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Node localization obtained by estimating node positions is an essential technique for wireless
multi-hop networks. In this paper, we present an optimized link state routing (OLSR)-based
localization (ROULA) that satisfies the following key design requirements: (i) independency
from anchor nodes, (ii) robustness for non-convex network topology, and (iii) compatibility
with network protocol. ROULA is independent from anchor nodes and can obtain the correct
node positions in non-convex network topology. In addition, ROULA is compatible with the
OLSR network protocol, and it uses the inherent distance characteristic of multipoint relay
(MPR) nodes. We reveal the characteristics of MPR selection and the farthest 2-hop node
selection used in ROULA, and describe how these node selections contribute to reducing the
distance error for a localization scheme without using ranging devices. We used a simulation to
specify appropriate MPR COVERAGE, which is defined to control the number of MPR nodes
in OLSR, and give a comparative performance evaluation of ROULA for various scenarios
including non-convex network topology and various deployment radii of anchor nodes. Our
evaluation proves that ROULA achieves desirable performance in various network scenarios.

1. Introduction

Location information is an essential parame-
ter for wireless multi-hop networks that include
emerging adhoc and sensor networks. Sev-
eral researchers have proposed location-based
routing for adhoc networks to achieve efficient
routing control 3)∼6). In their algorithms, they
assume that nodes are positioned in advance
through some means such as using the Global
Positioning System (GPS). In sensor networks,
node positions determines the origin of an
event, so localization techniques are of great in-
terest. Moreover, location information is neces-
sary for mobile computing and context-aware
applications 1),2). One of the simplest solutions
for localization is equipping each node with a
GPS receiver. However, localization using GPS
is infeasible for the two reasons. First, adding
GPS devices to nodes increases their cost. Sec-
ond, GPS cannot be used in areas where nodes
cannot communicate with GPS satellites be-
cause of obstructions, for example, inside build-
ings.

In recent years, much research has been con-
ducted on how to obtain node positions. Sev-
eral localization schemes 10)∼13),20) assume that
nodes are equipped with ranging devices, such
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as directional antennas or ultra-sound ranging
devices. However, installing ranging devices is
not suitable for large-scale networks due to the
cost of the hardware.

In this paper, we study a localization tech-
nique with the following key design require-
ments:
(i) independency from anchor nodes ☆,
(ii) robustness for non-convex network

topology,
(iii) compatibility with network proto-

col.
(i) Independency from anchor nodes is nec-

essary due to the quantitative and geometric
aspects of anchor nodes. In terms of the quan-
titative aspect, as mentioned earlier, increasing
the number of anchor nodes increases the net-
work cost. Second, in terms of the geometric as-
pect, localization algorithms using trilateration
based on anchor nodes are limited to the geo-
metric conditions of the anchor nodes. In other
words, localization using trilateration based an-
chor nodes does not work when the deployment
radius of the anchor nodes is restricted. This
problem is related to the geometric dilution of
precision (GDOP) 22) which represents the er-
ror factor of positioning accuracy of trilatera-
tion obtained by calculating the geometric con-

☆ An anchor node is a node that is known its actual
position in advance through some system such as
GPS.
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ditions of the anchor nodes. We should not
expect that anchor nodes can be deployed uni-
formly in a field, as anchor nodes equipped with
GPS receivers are susceptible to obstructions.

(ii) Robustness for non-convex network
topology is essential for localization. Before we
give the formal definition of non-convex net-
work topology, we introduce the definition of
the convex set. Let ←→xy denote line segment xy.
For subset A ∈ Rn, the convex set is satisfied
with the following condition:

∀x, y ∈ A =⇒←→xy ⊂ A. (1)
We define a set as non-convex if it does not
satisfy the condition above Eq. (1). Consider
a wireless network topology as a graph, G =
(V, E), where V is a set of nodes, and E is a set
of links between (i, j), and where i, j ∈ V . Each
node connects to another by limited communi-
cations ranges. If the nodes are deployed in a
convex set, we call the network topology con-
vex. If the nodes are deployed in a non-convex
set, we call the network topology non-convex. A
non-convex network topology can occur when
nodes cannot be deployed in some areas be-
cause of obstructions, for example, buildings
or natural features such as trees or mountains.
We can easily imagine that the non-convex net-
work topology occurs in many practical cases.
Thus, robust performance for non-convex net-
work topology is an essential requirement.

