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Abstract: The IP Multimedia Subsystem (IMS) has been constantly evolving to meet the tremendous rise in popu-
larity of mobile services and Internet applications. Since IMS uses Session Initiation Protocol as the main protocol
to control a signal, it inherits numerous known security vulnerabilities. One of the most severe issues is the Denial
of Service attack. To address this problem, we introduce an anomaly-based detection system using the Tanimoto dis-
tance to identify deviations in the traffic. A modified moving average is applied to compute an adaptive threshold.
To overcome a drawback of the adaptive threshold method, we present a momentum oscillation indicator to detect a
gradually increasing attack. Generally, anomaly-based detection systems trigger many alarms and most of them are
false positives that impact the quality of the detection. Therefore, we first present a false positive reduction method
by using a trust model. A reliable trust value is calculated through the call activities and the human behavior of each
user. The system performance is evaluated by using a comprehensive synthetic dataset containing various malicious
traffic patterns. The experimental results show that this system accurately identified attacks and has the flexibility to
deal with many types of attack patterns with a low false alarm.
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1. Introduction

IP Multimedia Subsystem (IMS) is a standard architecture
for the Next Generation Network (NGN) designed by the 3rd
Generation Partnership Project (3GPP). It is a global, access-
independent and standard-based IP connectivity and service con-
trol architecture that provides various types of multimedia ser-
vices to end-users using common Internet-based protocols [1].
The IMS uses a Session Initiation Protocol (SIP) as the control
protocol for multimedia communication. Unfortunately, the SIP
service can certainly be the target of a variety of attacks and con-
sequently, IMS also inherits these problems. The most severe
attack is the Denial of Service (DoS). This attack aims at deny-
ing a legitimate user’s access to a service or network resource, or
at bringing down the servers offering such services. The IMS is
much more susceptible to DoS attacks, compared with any pre-
vious telecommunication infrastructure. An attacker can easily
launch a DoS attack by flooding IMS servers with an enormous
number of SIP messages. According to the 3GPP technical spec-
ifications [2], [3], IMS security offers features such as authenti-
cation and encryption, but it does not provide any mechanism
to protect IMS networks from flooding attacks. We believe that
as the world’s telecom operators gradually deploy IMS to real
world networks, SIP flooding attacks will become serious secu-
rity threats to the telecom operators’ businesses.
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In general, there are two approaches for anomaly detec-
tion: signature-based approaches and anomaly-based approaches.
With the former approach, incoming traffic is compared to exist-
ing patterns. If they are matched, the detection system will raise
an alert. This approach can accurately identify known attacks,
but cannot detect new anomalies that will lead to false negative
alarms. New ways of exploiting computer networks are being in-
vented every day. It seems obvious that there are many ways of
circumventing attack signatures. Since several protocols are used
in an IMS, there is a possibility that flooding attacks may be gen-
erated by any combination of protocols. An intelligent attacker
can always develop attacks that remain undetected by signature-
based systems. A number of researchers have argued that it is not
difficult for an attacker to evade a signature [4]. SIP is also vulner-
able to network anomalies that can be easily mounted by utiliz-
ing various SIP traffic generators openly available on the Internet.
In contrast with the signature-based approach, an anomaly-based
approach builds models that represent normal behavior on the net-
work. If there is a significant deviation detected between the ob-
served behavior and the estimated model, an alarm will be raised.
The key value of an anomaly-based detection system is that it can
automatically infer attacks which are yet unknown, such as the
polymorphic packet flooding attacks, and therefore undetectable
by signature-based methods. This will alert the network adminis-
trator early, and potentially reduce the damage caused by the new
attack. Therefore, our detection system developed in this paper
adopts the anomaly-based approach.

We propose a flooding attack detection system that generates
alerts based on abnormal variation in a selected traffic flow. We
use the Tanimoto distance to quantify the correlations among cho-
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sen attributes. We also propose an adaptive threshold that is
used for detecting a significant deviation of traffic. The adap-
tive threshold can exhibit good performance for high intensity
attacks, but it generally suffers from a special attack pattern: an
attacker can completely hide an attack by gradually increasing
flooding packets. Detection of this attack is particularly impor-
tant. Therefore, we propose a momentum oscillation indicator to
detect such changes in the traffic. A main drawback of detect-
ing changes in the traffic volume is that the detection accuracy
may be degraded if the legitimate volume is dynamic or suddenly
increasing. This phenomenon happens easily and frequently in
telecommunications. We address this problem by integrating a
trust model to filter out a legitimate call from suspected traffic.
The trust value of each user is computed from the call activities
and human behavior of a user, including call duration, call direc-
tion, an interactivity ratio, and the diversity of calls. In case of
an unknown caller, Dempster-Shafer Theory is applied to com-
bine all trust paths from the caller and then compute an inferred
trust value. This detection system is placed in front of a Proxy
Call Session Control Function (P-CSCF) in order to monitor in-
coming traffic. Since P-CSCF is the first core component to be
traversed for any request process, deployment of a detection sys-
tem here will be very helpful in mitigating DoS attacks against
IMS networks. Moreover, because it is a stateless approach, our
detection system does not require huge memory capacity to pro-
cess an incoming packets. This can avoid a bottleneck problem
when massive traffic comes to the server. Our experimental re-
sults demonstrate that this system can achieve a high degree of
accuracy in detecting attacks with low false positives. Without
an infrastructure modification, this system can be deployed into
any IMS network infrastructure to provide defense against DoS
attacks.

