP toolchain flow as indicated by the red arrows.
Dotted-lines indicate that complementary files generated by Co-
processor/Instruction Extension Generator tool are used to update
the GCC compiler and the LISA-modeled processor architecture.
In the Derivative ASIP approach, the assembly code generated by
<dasip>-gcc compiler will be forwarded to the LISA assembler
and the LISA linker to generate LISA object code and LISA ex-
ecutable code respectively. The LISA executable code then can
be simulated or executed either on the ISS simulator, SystemC
model simulator, RTL simulator or in hardware implementation

Fig. 2 Derivative ASIP toolchain flow.

such as FPGA.
To expand the architecture exploration space, co-processor de-

sign is accommodated by the ImpulseC [11] design framework.
A complementary file suitable for ImpulseC environment is used
to update a template of ImpulseC code. Corresponding RTL
codes for the co-processor will be generated by the ImpulseC
RTL Generator tool. This co-processor can be incorporated with
the Derivative ASIP architecture at the RTL level. For hardware
verification, the Derivative ASIP architecture, co-processor, exe-
cutable file and other intellectual properties are integrated by us-
ing the Quartus System Integration Tool [14]. This integrated sys-
tem, called system-on-chip, is synthesized to generate a bitstream
file for FPGA implementation.

3. Derivative ARM ASIP

This section presents the detail of the Derivative ASIP design.
Since ARM is used as the base architecture of Derivative ASIP,
the developed Derivative ASIP processor will be called Deriva-
tive ARM ASIP or DAA for short. DAA is a 32-bit processor. It is
designed according to the Harvard RISC architecture. Referring
to its base architecture model, ARM9, DAA has 16 x 32-bit gen-
eral purpose registers. However, there are only 4 pipeline stages:
Fetch (FE), Decode (DC), Execute (EX), and Writeback (WB)
which is different from ARM9 with 5 pipeline stages. Figure 3
shows the LISA code to define the DAA resources consisting of
register, pipeline, memory map and interface.

To maintain the easiness of GCC porting for the DAA pro-
cessor, the DAA instruction-set is created equivalently to ARM
instruction-set. This means that every single instruction on the
DAA processor will have an equivalent one in the ARM proces-
sor. However, the DAA instruction format does not have to be the
same as the ARM one. Moreover, the DAA assembly syntax can
be totally different from ARM.

DAA includes basic ARM9 architecture with optimized re-
sources for the target application. DAA, on the one side, sim-
plifies ARM9 architecture by eliminating unused resources such
as multi operation modes, bank registers, debugging hardware,

Fig. 3 LISA code to define DAA resources.

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

Fig. 4 Co-processor/instruction extension design flow using our proposed tool.

Fig. 5 Input definition file: (a) MyNewAdd.xml, (b) MyNewAdd-behabior.c.

Table 1 DAA and ARM9 similarities.

Features ARM9 DAA
Number of General Purpose Registers 16 16

ARM instruction-set (32-bit encoding) YES YES

Branch Instructions (B, BL) YES YES

Data Processing Instructions (AND, EOR, SUB,
RSB, ADD, ADC, SBC, RSC, TST, TEQ, CMP,
CMN, ORR, MOV, BIC, MVN)

YES YES

Multiply and Multiply-Accumulate (MUL, MLA) YES YES

Single Data Transfer Instructions (LDR, STR) YES YES

Block Data Transfer Instructions (LDM, STM) YES YES

Table 2 DAA and ARM9 differences.

Features ARM9 DAA
Number of Operating Modes 6 1

Bank Registers YES NO

THUMB instruction-set (16-bit encoding) YES NO

Multiply Long and Multiply-Accumulate Long
(MULL, MLAL)

YES NO

Single Data Swap Instruction (SWP) YES NO

Co-processor/Instruction Extensions NO YES

THUMB instruction-set (16-bit encoding), DSP enhancement in-
structions (64-bit long multiply and long multiply-accumulate in-
structions) and swap instructions. On the other side, DAA en-
hances the instruction-set with instruction extensions to speed up
the execution time of particular functions. Table 1 and Table 2
respectively show the feature similarities and feature differences
between DAA as the Derivative ASIP architecture and ARM9 as
the base architecture.