(iii) Compatibility between network and lo-
calization protocol is an essential scheme for
the following reasons. A localization protocol
is fundamentally composed of two steps: 1)
measuring the distance and 2) positioning the
node. The first step necessarily includes com-
municating with other nodes. If nodes can mea-
sure distances when they communicate with
other nodes by using a message or process, they
can integrate localization messages and network
messages generated in the network layer. A lo-
calization scheme that is compatible with the
network protocol enables the nodes to have a
more efficient localization protocol. Therefore,
a localization technique that uses the character-
istics of the underlying network layer process is
needed.

Here, we present an optimized link state
routing (OLSR)-based localization (ROULA)
that satisfies the key design requirements men-
tioned above. ROULA is independent of the
anchor nodes and can obtain node positions
in non-convex network topology. In addition,

ROULA is compatible with the OLSR network
protocol 23). Each node in ROULA localizes
nodes which are selected by the multipoint re-
lay (MPR) selection used in OLSR and by
the farthest 2-hop node selection developed for
ROULA. One of our reasons for using OLSR in
the network layer is the inherent distance char-
acteristic of MPR nodes. We analyzed MPR
selection and farthest 2-hop node selection, and
exposed the relationship between connectivity,
which shows how many nodes connect to other
nodes in 1-hop on average, and node distances.
Our analysis revealed that the characteristics of
MPR selection and farthest 2-hop node selec-
tion contribute to reducing the distance error
for a localization scheme without using ranging
devices. In addition, we showed the effective-
ness of MPR COVERAGE, which controls the
number of MPR nodes, and specified the ap-
propriate MPR COVERAGE for ROULA. Fi-
nally, we presented a comparable performance
evaluation of ROULA in various network sce-
narios, and demonstrated that ROULA is inde-
pendent of the anchor nodes and is robust in
non-convex network topology.

This paper is organized as follows. Related
work is reviewed in Section 2. The ROULA
technique is described in Section 3. Section 4
presents the characteristics analysis of MPR se-
lection and farthest 2-hop node selection. The
performance evaluation of ROULA is described
in Section 5. Section 6 concludes the paper with
a brief summary and a mention of future work.

2. Related Work

Bulusu, et al. 7) proposed a simple localiza-
tion method, called Centroid. In Centroid,
anchor nodes flood beacon packets containing
their own location information. Other unknown
nodes then estimate their positions by using a
centroid formula with overlapping received bea-
cons. Since anchor nodes are needed to estimate
node positions, Centroid can estimate only a
few nodes when sufficient anchor nodes are not
deployed in the network.

In many previous works, trilateration is used
to estimate node positions. In DV-Hop 9), an-
chor nodes first estimate the average 1-hop node
distance by propagating their location informa-
tion to all other anchor nodes in the network.
They can then use the average 1-hop distance
to trilaterate unknown node positions. Simi-
larly, in Amorphous 8), anchor nodes trilaterate
node positions using the 1-hop node distance
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by calculating node density in the network. In
Hop-TERRAIN 11), nodes first estimate initial
node positions by trilateration using the hop
count distances like DV-Hop. After that, the
nodes improve their positions by trilaterating
with ranging devices.