The rest of the paper is organized as follows. Section 2 pro-
vides an overview of the IMS, then reviews related work that
deals with flooding attacks against VoIP and IMS networks. Sec-
tion 3 presents the proposed detection scheme for flooding at-
tacks. The trust calculation and the trust inference methodology
is described in Section 4. An evaluation of the method based on
simulations with the operator’s statistical information and the re-
sults are discussed in Section 5. Section 6 discusses the concern
regarding our system. Finally, in Section 7 we describe our con-
clusions and outline our future work.

2. Related Work

2.1 Overview of IMS
This section provides a brief overview of the IMS. IMS con-

sists of three main components: the Call Session Control Func-
tion (CSCF), Home Subscriber Server (HSS), and Application
Servers (AS). CSCF is the primary SIP signaling server that acts
as the SIP rendezvous point. The CSCF duties are divided into
three categories.
• Proxy CSCF: The P-CSCF is the first contact point for users

within the IMS. It controls incoming and outgoing messages
between the IMS and end users.

• Serving CSCF: The S-CSCF is the focal point of the IMS
as it is responsible for handling registration processes, mak-

ing routing decisions, maintaining session states and storing
service profiles.

• Interrogating CSCF: The I-CSCF provides the external in-
terface to other IMS networks and plays an important role in
both inter-carrier calls and roaming.

The HSS is the main data storage for all subscriber and service-
related data. It provides a database of user credentials and con-
figurations and identifies the home S-CSCF of the subscribers.
Finally, the AS hosts and executes services. An example of AS is
the Voice Call Continuity Function (VCC server) that guarantees
a call persistence when a mobile phone moves between base sta-
tions. Many AS can be installed in an IMS network as necessary
to support the users. Figure 1 shows the basic session flow in
IMS. The high-level requirements on IMS are summarized in TS
23.228 [5].

2.2 SIP Flooding Attacks Detection Methods
The detection algorithms based on a non-parametric cumu-

lative sum (CUSUM) have been applied in Refs. [6], [7]. The
CUSUM algorithm belongs to the family of change point detec-
tion algorithms that is used for detecting changes in a statistical
distribution between two hypotheses. They observe the difference
between the number of call setup requests (INVITE messages)
and successfully complete handshakes (200OK reply messages).
In normal traffic, these two types of messages should be equal at
any given time. So when this ratio unexpectedly changes, it in-
dicates a flooding attack. Reynolds and Ghosal describe a multi-
layer detection scheme against DoS attack in VoIP [8]. They use
a combination of sensors located across the network, continu-
ously estimating the deviation from the long-term average of the
number of call setup requests and successfully completed hand-
shakes. Sengar et al present the VoIP Flooding Detection System
(vFDS) for detecting anomalies in SIP traffic [9]. The Hellinger
distance (HD) is used to measure abnormal deviation in VoIP
packet streams. Traffic is divided into two sets and the dissimilar-
ity between these sets is measured. The HD scheme has shown
a strong flooding detection ability because low-rate flooding is
likely to have a probability distribution that is different from that
of normal traffic. However, an attacker can subvert this approach
by only slightly increasing the attack traffic. Furthermore, it does
not address how to maintain an accurate threshold during attacks
as described in Hecht’s work [10]. This problem increases the

Fig. 1 Basic session flow in IMS.
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likelihood of other attacks remaining undetected. Tang et al pro-
pose a similar approach to overcome the limitations of the previ-
ous schemes by using a sketch-based algorithm [11].

3. Flooding Detection Model

This section presents two statistical algorithms for detecting
SIP flooding attacks. The first is an application of a Tanimoto
distance which is used to measure a dissimilarity of selected SIP
attributes. We use this algorithm because it is a plain computa-
tion method and can adapt to traffic changes, and therefore fits the
dynamic environment of IMS. Second, we introduce an adaptive
threshold of this system. In addition, we introduce a momen-
tum oscillation indicator in order to detect a gradually increasing
attack pattern. Base on a strong theoretical foundation, these al-
gorithms can exhibit satisfactory performance over various attack
types, without necessarily being complex or costly to implement.

3.1 Tanimoto Distance
In probability theory, a Tanimoto distance (TD) is used to mea-

sure the difference between two probability distributions [12].
To compute the TD, let P and Q be two probability distribu-
tions in the same sample space where P and Q are N-tuples
(p1, p2, . . . , pn) and (q1, q2, . . . , qn). Then, the TD between P and
Q is defined as

T D(P,Q) =

∑k
i=1
[
max(pi, qi) −min(pi, qi)

]
∑k

i=1 max(pi, qi)
. (1)

If the two probability distributions are totally different, TD ap-
proaches 1. This property provides a good approach to quantify
the similarity of two data sets.

For our proposed flooding attack detection method, the traffic is
divided into two portions: training and testing phases. The train-
ing phase, P, is assumed to be the probability distribution of a set
of five SIP message types (REGISTER, INVITE, 200OK, ACK, and
BYE) as determined during a training phase of length m∗Δt times-
lots. With the testing phase, Q, corresponds to the same proba-
bility distribution measured during a Δt timeslot, shown in Fig. 2.
Therefore, the 5-tuples of P and Q are (preg, pint, pack, pok, pbye)
and (qreg, qint, qack, qok, qbye) respectively where pint is the num-
ber of INVITE messages divided by the total number of five SIP
message types in the training phase. The initial training phase is
assumed to be free of any attacks and acts as a basis for compar-
ison with the testing phase. Next, we measure the distance be-
tween these two phases, i.e., T D1. A low TD value means there
is no significant deviation between the two probability distribu-
tions. A high TD indicates that there are numerous open con-
nections which are not closed in proper time. Then, it is implied
that anomalies occurred in the traffic and altered the distributions.

Fig. 2 Sliding window mechanism of training phase and testing phase in the
data stream.

After measuring the distance, if the distance does not exceed a
threshold, a portion of the training phase will be merged with the
testing phase to construct the next training phase, i.e., T D2. This
sliding window function helps the training phases to adapt to the
dynamics of network traffic during a real-time analysis.