4. Co-processor/Instruction Generator Tool

This section explains the concept behind the Co-processor/
Instruction Extension Generator tool. Figure 4 shows the design
flow of the co-processor/instruction extension using our proposed
tool. An input definition file is required to describe the specifi-

cation of the co-processor/instruction being created. This input
definition file can be provided either in an XML file or through a
GUI-based application software. Complementary files consisting
of <xinst-name>.h, t-<xinst-name>.h, t-<xinst-name>.c, <xinst-

name>.lisa and <xinst-name>.c are generated by the tool.
The <xinst-name>.h file contains a prototype function of the

instruction extension which is required by the application source
code to call the instruction extension. t-<xinst-name>.h and t-

<xinst-name>.c are two complementary files used for updating a
GCC compiler. The <xinst-name>.lisa file contains LISA code to
update a LISA-modeled architecture, LISA assembler and LISA
linker. The <xinst-name>.c file contains ImpulseC codes to gen-
erate RTL for a co-processor.

There are three cases of target complementary file generation:
instruction extension only, co-processor with instruction exten-
sion and co-processor only. The architecture designer needs to
specify the target of the output file in the tool prior to the comple-
mentary file generation. As an example, a new instruction named
MyNewAdd will be given to demonstrate the complementary file
generation of case one and case two. The same concept is appli-
cable for case three.

4.1 Input Definition with XML file
In our proposed tool, the XML format is used to structure and

store the information for the co-processor/instruction specifica-
tion. Figure 5 (a) shows the XML input definition file for the
given example. Basically, the XML file contains 6 pieces of in-
formation as follows:
4.1.1 Instruction Name Definition

The instruction name must be unique to avoid collision during
compilation time. This information is indicated by the <xname>

tag.

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

Fig. 6 MyNewAdd instruction syntax and format.

4.1.2 New Resource Definition
This optional information is used to declare a new hardware

resource such as registers, memory or I/O interface, using the
<nresource> tag. In the example case, we introduced a new
register RBUF with 32-bit width as defined by the attributes
type=“register” and width=“32”. If a register array is required
instead of a single register, the attribute size=“1” can be changed
to any number to specify the array size.
4.1.3 New Opcode Definition

This is also optional information for declaring a new op-
code in a new instruction. This information is indicated by the
<nopcode> tag. If this tag is enabled, this information will be
added to the coding definition and syntax definition as explain
later. In the example case, we defined a new opcode named
NEWADD with a 4-bit data format as shown by the attribute cod-

ing=“0b0010”.
4.1.4 Coding Definition

This information, indicated by the <xcoding> tag, defines the
instruction format as binary code. The binary code information is
very important because it leads to how the processor decodes and
executes the instructions properly. In the example case, we de-
fined the instruction format as “0b0000 0b1101 0b0101 0b0100

NEWADD Rd Rn Rm”. This means that we have a 32-bit in-
struction length. The instruction code begins with 16-bit opcodes
followed by the 4-bit new opcode NEWADD as defined in the
<nopcode> tag and then 3 operand registers Rd, Rn and Rm as
shown in Fig. 6. Registers Rd, Rn and Rm are general purpose
registers (GPR) where the specifications have been determined in
the base processor architecture.
4.1.5 Syntax Definition

This information, indicated by the <xsyntax> tag, is necessary
for compiler and assembler generation. It defines what the as-
sembly code syntax of the new instruction looks like. There are
two types of syntax information. One is LISA syntax, as indi-
cated by the attribute type=“LISA” and one is GCC syntax as in-
dicated by the attribute type=“GCC”. The GCC syntax has more
attributes to define the number of operands and the data type of
each operand because data type information is necessary for the
GCC compiler but not for the LISA assembler. In our exam-
ple case, the number of operands is 3 with all data types being
word or 32-bit, as indicated by attributes nOp=“3”, op0=“32”,
op1=“32” and op2=“32”. If the <nopcode> tag is enabled, the
syntax can be constructed based on the information given in the
<nopcode> tag. For example, we defined XNEWADD %0, %1,

%2 as the syntax so that it is composed of X and NEWADD. Sym-
bols %0, %1, %2 indicate operand 0, operand 1 and operand 2 re-
spectively. X is an independent symbol which is changeable with
any letter or word specified by the designer.
4.1.6 Behavioral Definition

This information, indicated by the <xbehavior> tag, defines
the behavior of the co-processor/instruction extension. It is de-

Fig. 7 Extended GCC code generation flow.