Priyantha, et al. 14) proposed an anchor-free
localization scheme that does not require an-
chor nodes. Anchor-free localization (AFL) has
two phases: in the first phase, node positions
are roughly estimated without using ranging
devices, and in the second phase, more accu-
rate node positions are estimated using a rang-
ing technique. In the first phase, the AFL
selects five nodes that represent the x and y
axes and the center of the network. Using
these five nodes as reference nodes, AFL es-
timates all other node positions and assigns
them relative coordinates using the specified
formula 15). Several authors 16)∼19) have pro-
posed localization using multidimensional scal-
ing (MDS). The MDS technique is used for
converting the high-dimensional data into low-
dimensional data. Since MDS can handle eu-
clidean distances as input data, it can be ap-
plied to localization. MDS can also obtain rela-
tive node positions without using anchor nodes.
Although we acknowledge at least two MDS-
based algorithms 18),19) can cope with non-
convex network topology, ROULA has a better
compatibility with the network protocol.

Lim and Hou 21) proposed a localization algo-
rithm for non-convex network topology, called
the proximity-distance map (PDM). In this al-
gorithm, anchor nodes construct an optimal lin-
ear transformation that minimizes the mapping
errors from a proximity matrix to a geographic
distance matrix based on the anchor nodes.
The nodes then estimate their positions by ap-
plying PDM to estimate the hop count distance
to anchor nodes. The PDM needs anchor nodes
to construct an optimal linear transformation.

3. Optimized Link State Routing-
based Localization

3.1 Overview
The basic idea of ROULA is that each node

matches regular triangles that form exactly con-
vex curves, and grows them into global coor-
dinates by merging overlapping regular trian-
gles iteratively. Figure 1 is a conceptual rep-
resentation of ROULA in a non-convex net-
work topology. As described earlier, one of
the prior requirements for localization is robust-

Fig. 1 Conceptual representation of ROULA in non-
convex network topology.

ness for non-convex network topology (ii). A
non-convex network topology appears to be a
non-convex curve if the network is seen from a
global point of view. However, if the network is
viewed locally, each small set of the network,
Pi ⊂ V (i = 1, . . . , n), appears to be a con-
vex curve. In other words, a non-convex net-
work topology is composed of partially convex
curves. To find these convex curves, nodes in
ROULA search for nodes that are arranged into
regular triangles:

�Tr
ABC

def⇐⇒ (2)
{�ABC|AB = BC = CA, A, B, C ∈ V }.

A node can estimate its positions relative
to nodes A, B, and C on the vertices of regu-
lar triangles. This localization method satisfies
the requirement of independency from anchor
nodes (i), because a node can determine the
other nodes’ positions relatively without using
anchor nodes. Of course, other nodes could be
found by using the pattern of v convex poly-
gons (v > 3). However, finding more com-
plex convex polygons would force the nodes to
use a more complex procedure. We adopted
a method that selects regular triangles for sim-
plicity. In practical node placement, nodes may
not find nodes that are arranged into ideal reg-
ular triangles. However, our approximation
method using matching regular triangles was
proven effective by simulation.

Lastly, we state requirement (iii). Nodes in
ROULA are assumed to use the OLSR protocol
in the network layer. They localize MPR nodes
as their 1-hop nodes without any modification
of the MPR selection. Using the OLSR protocol
has two advantages. First, as described in Sec-
tion 3.3, the MPR selection used in OLSR has
the inherent characteristic of reducing distance
errors in localization without using ranging de-
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vices. Second, nodes in OLSR always hold and
update the latest 2-hop node information and
MPR nodes in a proactive action that period-
ically floods Hello packets. Therefore, flood-
ing Hello packets and the computational task
of MPR selection can be integrated by using
the underlying network layer processes. These
characteristics ensure that ROULA is compati-
ble with the network protocol, and achieves an
efficient localization scheme for wireless multi-
hop networks.

In this work, we make the assumption that
a sufficient distance of 2-hop paths are in the
network to make 2-hop sized regular triangles.
Nodes are deployed in a two-dimensional plane.

3.2 Algorithm
ROULA is operated as described below.

( 1 ) MPR selection: Nodes flood Hello
packets containing their own 1-hop nodes
list to their 1-hop nodes. Once a node has
a 2-hop nodes list, it selects MPR nodes.

( 2 ) Farthest 2-hop node selection: Each
node selects the farthest 2-hop node for
each MPR node.