3.2 Adaptive Threshold
Most flooding attack detection methods face difficulty when

determining the threshold for detection. It is hard to set an appro-
priate threshold value for a real time communication scenario.
In particular, the IMS service traffic pattern will change over
time. For example, calling traffic during the night may be less
than during the day. A sudden increase in traffic can also occur,
e.g., hot breaking news can cause a rapid increase in communica-
tion. These conditions are not necessarily caused by a DoS attack
and need to be taken into consideration when setting a threshold.
Therefore, a static threshold is neither practical nor responsive to
expected normal traffic in this case. To accurately track normal
traffic, we use an adaptive threshold in our system.

To deal with the fluctuation of IMS traffic, our adaptive thresh-
old is based on an estimate of the mean deviation of the selected
SIP packets computed from recent traffic measurements. In statis-
tics, a moving average is widely used in time series analysis for
predicting a future data set by using current and previous data
sets. We preliminarily apply the Exponential Moving Average
(EMA) for computing a distance threshold for the next time in-
terval. Unlike the Simple Moving Average (SMA), EMA gives
more weight to the latest data, which is suitable for IMS traffic
environment. From Eq. (2), let Dt and Dt−1 be estimated averages
of the current and previous distances between two probability dis-
tributions: the training phase P and testing phase Q. And dt−1 is
the previous distance. The coefficient α is a smoothing factor
where 0 ≤ α ≤ 1. Using a small α we can detect small changes,
and a larger value for detecting larger changes. Alternatively, α
may be expressed in terms of n time periods, where α = 2

n+1 .
For example, if one wants to calculate the EMA for the last 14
periods, n is equal to 14.

Dt = αdt−1 + (1 − α)Dt−1 (2)

Many anomaly traffic detection systems, such as Ref. [6], ap-
ply EMA as a threshold. However, because it utilizes only one
single coefficient, EMA is not effective if there is a trend in the
time series data [13]. Therefore, we add a trend forecast in the
EMA as shown in Eq. (3)–Eq. (5). γ is the trend smoothing factor
where 0 ≤ γ ≤ 1. Equation (3) adjusts Dt directly for the trend
of the previous period, bt−1, by adding it to the last estimated dis-
tance value Dt−1. This helps to eliminate the lag and brings Dt

to the appropriate base of the current value. Equation (4) updates
the trend, which is expressed as the difference between the last
two values. This equation is similar to the basic form of EMA,
but here applied to updating the trend. Note that there are several
methods to choose the initial value of b1, e.g., b1 = D2 − D1.
Finally, our adaptive threshold can be calculated by Eq. (5). We
add k times N-period standard deviation, σ, of the forecast values
(Dt + bt) to reduce false alarms. The parameters α, γ, and k are
used to set a safe margin for the threshold. We can tune proper
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values for them to achieve desirable detection accuracy.

Dt = αdt−1 + (1 − α)(Dt−1 + bt−1) (3)

bt = γ(Dt − Dt−1) + (1 − γ)bt−1 (4)

T Dthreshold
t = (Dt + bt) + kσ (5)

3.3 Momentum Oscillation Indicator
An attacker can potentially subvert an adaptive threshold if he

knows the legitimate traffic intensity. In this scenario, during the
first few periods, the attacker sends a very low intensity attack to
the target server. This malicious traffic does not impact the thresh-
old because there is no significant deviation in the traffic. Next, he
increases the attack rate slightly which still does not affect the de-
viation of the overall traffic significantly. As the traffic increases,
the adaptive threshold is updated. Finally, the attacker can send
large malicious traffic that can block the IMS server without ever
being detected because the traffic is below the current threshold.
Thus, we propose a Momentum Oscillation Indicator (MOI) to
detect such attack patterns.

To simplify the explanation of the calculation, this indicator di-
vides the traffic intensity into two sides (upside and downside), by
using the median over n periods. The upside means the traffic in-
tensity at that time is above the median while the downside means
it is lower the median. The very first calculations for average up-
side and downside are simple n period averages, as computed by
Eq. (6) and Eq. (7). The second and subsequent calculations are
based on the prior and the current upside and downside, as com-
puted by Eq. (8) and Eq. (9). This is the same concept that EMA
uses of comparing the prior value with the current value. Finally,
in Eq. (10), the result is normalized and turned into an oscillator
value that fluctuates between 0 and 100. The MOI is 100 when the
average downside equals zero. This means the number of packets
moved higher during all n periods. There were no downsides to
measure.

Up1 =

∑t−n
i=t Upi

n
(6)

Down1 =

∑t−n
i=t Downi

n
(7)

avgUpt =
(Upt−1 × (n − 1)) + Upt

n
(8)

avgDownt =
(Downt−1 × (n − 1)) + Downt

n
(9)

MOIt = 100 − 100

1 − avgUpt

avgDownt

(10)

4. Trust Model

According to NIST’s technical report, anomaly detection sys-
tems are vulnerable to false positives [14]. DoS detection mech-
anisms, which aim at detecting floods, mainly look for sudden
changes in the traffic and subsequently mark them as anomalous.
However, they may produce false positives easily. The rationale
behind detection methods is an assumption that the proportion be-
tween certain parameters remains roughly uniform as long as traf-
fic is normal. A main drawback of detecting changes in the traf-
fic volume is that the detection accuracy may be degraded if the

legitimate volume is dynamic or suddenly increasing. This phe-
nomenon happens easily and frequently in telecommunications
such as during some flash events. For instance, cellphone net-
works were overwhelmed after the terror attacks in Boston [15].
The system cannot respond to all incoming requests. This traffic
leads to significant changes in the distance between the current
and previous traffic measurement. This causes false positives in
any anomaly-based attack detection system. This is the major
problem of a detection system because it causes a loss of con-
fidence in the alerts. So we need a solution to confirm that a
real attack is taking place before raising any alert. In general,
a threshold tuning is the most widely-used method for false de-
tection reduction. Increasing the threshold directly induces more
false alarms, while many of them are actually not true. Reducing
the threshold can reduce the number of false alarms, but such an
action causes the detection to be unable to detect major attacks.
This is the trade-off between reducing false alarms and maintain-
ing system security.