scribed in the C language and placed in separated file named
<xinst-name>-behavior.c. In the example case, MyNewAdd in-
struction behavior is described in the MyNewAdd-behabior.c file
as shown in Fig. 5 (b). It has 3 register operands. The instruc-
tion behavior begins with reading two input operands using the
READREG(n) function as shown in lines 4 and 5, where n is the
operand index. Local variables a, b, c and d are declared to hold
intermediate data. In the hardware implementation, these local
variables are realized by wires. Besides, all statements in the
behavior description file are executed concurrently in the same
cycle. This is different from standard C language which executes
each statement sequentially. Therefore, the local variables can
not be updated more than once. In the example case, variables a

and b are used to hold the values of register operand 1 and register
operand 2 respectively. Variable c computes shift and add opera-
tions given by the equation c = (a<<2)+(b>>1). Finally, variable
d performs multiplication and addition operations given by the
equation d = (a*b)+c+RBUF. A new resource register RBUF is
defined in the <nresource> tag. Since RBUF is a special register,
it can be accessed directly like a local variable without using the
READREG(n) function. The data in variable d is outputted to the
register operand 0 by using WRITEREG(Op0)=d and also stored
in the register RBUF by using RBUF=d as shown in lines 8–9.

4.2 Extended GCC Compiler
The extended GCC compiler here means a base GCC com-

piler which has been modified to support the Derivative ASIP ap-
proach. In our example case, the base GCC compiler is arm-gcc

and the extended GCC compiler is daa-gcc. To extend a base
GCC compiler, two modifications are required. First, we have
to modify the original base GCC source code in order to make
the output assembly code compatible with the LISA assembler.
Second, we need to modify the assembly code generation flow
to support instruction extension. Figure 7 shows the internal as-
sembly code generation flow of the extended GCC compiler. IsX-

INST() and GenXINST() are two additional functions required for
detecting and generating instruction extensions. GCC comple-
mentary files which contain information about instruction exten-
sion specification are needed to supply data for the IsXINST() and
GenXINST() functions.

GCC compiler generates assembly codes from the Register

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

Fig. 8 MyNewAdd.lisa file: (a) syntax and coding, (b) behavior, MyNewAdd.c file: (c) ImpulseC code for
co-processor behavior.

Transfer Language (RTL) representation. In fact, these assem-
bly codes are generated piece by piece per function which is
handled by the rest of handle final() function. Every function
declared in the application source code will be treated as one
piece of RTL representation and may generate a piece of as-
sembly codes. Our GCC extension idea relies on this concept.
IsXINST() is added in the beginning of the rest of handle final()

function to immediately check whether the declared function
is a prototype function corresponding to an instruction exten-
sion or not. If so, proper assembly codes will be generated
by GenXINST(). Otherwise, standard assembly code generation
consisting of assemble start function(), final start function(), fi-

nal() and final end function() are executed. Information supplied
by the GCC complementary file is useful in assisting the deci-
sion in IsXINST() and code generation in GenXINST(). assem-

ble start function() handles code segmentation, therefore it is still
required before generating assembly code with GenXINST().

IsXINST() needs the function name currently declared in order
to recognize an instruction extension. This information is ob-
tained by using XSTR (XEXP (DECL RTL (cf decl), 0), 0), where
cf decl is the current RTL representation. XEXP and XSTR are
used to convert the RTL representation to an expression and string
respectively. The number of operands involved in the current RTL
expression is obtained by using XVECLEN (rtx, 0), where rtx is
an RTL expression.

When an instruction extension is detected, GenXINST() gener-
ates proper assembly codes as defined in the complementary file.
The core information about the complementary file is held in t-

<xinst-name>.h file. In this file, instruction information is stored
in a similar way to the machine description file in the GCC back-
end. It structures the information as the XINST data type which
is composed of 4 elements: instruction name, function name, as-
sembly syntax and number of operands. There can be more than
one instruction information stored in this file. Appropriate as-
sembly codes are generated based on instruction name matching.
For example, if the MyNewAdd instruction is detected then the
XNEWADD %0, %1, %2 assembly code will be released. The
exact register for operands %0, %1 and %2 are obtained by using
REGNO(operands[n]), where n is the operand index.

Fig. 9 MyNewAdd.lisa file: (a) new resource, (b) new opcode.