( 3 ) Matching regular triangle: Nodes
flood TRI NOTICE packets to their far-
thest 2-hop nodes with their farthest 2-
hop nodes list. Then, nodes that received
TRI NOTICE packets match regular tri-
angles by using the received farthest 2-
hop nodes lists. Next, nodes obtain local
coordinates by merging their overlapping
regular triangles.

( 4 ) Merging local coordinates: Local co-
ordinates are merged into one set of
global coordinates. We assume a sink
node merges all the maps of local co-
ordinates in the network. A sink node
floods MAP REQ packets to all nodes in
the network. Receiving nodes send back
MAP REP packets containing their local
coordinates.

( 5 ) Converting to absolute coordinates:
Although the global coordinates are rel-
ative coordinates, if at least three an-
chor nodes are in the network, the rel-
ative coordinates can be converted into
absolute coordinates that have the cor-
rect network orientation. This phase is
optional.

Next, we give a detailed motivation for using
MPR nodes for 1-hop node localization and ex-
plain in detail how ROULA achieves localiza-
tion.

Fig. 2 Distances of 1-hop nodes.

3.3 MPR Selection
All nodes in ROULA must choose candidates

out of all 2-hop nodes to make 2-hop regular
triangles. However, which nodes should be cho-
sen as 2-hop nodes? Here, to make this problem
simple, we consider the distance between source
and 1-hop nodes instead of the 2-hop node dis-
tance. Figure 2 shows that node S with its
communication range R has 1-hop nodes, A and
B. Assume that when a node knows the length
of its communication range, it estimates 1-hop
node distances without using any ranging de-
vices. The node regards the distance between
the source and 1-hop nodes as R since it cannot
measure the node distances. Therefore, if node
S in Fig. 2 selects node B, which is closer to the
radio boundary, rather than node A as a 1-hop
node, the distance error is smaller than that of
selecting node A. To find the node that is close
to its radio boundary, we introduce the MPR
selection used in OLSR 23).

MPR selection was developed for optimizing
the relaying 1-hop node in the OLSR protocol.
MPR selection finds the optimized 1-hop nodes,
referred to as the MPR nodes, which are more
accessible 2-hop nodes for relaying, and this can
reduce the number of redundant retransmission
nodes. Consequently, MPR selection can find
nodes that are close to the radio boundary.

Here, we introduce some notations. Let N(u)
be the 1-hop nodes of node u. Let N2(u) define
the 2-hop nodes of u. The set of MPR selected
by node u is MPR(u). For a node v ∈ N(u),
let d+

u (v) be the number of nodes of N2(u) that
are in N(v): d+

u (v) = |N2(u) ∩ N(v)|. For
a node w ∈ N2(u), let d−u (w) be the number
of nodes of N(u) that are in N(w): d−u (w) =
|N(u) ∩ N(w)|. The numbers in Fig. 4 show
the corresponding d−S (w).

The algorithm for MPR selection is presented
in Fig. 3. Here, we briefly explain the oper-
ation of MPR selection. A detailed descrip-



3290 IPSJ Journal Sep. 2007

Algorithm MPR selection (u ∈ V )
1: for all nodes v ∈ N(u) do
2: if (∃w ∈ N(v) ∩ N2(u)|d−u (w) <

MPR COVERAGE) then
3: Select v as MPR(u)
4: N(u)← N(u)− {v}
5: N2(u)← N2(u)− {w}

6: while (N2(u) �= ∅) do
7: for all nodes v ∈ N(u) do
8: if (d+

u (v) = maxw∈N(u) d+
u (w)) then

9: Select v as MPR(u)
10: N(u)← N(u)− {v}
11: if (∃s ∈ N(v) ∩ N2(u)||MPR(u) ∩

N(s)| = MPR COVERAGE) then
12: N2(u)← N2(u)− {s}

Fig. 3 Pseudo code for MPR selection.