In this work, we first address this problem by using a trust
model. The trust model is integrated with the flooding attack
detection algorithm to filter out a legitimate call after a devia-
tion of traffic is detected. To calculate a reliable trust score, we
use the call duration and its direction of each user to distinguish
a legitimate user from a malicious user. This trust value can be
used to construct the reliable social linkage with other users in
the network through the trust inference mechanism. The social
reliability, which is the evaluation of a user’s behavior up to now,
is also considered. A caller who conducts calling activities like a
human will have a high trust value and a social reliability value.
The system classifies this call as a legitimate call. If the aver-
age of trust score and social reliability of all callers in the testing
phase is greater than the thresholds, the system will not raise the
alarm even though the distance between the training and testing
phases is high. Next, we will describe our trust calculation model
in details.

4.1 Directed Trust Calculation
Trust has been traditionally proposed as a method to enhance

security in many systems. The idea is to let parties rate each other
and use the aggregated rating about a given party to derive a trust
score, which can assist other parties in deciding whether or not
to interact with that party in the future. In telecommunication
systems, trust represents a model of past interactions between the
calling party. We derive the effective directed trust calculation
method from the previous work [16]. A trust value is automati-
cally assigned to friends based on the outgoing call duration. The
friend is a person who is already in a user’s buddy list. The user
can add or remove any call id of his/her friends in the list. Even
though the system evaluates a trust value of each friend, a call
from a friend is automatically forwarded to a callee. This trust
value is used in the trust inference process when one does not
have a relationship with this friend.

The original objective of this trust calculation over VoIP sys-
tems is for discriminating SPIT (Spam over Internet Telephony)
calls from legitimate calls. Its effectiveness was already proved
by comparing it with other techniques [16]. According to the
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technical report from 3GPP [17], a single SPITer can generate
traffic around 250 GB per month. Besides of the huge traffic vol-
ume, generated by the SPITer and consuming network resources,
the IMS server might be affected by the SPIT flooding. The sim-
ilarity between a flooding attacker and a SPITer is they have very
low social linkage with other legitimate users and their calling
behaviors do not resemble human communication. Clearly, no
legitimate user will make a call to a SPITer. In case of a flooding
attacker, he may always use a new account to conduct a malicious
activity. Therefore, our trust model can classify a malicious call
through detecting these characteristics.

We assume that a user community in IMS system is represented
as a social network. It contains nodes that are user equipment
(UE). Every node maintains a buddy list. This social network is
constructed by connecting a node to all the nodes in its buddy list.
The buddy lists are kept in a central database on the provider side.
Each buddy list is shared to others within the provider side during
the trust computing process to protect user information. Table 1
shows the data structure of a buddy list. The Friend attribute con-
tains a call id of a friend. A call from a friend, who is already
in a callee’s buddy list, is automatically forwarded to a callee.
The cumulative duration is the total outgoing call duration to this
friend. Raw trust is the current trust, e.g., the trust that is com-
puted in the current billing period. Since trust depends on past
experiences with a person, a final trust is computed by combining
a raw trust value with a historical trust value. The historical trust
is the previous final trust of this friend. The range of a raw trust
and a final trust are between 0 and 1. Please refer to Ref. [16] for
the details of trust calculation.

4.2 Trust Inference
A trust value in the previous subsection is only assigned to

friends in the buddy list who have direct interaction. In the real
world, there is a possibility that a call will come from an unknown
person. To estimate the trustworthiness of an unknown caller, we
apply a situation found in daily human life. Generally, when en-
countering an unknown person, it is common for people to ask
trusted friends for opinions about how much they can trust this
new person. Therefore, we gather the trust values of an unknown
caller from other friends in the network who already know about
that person in order to classify a call. Hence, the property of trust
in this work is transitivity. The trust values of friends in the buddy
list will be shared to other nodes through a relationship path in the
IMS network. These inferred trusts will be used when a caller and
a callee do not have a direct relationship.

According to human reasoning, a person is much more likely
to believe his friends as opposed a stranger. Similarly, a trusted
acquaintance will also trust the beliefs of his friends. So, it is
possible to find a path of friends from trustor to trustee with ap-
propriate discounting [18]. Therefore, a multiplicative function is

Table 1 Data structure of a buddy list.

Attribute Data Type
Friend CHAR
Cumulative duration INTEGER
Raw trust INTEGER
Final trust INTEGER

suitable for this case. The inferred trust is computed by Eq. (11),
where m is a user between a callee and a caller.

Tcallee,caller =

caller∏

m∈path

Tm,m+1 (11)

We apply the seven degrees of separation phenomenon of a so-
cial network in the trust inference process. Everyone is connected
through not more than seven intermediaries [19]. By this concept,
we limit a relationship length between a callee and an unknown
caller within a count of seven hops.

For newcomers or unknown callers of whom trust cannot be
computed, the system will assign an initial trust value. The initial
trust value is set to be slightly higher than a trust threshold. It is
adjustable automatically after a user has calling activity. This ini-
tial trust assignment can eliminate the barrier for new users who
do not have a trust value assigned by other users.