4.3 Extended LISA-modeled Architecture
According to the information about resource, opcode, syntax,

coding and behavior given in the XML file, LISA code is auto-
matically generated. Figures 9 (a), (b) and 8 (a), (b) show the
generated LISA code for MyNewAdd instruction in case the tar-
get of the complementary file generation is instruction extension
only.

Figure 9 (a) and (b) show a resource and opcode declaration. A
resource is declared with the keyword RESOURCE followed by
the resource type and its name. In the example case, a 32-bit reg-
ister resource named RBUF is declared. An opcode is declared
with the keyword OPERATION followed by its name. In the op-
code declaration, OPERATION only has 3 elements i.e. coding,
syntax and expression without behavior. Attribute coding in the
<nopcode> tag of the XML file determines the binary code of the
opcode as indicated in CODING. If this attribute is empty, the bi-
nary code will be defined as “0b0000” by default. The SYNTAX

value is defined by the content of the <nopcode> tag. To make
it simple, the EXPRESSION value is set equal to the CODING

value.
Figure 8 (a) shows the generated LISA code for syntax and

coding declaration. Our base processor architecture has 4
pipeline stages. “IN pipe.DC” in “OPERATION MyNewAdd IN

pipe.DC” indicates that this code will be executed in the decod-
ing stage. The MyNewAdd instruction has 3 register operands
Rd, Rn and Rm as defined in the CODING and SYNTAX. These
register operands can be either the program counter register, link
register, stack pointer register, index register, frame pointer regis-
ter or GPR as indicated by lines 17, 19 and 21. If a GPR operand
is defined, the bypass Rx dc() function will be added in the BE-

HAVIOR section, where x is either d, n or m as indicated by lines
29–31. Function bypass Rx dc() is used to read the value of reg-

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

ister Rx immediately from the pipeline stages if it is required by
the current instruction. When a decoded instruction is matched
with MyNewAdd coding, it activates the MyNewAdd ex function.
This function is executed later in the execution stage as indicated
by line 33.

Our tool translates the MyNewAdd instruction behavior de-
scribed in Fig. 5 (b) into LISA code as shown in Fig. 8 (b). “IN

pipe.EX” in “OPERATION MyNewAdd ex POLL IN pipe.EX”

means this function will be executed in the execution stage.
Similar to bypass Rx dc(), bypass Rx ex() is added in the BE-

HAVIOR section to immediately supply data of register Rx from
the pipeline stages. bypass Rn ex(), bypass Rm ex() and by-

pass Rd ex() will result in local variables alu in1, alu in2 and
alu in3 respectively. Therefore, function READREG(n) in the
behavior description will be translated into alu in(i), where n

is the operand index and i is either 1, 2 or 3 correspond-
ing to Rn, Rm or Rd. Since in the <xsyntax> tag we de-
fined Rn as operand 1 and Rm as operand 2, the statement
a=READREG(Op1) and b=READREG(Op2) will be translated
into a=alu in1 and b=alu in2 as indicated in lines 54 and 55. In
our base architecture, writing data to the GPR register is handled
in the writeback stage. A writeback flag, data and destination reg-
ister must be set before activating the writeback stage. Lines 58–
60 show the translation of WRITEREG(Op0)=d. OUT.WBF=1

sets the writeback flag. OUT.BPR=Rd defines the destination reg-
ister as Rd. OUT.WBF=d sets the data to be written to d. RBUF is
a special register, therefore it can be accessed just like a variable
as shown in lines 57 and 61.

4.4 Co-processor Hardware Generation
ImpulseC is a software-to-hardware compiler tool. It is capa-

ble of generating HDL (VHDL or Verilog) from C language. The
ImpulseC language is a subset of standard ANSI C. However, it
includes C extensions in the form of functions and data types. It
can describe a standalone function with either single or multiple
execution cycles. Instruction extension is always required when
a co-processor is employed. In case the target of complemen-
tary file generation is a co-processor with instruction extension,
both LISA code and ImpulseC code can be generated based on
the same XML input definition file. But if the target of com-
plementary file generation is the co-processor only, a separated
instruction extension must be defined with a different XML input
definition file.