Fig. 4 Example node selection for MPR nodes and far-
thest 2-hop nodes (MPR COVERAGE = 1).

tion of MPR selection can be found in Ref. 23).
MPR selection is composed of two steps. The
first step in lines 1–5 selects as MPR nodes
such nodes v ∈ N(u) that cover N2(u) con-
nected by less than MPR COVERAGE nodes
in N(u). MPR COVERAGE is defined to con-
trol the number of MPR nodes so as to in-
crease the redundancy of flooding in OLSR.
MPR COVERAGE can assume any integer
value > 0. The second step in lines 6–12 se-
lects the node that covers most nodes in N2(u),
and it also ensures that 2-hop nodes are con-
nected by at least MPR COVERAGE nodes in
MPR(u). The second step finds the minimum
number of MPR nodes. In MPR selection, find-
ing 1-hop nodes that cover more 2-hop nodes
causes the selection of the 1-hop nodes that are
far away from the source node. Consequently,
MPR nodes are closer to the radio boundary.

An example of MPR selection for node S

when MPR COVERAGE is set to 1 is presented
in Fig. 4. Node B is selected as an MPR node
in the second step since node B covers most
of N2(S). Then, nodes D, E, and F, which
are connected by at least MPR COVERAGE
(i.e., MPR COVERAGE = 1) node in MPR(S)
are removed from N2(S). Loop in the sec-
ond step, node G is selected as an MPR node
since it covers node H, which is the remain-
der of N2(S). Node H is then removed from
N2(S), and completes the MPR selection. In
case of MPR COVERAGE = 2, nodes G and
B are selected as MPR nodes in the first step
since nodes D and H are connected by only
one (i.e., less than MPR COVERAGE = 2)
node, B and G, respectively. Nodes D and
H are then removed from N2(S). Node A is
then selected as an MPR node since it cov-
ers most of the remainder of N2(S) in the sec-
ond step. Nodes E and F are then removed
from N2(S) since they are connected by at least
MPR COVERAGE (i.e., MPR COVERAGE =
2) nodes in MPR(S), and complete MPR se-
lection. Since MPR COVERAGE can increase
the number of MPR nodes, it affects how many
nodes can make regular triangles in ROULA.
A detailed description of MPR COVERAGE’s
effectiveness is given in Section 5.

According to the analysis in Ref. 24), the
computational complexity of MPR selection is
O(N2

2n), where N2n is the number of 2-hop and
1-hop nodes.

3.4 Farthest 2-hop Node Selection
In the farthest 2-hop node selection, each

node finds the farthest 2-hop nodes of all their
2-hop nodes. Let F2(u) be the set of the far-
thest 2-hop nodes of node u. F2(u) are the far-
thest in N2(u) from u for each MPR(u). For
the farthest 2-hop node selection, nodes use the
d−u (w), w ∈ N2(u) that was determined in MPR
selection. Note that nodes in the farthest 2-hop
node selection do not require any connectivity
information other than the MPR selection. In
Fig. 4, the number above each node shows the
corresponding d−S (w), or how many 2-hop nodes
are covered by N(S). As shown in Fig. 4, if the
node distance from node S is farther, such as
nodes S and D, d−S (w) is small. This is be-
cause, with a uniform node density, the con-
nectivity between 2-hop nodes and the source
node is smaller when the node distance is far-
ther. Based on this assumption, nodes select
the farthest 2-hop nodes, as described in Fig. 5.
For example, in Fig. 4, F2(S) is node D and H
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Algorithm Farthest 2-hop node selection
(u ∈ V )

1: for all nodes v ∈MPR(u)) do
2: if (d−u (z)z∈N(v)−N(u) = min d−u (z)) then
3: Select z as F2(u)

Fig. 5 Pseudo code for farthest 2-hop node selection.

when MPR COVERAGE is set to 1.
The computational complexity of the far-

thest 2-hop node selection can be computed by
O(M2

1 ) since d−u (w), w ∈ N2(u) can be provided
in MPR selection, where Mn denotes the num-
ber of shortest n-hop nodes.