In a real network, there is a high possibility to have many trust
paths between a caller and a callee. Reference [16] selects only
one trust path that produces the highest trust value. However, se-
lecting one trust path cannot reflect all the trust information of
the caller. To compute the final inferred trust, we use the data
fusion technique to combine the trust values of all trust paths to-
gether. Generally, data fusion is a process performed on multi-
source data towards correlation, estimation and the combination
of several data streams into one with a higher level of abstraction
and greater meaningfulness. Its objective is to obtain an opti-
mal decision or solution by combining many kinds of information
from different sources. Next, we will explain the trust aggrega-
tion methodology.
4.2.1 Dempster-Shafer Theory

In the field of statistics, the most well-known data fusion tech-
nique is the Bayesian theory:

P(H|E) =
P(E|H)P(H)

P(E)
. (12)

Bayesian theory interprets a posterior probability, P(H|E), as a
measure of belief about a hypothesis or proposition H updated in
response to evidence E. The prior probability, P(H), reflects the
belief about H in the absence of evidence. Researchers often es-
timate prior probabilities from empirical data, or, in the absence
of empirical data, they assume them to be uniform or some other
distribution. The outcome reflects these assumptions, so the crit-
ics of the Bayesian approach often point out that the method is
not well-equipped to handle states of ignorance [20]. Clearly, this
approach requires complete knowledge of both prior and condi-
tional probabilities, which might be difficult to determine in prac-
tice. In contrast with the Bayesian approach, the Dempter-Shafer
theory (DST) does not require the complete probabilistic model.
We will now briefly introduce the key concepts of this theory.
DST can be considered an extension of Bayesian inference [21].
It is a system for combining evidence from different sources and
arrives at a degree of belief under uncertainty. Let a frame of dis-
cernment Θ = {T,¬T } be two events under consideration; e.g., T

= trust in a caller, ¬T = distrust in a caller.
Definition 1: Let Θ be a frame of discernment. A function

m : 2Θ → [0, 1] is defined as Basic Belief Assignment (BBA)
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when it satisfies the following two properties:

m {∅} = 0 and (13)∑

A⊆Θ
m(A) = 1. (14)

Thus, we have m({T }) + m({¬T }) + m({T,¬T }) = 1.
Definition 2: The belief function (Bel) for a set A is defined as

the sum of all the assignments of the subsets of A:

Bel(A) =
∑

B⊆A

m(B). (15)

For our case, we have

Bel({T }) = m({T }) (16)

Bel({¬T }) = m({¬T }) (17)

Bel({T,¬T }) = m({T }) + m({¬T }) + m({T,¬T }). (18)

For instance, suppose Alice and Bob are our friends who have a
trust path to the unknown caller. Assuming Alice’s trust path is
trustworthy with a value of 0.8. Alice states that the caller is trust-
worthy. This means Alice’s claim gives evidence for 0.8 degrees
of belief in the caller’s trustworthiness, but a zero degree of belief
(not 0.2) that the caller is untrustworthy. This zero value mean
that Alice’s evidence gives no support to the belief that caller is
untrustworthy. The 0.8 and the zero together constitute a belief
function.

The combination of the evidence from different sources is done
through the combination rule that is defined in the next definition.

Definition 3: Let Bel1 and Bel2 be belief functions overΘ, with
BBA m1 and m2. Then the function m : 2Θ → [0, 1] is defined by

m {∅} = 0 and (19)

m(A) =

∑
i, j:Ai∩Bj=A m1(Ai)m2(Bj)

1 − K
, where (20)

K =
∑

i, j:Ai∩Bj=∅
m1(Ai)m2(Bj) (21)

for all non-empty A.
Suppose that Bob’s trust path is trustworthy with a value of 0.9,
independently of Alice. Then we have

m1({T }) = 0.8,m1({¬T }) = 0,m1({T,¬T }) = 0.2

m2({T }) = 0.9,m2({¬T }) = 0,m2({T,¬T }) = 0.1

Finally, the aggregated trust value is

m12({T }) = 0.72 + 0.08 + 0.18 = 0.98.

4.2.2 Social Reliability
The system will check the past behavior of a caller who inter-

acts with other users to evaluate human interactivity. We call it
the social reliability (SR) of a user. Two variables are considered
to compute this feature: the degree of activity and the unique call.

1) Degree of activity: this is the ratio between incoming and
outgoing calls during an observation period. Users who have a
low degree of activity mean they make calls higher than the num-
ber of received calls. This can be the indicator for detecting a
spammer. If the ratio is greater than 1, it is rounded down to 1.
A high level of incoming calls might be a call center, who is not

Fig. 3 Fuzzy membership functions.

classified as a malicious user. A group of attackers can poten-
tially mimic call activity by calling each other. However, on the
telecommunication system, this attempt requires an extra cost.

degree of activity =
incoming calls
outgoing calls

(22)

2) Unique call: this feature allows us to identify an anomalous
caller who makes a significant number of calls to different callees.
Generally, a normal user will call a set of destination numbers,
i.e., calls to callees that have already been contacted before.

unique call =
unique calls

outgoing calls
(23)

Because these two variables are not the direct interaction be-
tween a caller and a callee, we will not use them as a trust value.
Due to the imprecision of these values, we use fuzzy logic infer-
ence rules to calculate the social reliability of a caller. The degree
of activity and the unique call are used as fuzzy descriptors. The
membership function of these two variables is shown in Fig. 3.
The example of the fuzzy inference rules are shown below.
• If the degree of activity is low and the unique call is low then

the social reliability is verylow
• If the degree of activity is med and the unique call is low

then the social reliability is low
• If the degree of activity is med and the unique call is med

then the social reliability is med
• If the degree of activity is med and the unique call is high

then the social reliability is high
• If the degree of activity is high and the unique call is high

then the social reliability is veryhigh
This feature is used for filtering out a caller who has a low so-

cial interactivity with others. The SR of a user will be strong if he
can balance his incoming and outgoing calls and most outgoing
calls directly to a set of friends.