Figure 8 (c) shows the generated ImpulseC code for the func-
tion described in Fig. 5 (b). It has 3 I/O interfaces which in-
dicates 3 operands Op0, Op1 and Op2. Each interface is
declared with the co stream data type. To control the ac-
cess of the interface, co stream open and co stream close are
used. Opening and closing the interface must be done be-
fore and after accesing the interface as shown in lines 6–8 and
18–20. O RDONLY and O WRONLY in the co stream open

statement determine the interface type either as input or
output. Reading a data x from interface in is done by
co stream read(in,&x,sizeof(x)) whereas writing the same data
to interface out is done by co stream write(out,&x,sizeof(x)).
Lines 11, 12 and 15 respectively show the translation re-

Fig. 10 Modified LISA code for interfacing with co-processor.

sult of statements a=READREG(Op1), b=READREG(Op2) and
WRITEREG(Op0)=d as describe in the behavior description file.
In impulseC, a special register is declared by co register data
type and created using co register create. This declaration is
done only once in the hardware configuration section which is
not shown in this paper. The special register is accessed with
co register get and co register put for reading and writing data
from/to the register as shown in lines 14 and 16.

If the co-processor with the instruction extension becomes
the target of complementary file generation, the behavior sec-
tion in LISA code will be automatically changed as shown in
Fig. 10. WRITEHC1(alu in1) and WRITEHC2(alu in2) means
writing data obtained from register operand 1 (Rn) and register
operand 2 (Rm) to I/O interface 1 and 2 respectively. READHC0()

means reading data from I/O interface 0. These I/O interfaces
are directly connected to the co-processor interface. Therefore,
the instruction extension behavior for accessing co-processor is
not more than just an interface between the processor and co-
processor. By having compatible interface specifications, the
base processor can communicate with the co-processor.

5. Derivative ASIP Implementation

As evidence of our proposed approach, the DAA architecture
was verified by simulation on PC and by hardware implementa-
tion on FPGA. Two PC based simulations were carried out. First
simulation was done by the Processor Debugger Tool [8]. This
simulation tool is available in the LISA design framework. It can
only simulate the processor architecture modeled in LISA. The
second simulation was done by the Sysnopsys Platform Architect
Tool [9]. This tool covers a wider scope of architecture models.
It works as a system level design simulation, therefore it can also
simulate the co-processor part.

Figure 11 shows the DAA system architecture that has been
verified. It consists of the DAA processor, on-chip ROM, on-
chip RAM, SPI, UART, GPIO, external memory, navigation co-
processor and fingerprint sensor. Qsys interconnect [14], a high-
bandwidth interconnect to connect intellectual property (IP) func-
tions and subsystems using Avalon standard interface, was cho-
sen as the backbone of the bus system. All components in this
system were implemented on FPGA except the fingerprint sensor
and external memory.

The fingerprint authentication application [7] was used for test-
ing the DAA architecture. In this application, the AES algorithm
becomes one of critical function that needs to be improved be-
cause it is used to secure fingerprint template data. It must be fast
enough with acceptable execution time. Therefore, some instruc-
tion extensions were created in the DAA architecture especially to
improve the execution time of the AES algorithm. A co-processor

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

Fig. 11 DAA system architecture.

that performs finger motion computation was also designed for
the DAA architecture. This co-processor, called navigation co-
processor, is needed to improve the motion computation ability
because it demands a high-speed computation which can not be
achieved by GPP processor or even by ASIP.

6. Experimental Results and Discussions

In this section, a comparison of the ASIP design approach and
experimental results will be discussed to show its effectiveness.

6.1 Design Approach Comparison
Table 3 shows the feature comparison among three ASIP

design approaches i.e. the LISA approach [4], Kumura’s ap-
proach [5] and the Derivative ASIP approach. As shown in the ta-
ble, the Derivative ASIP approach gains threefold benefit. First, it
inherits the merits of hardware generation of the LISA approach.
Second, it adopts the advantage of the reuse of existing software
development tools concept in Kumura’s approach. Third, it im-
proves the design exploration space to support co-processor inte-
gration for the base processor architecture.

6.2 Development Time Estimation
Table 4 shows the development time estimation among sev-

eral ASIP design approaches. In the conventional approach, both
the software development tool design and hardware implementa-
tion are hand-coded by ASIP designer. It usually takes several
months [4], [6] to complete all of the design stages because every
stage must be designed manually and sequentially.

The LISA approach employs an architecture description lan-
guage instead of a hardware description language. With a higher
level of abstraction language, a processor architecture model can
be designed easily. A set of software development tools and RTL
codes for hardware implementation are automatically generated
from the high level abstraction language. In previous works, it
was reported that the ICORE architecture took 3 months [4] and
RISC architecture took 5 months [6] by conventional approach
but it only needs 4 weeks by the LISA approach. To refine the
LISA modeled architecture including a new instruction it de-
mands another two days [4].