3.5 Matching Regular Triangles
We illustrate how nodes are arranged into

regular triangles in Fig. 6. Here, we focus on
matching �T r

ABC for node B. Each arrow in
Fig. 6 shows the direction of a farthest 2-hop
node; for instance, node A has three farthest
2-hop nodes B, C, and D. Nodes A and C
flood TRI NOTICE packets to the farthest 2-
hop nodes containing their farthest 2-hop nodes
list. The list in Fig. 6 shows the received far-
thest 2-hop nodes list for node B after the
TRI NOTICE packets are exchanged. Node B
knows that nodes A and C selected node B as
the farthest 2-hop node. Next, node B finds
two combinations of �T r

ABC by matching AC
and CA in the received farthest 2-hop nodes
list.

The regular triangles consist of the farthest
2-hop nodes and MPR nodes on the vertexes
and edges. These nodes on the vertexes and
edges of the regular triangles are given local co-
ordinates on the basis of the coordination of
relative regular triangles; which is to say, the
farthest 2-hop nodes are positioned at R × 2,
and the MPR nodes are positioned at R ide-
ally, where R is the length of communication
range. However, as revealed in Section 4, this
simple relative coordination is not suitable for
practical node density. According to the anal-
ysis given later in Section 4, we introduced an
approximate distance function for MPR nodes
and the farthest 2-hop node, and applied it to
the relative coordination of regular triangles.

The computational complexity of matching
regular triangles is O(l log2 l), where l is the
size of the received farthest 2-hop node lists.

3.6 Merging Local Coordinates
The protocol for merging local coordinates

is as follows. Let LM(u) be the maps of lo-

Fig. 6 Illustration of matching regular triangles for
node B. The list shows the received farthest
2-hop nodes list for node B after receiving
TRI NOTICE packets from nodes A and C.

Algorithm Merging local coordinates (u ∈ V )

1: while |LM(u)| = 1 do
2: repeat
3: repeat
4: GET CMLM(u)(v|v ∈ LM(u))
5: until (maximum no. of com. nodes < thcom)
6: repeat
7: z, v ∈ CMLM(u)(v)|max |LC(z) ∩ LC(v)|
8: GET {s, t} = min

s,t∈CN(z,v)
MERGE(s,t)(z, v)

9: until (distance of {s, t} < the)
10: until (distance of {s, t} < the)
11: MERGE(s,t) (z, v)
12: LM(u)← LM(u)− {v}

Fig. 7 Pseudo code for merging local coordinates.

cal coordinates held by node u. LC(m) is the
set of nodes in local coordinates of map m.
CN(z, v) is the set of common nodes of two
maps {z, v}, or formally CN(z, v) = {LC(z) ∩
LC(v)}. CMLM(u)(z) is the set of map com-
binations with the number of common nodes
between maps z and all v ∈ LM(u) sorted
in descending order. Let MERGE(p,q)(z, v) de-
fine merging two maps {z, v} that are centered
around nodes {p, q}. MERGE(p,q)(z, v) returns
the average distance errors among the common
nodes.

The algorithm for merging local coordinates
is presented as Fig. 7. The loop defined in
lines 3–5 enables the node to find a map
that has more common nodes with map v.
If maximum number of common nodes of
CMLM(u)(v) is less than a threshold value
thcom, we set thcom = 5, the node contin-
ues to look for the common nodes with an-
other map excluding map v. Next, in lines 6–
9, the node searches for nodes that have min-
imum errors in common nodes between maps
{z, v}. Once the node finds the nodes such
that distance of {s, t} is greater than the, we
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set the = R × 0.5, and it merges the two
maps. If distance of {s, t} is less than the,
the node tries to find the nodes that mini-
mize the error in common nodes by using an-
other map. If the node cannot find the nodes
such that distance of {s, t} is less than the in
CMLM(u)(v), it tries to find nodes with another
map in lines 2–10. When the node cannot find
the nodes such that distance of {s, t} is less
than the in all v ∈ LM(u), the merging halts on
the way. Otherwise, the node lets |LM(u)| = 1
by iterating merging the maps, and the merging
completes successfully.