5. Evaluation

The accuracy of the flooding attack detection system is the ra-
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tio of correctly classified instances over the total number of in-
stances. We focus on binary classification because it simplifies
the analysis of a system’s performance. As a binary classification
problem, a classification may fall into one of the following four
categories:
• True Positive (TP) - an actual attack triggers a detection sys-

tem to produce an alarm
• False Positive (FP) - an event signaling a detection system to

produce an alarm when no attack has taken place
• True Negative (TN) - no attack has taken place and no alarm

is raised
• False Negative (FN) - a failure of a detection system to detect

an actual attack
The performance metrics considered include the accuracy rate
and the false positive rate (FPR):

accuracy =
T P + T N

T P + T N + FP + FN
, (24)

FPR =
FP

FP + T N
. (25)

The accuracy rate is the proportion of true results, both TP and
TN. FPR is the probability of falsely detecting a legitimate event
as malicious. In addition, we investigate how the testing window
size affects the detection of false negatives.

This section includes a description of the attack scenario, the
system design, simulation information, and the performance eval-
uation of the detection system.

5.1 Attack Scenario
SIP flooding attacks can be divided into REGISTER flooding

and INVITE flooding attacks. User Equipment (UE) needs to send
REGISTER requests in order to register with the IMS server. In the
case of REGISTER flooding, attackers send numerous bogus reg-
istration requests with invalid credentials in order to consume the
processing resources of the server. The server will spend time
looking into the database and sending back error messages which
will be ignored by the attacker. For INVITE flooding, attackers
send a large number of SIP INVITE messages to P-CSCF within
a short period of time. As a transactional protocol, SIP requires
the server to maintain a state for each INVITE message for some
time period waiting for the associated 200OK acknowledgement
message. If the attack intensity is high enough, the resources
of the server will be exhausted. We focus our evaluation on the
INVITE flooding case first. Attacks utilizing other SIP attributes
can be addressed in a similar way.

5.2 System Design
Under the assumption that most attacks come from outside the

operator network, therefore, to analyze all incoming traffic, the
detection system is located at the perimeter of the IMS as shown
in Fig. 4. Figure 5 shows the overview of the detection system.
Before starting the detection system, the number of timeslots m

and the duration ΔT of the training and testing phases must be de-
fined. Increasing the time span of the training and testing phases
will increase the number of packets in the analysis. Since our
proposed system quantifies the correlations among SIP attributes,
the number of packets during a learning process does not highly

Fig. 4 Testbed topology.

Fig. 5 System overview.

affect the detection performance. However, there is a trade-off
between a longer and a shorter time span because of the response
time of each packet. A longer time span can accurately return dis-
tance values, while shorter time spans can detect small changes.
Assuming the first few training phases are free from any mali-
cious traffic. The incoming SIP traffic is extracted into five SIP
message types. The distance between the training and testing
phases are computed by TD and then compared with the adap-
tive threshold. If the distance does not exceed the threshold, the
next training phase and testing phase are continuously evaluated,
and so on. However, when a flooding attack comes, it will disturb
the probability distribution obtained from the testing phase. Thus
the distance will exceed its threshold. When this happens, the
system will check the trust values and the SR values of all callers
in the testing phase. These two variables are used to discriminate
a legitimate caller from a malicious caller. Concurrently, the mo-
mentum oscillation of the traffic is also monitored. If it is higher
than the desired level over the predefined time period, the trust
and SR will be analyzed. The attack alarm will be raised when the
average trust and SR value of the callers are less than the thresh-
old. Then, the system will keep the current training phases and
anomaly threshold, and only move the testing set to the next time
interval. As a result, the distance in the next cycle is evaluated be-
tween the stored training phase and the current testing phase. This
freezing process will keep on until the distance drops below the
anomaly threshold. This can protect the threshold from being im-
pacted by the flooding attacks and makes it stable during attack.
The system will resume the normal process when the detected
anomaly is no longer present. Consequently, the traffic during
attack periods will never be included in the training phase. The
traffic sampling technique is not applied in this work because we
aim at analyzing all incoming traffic to the server and proposing
a near real-time detection system. Since the lightweight statisti-
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cal calculation is applied to analyze the data, the system does not
require high computing resources. In contrast with other meth-
ods that require sampling the data, they need to keep the whole
traffic in the memory before analyzing. This requires more com-
puting resources and cannot be executed in real-time. An alarm
notifies the system administrator about a current attack attempt
and anomalous activity. The system will generate a report that
provides key information which can be used to identify the at-
tack’s origin such as caller id and attack time. This is helpful
for the administrators to take the next action regarding this suspi-
cious event. To protect the entire system, we need to incorporate
our proposed system with other protecting systems or counter-
measure mechanisms. In a practical deployment, it can be trans-
parently interposed at a firewall and implemented as a loadable
module of the firewall. This is out of a scope of this work.

5.3 Dataset
Due to privacy concerns, we have not found any publicly avail-

able IMS traffic dataset. Therefore, we use Seagull [22], the IMS
traffic generator, to synthetically generate the traffic. Seagull can
generate SIP messages and has the ability to simulate customized
SIP scenarios. So we used Seagull to generate both legitimate
traffic and attack traffic. We used the Open IMS Core [23] to em-
ulate an IMS system. It is an implementation of IMS CSCFs
and a lightweight HSS, which together form the core elements of
all IMS/NGN architectures. The four components are based on
Open Source software (e.g., the SIP Express Router (SER) and
MySQL). Many researchers simulated their testbed by only gen-
erating a set of users and randomly choosing call parties, such
as Refs. [10] and [11]. In order to simulate the real conditions
of the IMS user network and make our testbed close to the real
environment, we use the communication between users in the
Wikipedia talk network as our IMS users [24]. Table 2 shows
the characteristics of this social network. The network contains
all the users and discussion from the inception of Wikipedia un-
til January 2008. We select this dataset because it contains the
communication direction among users and large enough for the
evaluation. Initially, this dataset does not have positive and neg-
ative links among them. We assume that the nodes who have
direct communication are friends in a buddy list. The path length
between users does not affect the trust model as proved by the
previous work [16].