Kuruma’s approach proposes a faster way to design ASIP. It
reuses the existing processor model and its software development
tool set. In Ref. [5], it was mentioned that it took a day or less
to write a new intrinsic function. However, this approach can not

Table 3 Design approach: (a) LISA approach, (b) Kumura’s approach,
(c) Derivative ASIP approach.

Feature (a) (b) (c)
Generate hardware implementation Yes No Yes

Reuse existing software development tool set No Yes Yes

Suppport co-processor No No Yes

Table 4 Development time: (a) Conventional approach, (b) LISA approach,
(c) Kumura’s approach, (d) Derivative ASIP approach.

Work (a) (b) (c) (d)
Software development
tool design months weeks days days

ASIP hardware
implementation months weeks - weeks

A new co-processor/
instruction design - days days hours

Table 5 The number of lines of code: (a) input definition in XML file, (b)
complementary file generated by tool.

Function
AES Number of instructions 10

(a) Number of lines of input file 238
(b) Number of lines of output file 1,718

Navigation Number of instructions 2
(a) Number of lines of input file 79
(b) Number of lines of output file 425

provide hardware implementation for the developed ASIP.
The Derivative ASIP approach takes the advantage of the

LISA approach and Kuruma’s approach. Assisted by the co-
processor/instruction extension generator tool, deep knowledge
on compiler and hardware design is no longer needed because
the complementary files required for updating the compiler and
the processor architecture are generated by the tool. This makes
the creation of a new co-processor/instruction extension by the
Derivative ASIP approach become faster and easier. In our ex-
periment, we took 4 weeks to design the DAA architecture with
the LISA design framework. Another 5 days was required to port
the GCC and a few hours to create a new co-processor/instruction
extension with the Derivative ASIP approach.

6.3 Tool Efficiency
The Co-processor/Instruction Extension Generator tool helps

architecture designers describe a new co-processor/instruction
with a simpler definition file. This is a more convenient way for
non-expert ASIP designers. Table 5 shows the effectiveness of
our proposed tool in terms of the number of lines of code sim-
plification. It appears that the number of lines of code written
for input definition files is less than the output files generated by
tool. For example, to define 10 instruction extensions for AES
algorithm it only needs 238 lines of codes of input definition
files. This is much fewer than 1,718 lines of codes of output
complementary files. This result shows that employing a co-
processor/instruction extension generator tool is very beneficial
in reducing the code complexity and saving design time.

6.4 Code Generation
To evaluate the efficiency of the extended GCC compiler, we

compared the number of lines of source codes and assembly
codes before and after using instruction extensions. The assem-

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

Table 6 The number of lines of code: (a) original C code, (b) modified
C code using instruction extensions, (c) assembly code generated
from (a), (d) assembly code generated from (b), (e) hand-optimized
assembly code.

Functions (a) (b) (c) (d) (e)
aes subBytes 5 4 30 10 8

aes subBytes inv 5 4 30 10 8

aes addRoundKey 5 4 35 12 12

aes addRoundKey cpy 5 4 51 14 14

aes shiftRows 8 4 72 10 8

aes shiftRows inv 8 4 71 10 8

aes mixColumns 16 4 118 10 8

aes mixColumns inv 19 4 155 10 8

aes expandEncKey 15 4 285 12 12

aes expandDecKey 14 4 289 12 12

aes256 encrypt 20 20 67 48 48

aes256 decrypt 20 20 62 43 43

bly code generated by the extended GCC compiler was also com-
pared to the hand-optimized one. In this experiment, we used
GCC 4.6.0 as the base of the compiler and the AES algorithm as
an example application. Table 6 shows the comparison result. (a)
is the original application source code in C. (b) is the modified
application source code to employ instruction extensions. (c) is
assembly code generated from original code in (a) compiled by
the arm-elf-gcc compiler. (d) is assembly code generated from
modified C code in (b) compiled by the daa-elf-gcc compiler. (e)
is hand-optimized assembly code.