Figure 8 illustrates the merging of local co-
ordinates. We assume that the node A has
several maps of local coordinates that consist
of overlapping regular triangles as shown in
top of Fig. 8. First, in lines 3–5, node A has
CMLM(A)(v), and is ready to merge the local
coordinates of �T r

ABC and �T r
ABG which are

drawn with dashed lines in Fig. 8 because they
have the maximum number of common nodes
of all local coordinates. Next, in 6–11, the lo-
cal coordinates are merged. In other words,
the local coordinates of the common nodes
A, B, D, E, and F at the bottom of Fig. 8 are
averaged and those of the non-common nodes
C and G are added. Merging of local coordi-
nates is run iteratively until a node obtains one
set of global coordinates.

The computational complexity of merging lo-
cal coordinates is as follows. Finding the map
that has the maximum number of common
nodes is O(LN BM), where LN denotes the
average number of nodes in local coordinates,
and BM denotes the average number of maps
to which each node belongs. The computa-
tional complexity of searching for the nodes
that have the minimum distance errors in line
8 is O(c3), where c is the average number of
common nodes. The value of c is usually six
or more because our local coordinates has six
nodes on the regular triangle initially. The to-
tal computational complexity of merging local
coordinates is O(|LM(u)|α (βLN BM + γc3)),
where α, β, and γ are the average numbers
of loops repeated in lines 2, 3, and 6, respec-
tively. Although α, β, and γ add compu-
tational complexity to finding more common
nodes, we have found α, β, and γ take small
values. Since merging local coordinates can be
implemented in a distributed manner, |LM(u)|
can take also a small value. The major compu-
tational complexity of ROULA is merging lo-

Fig. 8 Illustration of merging local coordinates.

cal coordinates. However, since each parame-
ter determining the computational complexity
of merging local coordinates is slow to increase
as the number of nodes increases, merging local
coordinates can be computed with small com-
putational complexity while the computational
complexity of O(N3

2n), which is applying MDS
to each node 18) rapidly increases in proportion
to the number of nodes.

4. Characteristics Analysis

4.1 Characteristics of MPR Selection
We investigated the distance characteristic

and the number of selected nodes for the MPR
selection and the farthest 2-hop node selec-
tion described in Sections 3.3 and 3.4. Ta-
ble 1 lists the simulation parameters assumed
in the characteristics analysis. We placed the
nodes randomly in a field with no obstructions
and set the length of the communication range
to 100 [m]. Figure 9 presents the numerical
results of calculating the average distance of
all 1-hop nodes and MPR nodes with vary-
ing MPR COVERAGE. We calculated the ac-
tual distances between the MPR nodes with
varying MPR COVERAGE and their source
nodes, and averaged the results to analyze the
distance characteristics for MPR nodes. The
average distances are plotted with dots, and
the standard deviations are plotted with lines.
MPR COVERAGE was varied from 1 to 4.
Each result was plotted against connectivity.

As shown in Fig. 9, the average distances for
the MPR nodes were closer to 100 than that for
all 1-hop nodes. Furthermore, the standard de-
viations for the MPR nodes were smaller than
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Table 1 Simulation parameters for characteristics
analysis.

Field 500 × 500 [m]
Communication range 100 [m]
Number of nodes 60–230 (interval=10)
Node deployment Random

Fig. 9 Average distance and standard deviation of all
1-hop nodes and MPR nodes.

Fig. 10 Average number of all 1-hop nodes and MPR
nodes.

that for all 1-hop nodes. These results demon-
strate that MPR selection can select the nodes
closest to the radio boundary with a small vari-
ance. For each MPR COVERAGE, the aver-
age distances for the MPR nodes slightly de-
creased as MPR COVERAGE was increased.
The standard deviations for the MPR nodes
for each MPR COVERAGE increased slightly.
This is because the nodes selected every node
that had 2-hop nodes connected by less than
MPR COVERAGE nodes in the first step or at
least MPR COVERAGE nodes in the second
step as MPR nodes regardless of the optimal-
ity.