The SIP session initiation of a legitimate call was generated
synthetically with a Poisson distribution, which was the same as
the PSTN model [25]. The call duration times are heavy-tailed
distributions that can be generated with Pareto distribution [25].
The mean number of calls per unit of time and call duration are
defined according to the IP phone statistics from the operator [26].
These statistics were collected from April 1st 2011 to March 31,
2012. According to this data, call duration ranged between 104

Table 2 Wikipedia talk network characteristics.

Node 2,394,385
Edges 5,021,410
Average clustering coefficient 0.1958
Diameter (longest shortest path) 9

and 215 seconds. The average call frequency in this study is
around 200 calls per second. The call destination is selected ei-
ther from a buddy list or another person who is not in a buddy
list. The choice of this recipient is a Zipfian distribution [27].

The attacks are generated synthetically. This allowed us to con-
trol the characteristics of the attacks, and hence be able to inves-
tigate the performance of the detection algorithms for different
attack types. Our experiment considered both high and low in-
tensity attacks, whose rates varied from 100 to 400 calls per sec-
ond. This range was chosen to evaluate the effectiveness of our
detection approach under both low rate and high rate attacks. The
duration of the attacks was normally distributed with a mean of
60 seconds. We consider attacks whose intensity increases both
abruptly and gradually.

The window size of a training phases and a testing phases are
set by Δt. According to the SIP specification [28], an INVITE
transaction timeout is 32 seconds. Consequently, to correlate an
INVITE message with a response message, the sampling window
size should be 32 seconds. However, our proposed method is not
sensitive to per-flow information. Therefore, we set sampling size
(Δt) equal to 10 seconds in order to achieve a high detection ac-
curacy. Moreover, the distance measurement algorithm depends
on the training phase window size, m ∗ Δt. A longer training
phase accurately returns the distance value, while shorter train-
ing phases can detect a small change. Then, we set the training
phase to 40 seconds (4∗10) in order to balance the responsiveness
and the detection accuracy. Other parameters are set as α = 0.2,
γ = 0.2, k = 2, and the standard deviation is calculated from the
last 20 time intervals. The parameter n of the MOI is 20. This
value can be lowered to increase sensitivity or raised to decrease
sensitivity. The trust threshold and SR threshold are 0.25. These
are the optimal values in our environment.

Next, we will describe four experiments that show the detec-
tion accuracy of the system and prove that the trust model can
reduce false positives effectively.

5.4 The Detection without the Trust Model
This experiment investigates the performance of the detection

system without the trust model integration under multiple attack
intensities. The mean amplitude of the low intensity attack in this
experiment was 50% of the legitimate traffic mean rate. The at-
tack traffic was injected every five minutes starting from the 598th
second with a low rate, 100 calls per second. The attack rates of
the next three floodings were 200, 300, and 400 calls per second
respectively. Figure 6 shows the results for the TDs and their
adaptive thresholds. The horizontal axis started from the 50th
second according to the length of the first training and testing
phases. The learning period ended at the 250th second and then
started calculating a threshold. The MOI rate during the attacks is
shown in Fig. 7. In this work, we consider the traffic as behaving
in an anomalous way when MOI is above 80% (red dash line).
This level can be adjusted to better fit the traffic environment.
When the MOI is above the desired level, the previous median
before an attack is stored and used as the median for the current
state. This median value is kept until MOI falls below the limit
level again. The alarm is raised when the momentum is greater

c© 2014 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.22 No.2

Fig. 6 TDs and their adaptive thresholds during four flooding attack rates:
100-400 calls/sec.

Fig. 7 MOI during during four flooding attack rates: 100-400 calls/sec.

than the desired level over the predefined time period. The first
attack was detected at the 600th second and at the 614th second
by the TD and MOI respectively. The highest attack intensity,
around 400 calls per second, was injected at the 1,498th second.
This attack traffic is 200% of a legitimate traffic. The distance
significantly deviated at the 1,500th second. From these results,
our system produced a very small detection delay. Moreover, ac-
cording to these graphs, both low and high intensity attacks were
detected accurately. The sensitivity of the detection system in this
experiment was 100%. However, false positives occur when le-
gitimate traffic suddenly increased, e.g., at the 1060th second in
the Fig. 6. We reduce this false alarm by using the trust model so
that its performance will be shown in the next experiment.

5.5 False Positives Reduction
We conducted this experiment to investigate the performance

of detection after integrating the trust model. We compared
our proposed system with two well-known anomaly detection
algorithms: Hellinger distance (HD) [9] and Cumulative Sum
(CUSUM) [6]. Figure 8 and Fig. 9 show the average accuracy
rate and FPR between trust and non-trust integration approaches,
respectively. After integrating the trust model, the average de-
tection accuracy of TD, HD, and CUSUM algorithms were in-
creased by around 14.17%, 13.87%, and 23.3% respectively. You
can also see that the trust model integration method can reduce
the FP in all flooding attack detection algorithms. According to
Eq. (24), since false positives were reduced, the accuracy rate in-
creases. It indicates that the trust model can classify a legitimate

Fig. 8 The accuracy rate between trust and non-trust approaches.