It can be seen that the number of lines of modified source codes
is less than that of the original one and the assembly code gener-
ated by daa-elf-gcc is less than the one generated by arm-elf-gcc.
This means that employing instruction extensions may simplify
the application source codes and reduce the number of generated
assembly codes. If we compare with the hand-optimized result,
however, it seems that the assembly code generated by daa-elf-

gcc is slightly bigger than the hand-optimized one. This is caused
by redundant argument handling. In some cases, when an instruc-
tion extension is being called, the data passed through as argu-
ments might be ignored because those data have been pre-loaded
by previous functions or they have been available in the internal
registers. daa-elf-gcc compiler can not recognize these kinds of
conditions. Therefore, daa-elf-gcc will always treat arguments as
normal which may generate redundant assembly codes.

Extending a base GCC compiler with instruction extensions
will not change the original application source codes a lot. A
little modification is sufficient to adjust the application source
codes. Figure 12 shows the application source code of the
aes256 encrypt function. It looks like the application source code
with instruction extensions is quite similar to the original one
without instruction extensions.

6.5 DAA Performance
This experiment was carried out to compare the performance

of DAA against ARM. Application source codes was compiled
by arm-elf-gcc and daa-elf-gcc for ARM and DAA respectively.
Figure 13 shows the execution cycle of AES encryption and
AES decryption functions in each processor. This result shows
that compared to ARM, DAA greatly reduces the number of ex-

Fig. 12 Source code comparison: (a) without instruction extensions,
(b) with instruction extensions.

Fig. 13 Execution time of AES algorithm in cycle unit.

Fig. 14 Execution time of navigation algorithm in us unit.

ecution cycles. DAA improves its performance by up to 27 and
36 times better than ARM because it employs instruction exten-
sions. Running at 100 MHz, DAA will be able to carry out 10
fingerprint data encryption within 30 millisecond which is more
acceptable than 1.2 seconds in ARM.

Figure 14 shows the execution time of the navigation algo-
rithm on ARM and navigation co-processor in us unit. Employing
a co-processor, DAA speeds up the execution time of interpola-

tion and motion calculation functions 18 and 41 times faster than
ARM. With fingerprint sensor resolution 363 dot-per-inches, it
will be able to detect finger motion of up to 27.38 cm/s.

6.6 FPGA Implementation
The DAA system architecture depicted in Fig. 11 was verified

on the Altera DE2-115 FPGA development board. This hardware
verification confirmed that our proposed approach works well at

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

Table 7 Area and power comparison.

Item ARM9 DAA
Area 0.613 mm2 0.571 mm2

Power 9.5 mW 9.4 mW

the hardware level. Device utilization report indicates that run-
ning at 100 MHz clock consumes 24 K LEs, 1,503 registers, 35
I/O pins and 3,145,728 bit (≈ 384 KB) memory usage. This mem-
ory requirement consists of 128 KB for on-chip ROM and 256 KB
for on-chip RAM.

6.7 Area and Power Estimation
Area and power consumption were also evaluated to see how

much hardware efficiency can be achieved. To estimate the area
and power consumption of the DAA processor, the RTL code
generated by the LISA design framework was synthesized by us-
ing the Synopsys Design Compiler tool [10]. Table 7 shows that
synthesized with TSMC 90 nm technology at 200 MHz, DAA re-
sults in a little bit smaller area and less power consumption than
ARM9 [13].

Compared to ARM9 as its base architecture, DAA performance
could be increased without additional cost of area and power be-
cause DAA architecture has been optimized. It removed redun-
dant resources but enhanced with instruction extensions. In other
words, unused resources were compensated by other more use-
ful resources. This result shows that our approach can provide a
practical method to modify processor architecture to optimize its
performance for certain target applications.

7. Conclusion

A practical ASIP design method with the Derivative ASIP
approach was proposed. This approach not only overcame
the problem of hardware and compiler generation in the pre-
vious approaches but also broadened the architecture explo-
ration space to accommodate co-processor integration. A new
tool called Co-processor/Instruction Extension Generator Tool
was also developed. It helps ASIP designers create a new co-
processor/instruction extension easily. By using our approach,
ASIP design exploration can be done in a shorter time.

References

[1] Marwedel, P.: The MIMOLA Design System: Tools for the Design
of Digital Processors, Proc. 21st Conference on Design Automation,
pp.587–593 (1984).

[2] Hadjiyiannis, G., Hanono, S. and Devadas, S.: ISDL: An Instruction
Set Description Language for Retargetability, Proc. 34th Conference
on Design Automation, pp.299–302 (1997).

[3] Fauth, A., Van Praet, J. and Freericks, M.: Describing Instruction-set
Processors using nML, Proc. European Design and Test Conferece,
pp.503–507 (1995).

[4] Hoffmann, A., Kogel, T., Nohl, A., Braun, G., Schliebusch, O.,
Wahlen, O., Wieferink, A. and Meyr, H.: A Novel Methodology for
the Design of Application-Specific Instruction-set Processors using
a Machine Description Language, IEEE Trans. Computer Aided De-
sign of Integrated Circuits and Systems, Vol.20, No.11, pp.1338–1354
(Nov. 2011).

[5] Kumura, T., Taga, S., Ishiura, N., Takeuchi, Y. and Imai, M.: Soft-
ware Development Tool Generation Method Suitable for Instruction
Set Extension of Embedded Processors, IPSJ Trans. System LSI De-
sign Methodology, Vol.3, pp.207–221 (Aug. 2010).

[6] Bailey, B., Martin, G. and Piziali, A.: ESL Design and Verification:
A Prescription for Electronic System Level Methodology, Morgan
Kaufmann (2007).

[7] Mostafa, A.M., Li, D. and Kunieda, H.: Minutia Ridge Shape Algo-
rithm for Fast On Line Fingerprint Identification System, Proc. Sym-
posium on Intelligent Signal Processing and Communication Systems,
Vol.2, pp.593–598 (2000).

[8] Synopsys Inc.: Processor Designer and Processor Debugger, available
from 〈http://www.synopsys.com〉.

[9] Synopsys Inc.: Synopsys Platform Architect, available from
〈http://www.synopsys.com〉.

[10] Synopsys Inc.: Synopsys Design Compiler, available from
〈http://www.synopsys.com〉.

[11] Impulse Accelerated Technologies: ImpulseC C-to-FPGA Tool, avail-
able from 〈http://www.impulseaccelerated.com〉.

[12] GNU Project: GNU Compiler Collection (GCC), available from
〈http://www.gcc.gnu.org〉.

[13] ARM Holdings plc.: ARM946 performance, available from
〈http://www.arm.com〉.

[14] ALTERA Corporation: Design Tools and Services, available from
〈http://www.altera.com〉.

Agus Bejo received his B.Eng. and
M.Eng. degrees from Electrical Engineer-
ing Department, Gadjah Mada University,
Indonesia in 2003 and Chulalongkorn
University, Thailand in 2007, respec-
tively. Currently, he is a Ph.D. student
at the Kunieda-Isshiki Laboratory, the
Department of Communications and

Computer Engineering, Tokyo Institute of Technology, Japan.
His current research focuses on processor architecture and SoC
design is especially for fingerprint authentication applications.

Dongju Li received her Ph.D. degree in
Electrical and Electronics from the Tokyo
Institute of Technology in 1998. She is
currently an Assistant Professor at the De-
partment of Communications and Com-
puter Engineering, Graduate School of
Science and Engineering, Tokyo Institute
of Technology. Her current research inter-

ests include embedded algorithms for fingerprint authentication,
fingerprint authentication solution for smart phones, VLSI archi-
tecture design and methodology and SOC design for multime-
dia applications such as fingerprint and video CODEC. She is a
member of IEEE CAS and IEICE since 1998.

Tsuyoshi Isshiki received his B.E. and
M.E. degrees from Tokyo Institute of
Technology in 1990 and 1992, respec-
tively, and his Ph.D. in Computer Engi-
neering from the University of Califor-
nia at Santa Cruz in 1996. He is cur-
rently an Associate Professor at Tokyo In-
stitute of Technology, the Department of

Communications and Computer Engineering. His research inter-
ests include multimedia SoC designs, Multiprocessor SoC design
methodology and its design tools.

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

Hiroaki Kunieda received his B.E. M.E.
and Doctor of Engineering degrees from
Tokyo Institute of Technology, Tokyo,
Japan in 1973, 1975 and 1978, respec-
tively. Since 1978, he has been with the
Faculty of Engineering, Tokyo Institute of
Technology, where he is now a Profes-
sor in the Department of Communications

and Computer Engineering, Tokyo Institute of Technology. His
research interests include SoC Design, Multi-media LSI design,
SoC CAD, and Fingerprint Authentication System. He is a fellow
of IEICE and a senior member of IEEE CAS Society.

c© 2014 Information Processing Society of Japan