Fig. 9 False positive rate between trust and non-trust approaches.

Fig. 10 A FN may occur in a longer testing phase size.

call correctly. Moreover, from these results, our proposed sys-
tem produced the best detection performance compared to other
methods in term of the highest accuracy and the lowest FPR.

5.6 Testing Window Size
The above results were for specific values of the testing phase

window size. Next we investigate the trade-off between the win-
dow size and the detection accuracy. Generally, in anomaly-based
detection, a longer testing phase is set to obtain a stable distribu-
tion under normal conditions. However, an attack detection prob-
ability will be reduced because of an FN. This FN occurs when
a few portions of the testing phase contain an initial part of at-
tack traffic, as shown in Fig. 10. If this attack portion is not high
enough to alter the distribution, then no attack alarm is raised. If
the testing phase is set to be short, many FPs will be raised. This
is the general issue of a flooding attack detection system that uses
training and testing phases. However, with our trust integration
method, we can reduce FN while increasing detection accuracy
by resizing the testing phase. Figure 11 shows the FN and accu-
racy rate among different testing window sizes of our detection
system. FN were reduced when the testing phase window size
was decreased. With our trust integration, FP were also reduced
even though the size was decreasing. Consequently, the accuracy
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Fig. 11 FN and accuracy rate among different testing phase sizes.

Fig. 12 SIP traffic during a gradually increasing flooding attack.

Fig. 13 MOI of the traffic.

rate of the detection was improved. However, reducing a testing
window size will consume more computing resources. Therefore,
we suggest using the appropriate size that fits the operator’s poli-
cies and resources.

5.7 A Gradually Increasing Attack Pattern
This experiment investigates the performance of MOI for de-

tecting a gradually increasing attack detection. Figure 12 shows
the SIP traffic including a gradually increasing flooding attack.
The attack traffic was injected at time 601st second with an at-
tack rate of 1% of the normal traffic and then increased slightly
until it reaches 500% of the normal traffic at time 1100th sec-
ond. This kind of attack can subvert an adaptive threshold tech-
nique, as explained in Section 3.3. However, as shown in Fig. 13,
the proposed MOI can accurately detect it. The MOI increased
rapidly after time 601st second and then reached the highest level
at 678th second. The MOI remained 100% until the SIP traffic
intensity was decreased at time 1101st second. This result shows
that the MOI can detect such attack pattern correctly.

6. Discussion

Generally, a trust-based system will be subverted if an attacker
has a high trust value assigned by other nodes. Since the du-
ration of an outgoing call is used to compute a trust value, an
attacker needs some calls from other users frequently to maintain
high trust values. At the same time, the attacker would have to
maintain a balance in his in-out calling degrees in order to keep
an appropriate social reliability level. In the VoIP system, this
activity requires extra cost that would make it counterproductive

for the attacker’s business. However, for the proposed model to
be efficient, an attacker must not be able to steal the identity of a
legitimate user. The trust model will be useless if an attacker can
use the trust score of a legitimate user. This is the authentication
issue of the IMS that is out of the scope of this work. However,
there are many works that have been proposed to fix this prob-
lem such as in Ref. [29], where an Identity Based Cryptography
(IBC) is employed to enhance the security of the IMS authentica-
tion process.

Another concern is the performance comparison with a mod-
ern application layer session-based firewall. This firewall keeps
track of the network connection sessions and holds significant
attributes of each session in memory. Then, CPU and memory
resources are required for analyzing the session. Generally, in or-
der to prevent the memory from filling up, sessions will time out
if no traffic has passed for a certain period. These state connec-
tions are removed from the memory. However, during an attack,
more and more requests come in, which have to be processed by
the firewall. As a consequence, the firewall cannot monitor ev-
ery packet, so some of them are not recognized by the security
system or must be dropped because of a lack of buffer capacity.
Comparing with our stateless detection system, we apply the sta-
tistical method to detect an anomaly of traffic. The system does
not require a large memory to store a processed data. This can
avoid a bottleneck problem when the detection system needs to
process massive traffic.

7. Conclusion and Future Work

Along with the accelerated global deployment of IMS net-
works, their security problem has become increasingly serious.
Undoubtedly, Denial of Service attack presents a serious threat to
IMS networks. In this paper, we proposed an anomaly-based DoS
attack detection system using the Tanimoto distance, an adaptive
threshold, and a momentum oscillation indicator. These algo-
rithms are stateless and require low computation overhead. The
detection system extracts SIP traffic messages and estimates the
dissimilarity between them over predefined time period. Because
of the correlation of the chosen packets, an attacker needs to
mimic the legitimate traffic through complete SIP transaction in
order to subvert our system. The modified moving average is
computed as an adaptive threshold for tracking the behavior of
the traffic and making the system more accurate. A momentum
oscillator indicator is proposed to detect a special attack pattern,
a gradually increasing attack. Furthermore, we address the false
alarm problem by using the trust model. The trust value is calcu-
lated from the call behavior of each user. Performance evaluation
on the testbed simulation showed that our detection system suc-
cessfully detected various flooding attack patterns. The average
accuracy rate was higher than 90%. Furthermore, the false posi-
tives were reduced after using the trust model. Lastly, the exper-
imental results showed that decreasing a testing phase’s window
size can improve the detection performance while simultaneously
reducing the false negatives.

In this paper, we have used SIP traffic as the monitoring fac-
tor for flooding detection. So, in the future work, we will study
how to monitor other resources for attack detection. Moreover,
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the system has a few numeric parameters that influence its per-
formance. We intend to investigate how the value of these pa-
rameters can be automatically determined. We are also aware of
the limitations of the IMS datasets used. We aim to evaluate the
performance of our detection system on real IMS data.
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