Figure 10 plots the average number of

Fig. 11 Average distance and standard deviation of
all 2-hop nodes and the farthest 2-hop nodes.

selected MPR nodes with varying MPR
COVERAGE and of all 1-hop nodes per node.
We calculated the number of nodes that each
node selected as MPR nodes with varying
MPR COVERAGE, and averaged the results to
analyze the characteristics of the selected num-
ber of MPR nodes. MPR selection can signifi-
cantly reduce the number of 1-hop nodes used
as relaying 1-hop nodes. This is a well known
characteristic of OLSR, i.e., reducing the num-
ber of redundant retransmission nodes. Out
of all MPR COVERAGEs, MPR COVERAGE
= 1 produced the least number of MPR
nodes. The other MPR COVERAGEs (i.e.,
MPR COVERAGE = 2, 3, and 4) slightly
increased the number of MPR nodes as
MPR COVERAGE increased, respectively.
This is because nodes select MPR nodes with
redundancy in addition to optimized MPR
nodes. In ROULA, the number of MPR nodes
is related to the number of farthest 2-hop nodes
and the possibility of matching regular trian-
gles.

4.2 Characteristics of Farthest 2-hop
Node Selection

Figure 11 plots the numerical results of the
average distance of all 2-hop nodes and the far-
thest 2-hop nodes. We calculated the actual
distances between the farthest 2-hop nodes and
their source nodes, and averaged the results to
analyze the distance characteristics for the far-
thest 2-hop nodes. The average distances of the
farthest 2-hop nodes were closer to 200, which
is the 2-hop ahead radio boundary of the source
node, than those of all 2-hop nodes. More-
over, the standard deviations for the farthest
2-hop nodes were smaller than that for all 2-
hop nodes. These results demonstrate that the
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farthest 2-hop node selection can select those
nodes close to the 2-hop ahead radio bound-
ary from a source node with small variance. As
shown in Fig. 9 and Fig. 11, both MPR nodes
and farthest 2-hop nodes are expected to reach
their radio boundary as the number of nodes
increases. However, the average distances of
MPR nodes and farthest 2-hop nodes never
reach 100 or 200 even if connectivity is high.
This is because the possibility of selecting nodes
exactly at the radio boundary is small in practi-
cal node density. Therefore, nodes cannot select
nodes at the radio boundary. Here in ROULA,
to minimize the distance error of selecting nodes
simply, we previously conducted linear approx-
imations of these distances from source nodes
to MPR nodes and farthest 2-hop nodes, and
nodes used these approximations when they as-
signed local coordinates in matching regular tri-
angles. To model the rigorous distance charac-
teristics of MPR nodes and farthest 2-hop nodes
is beyond the scope of this work and is left for
future work.

5. Performance Evaluation

5.1 Simulation Parameters
We evaluated the performance of ROULA

in a simulator. The simulation environment
we used was a discrete event simulation envi-
ronment, OMNeT++ 25) with Mobility Frame-
work 26). Table 2 shows the simulation param-
eters. We distributed anchor nodes in a circle
that was centered at (100, 100) with a variable
deployment radius, Rd, to evaluate how the ge-
ometric conditions of the anchor nodes affect
localization algorithms. We used GDOP, ob-
tained by averaging all GDOP 22), as a param-
eter to indicate the geometric conditions of the
anchor nodes defined as the following equation.

GDOP =

√
NA∑

i∈SA

∑
j∈SA,j>i A2

ij

, (3)

Aij = sin θij .

In Formula (3), NA indicates the number of an-
chor nodes, and SA is the set of anchor nodes,
and Aij is the angle from an unknown node to
anchor nodes {i, j}. We also defined the ob-
struction [height, width] in a way that shows
the obstruction size. We placed the obstruc-
tion in the middle of the field and set its width
to 100. We varied the height of the obstruction
to evaluate a non-convex network topology, and
used curvature c(t) as a parameter to indicate

Table 2 Simulation parameters.

Field 500 × 500 [m]

Communication range 100 [m]

Number of nodes 90–270 (interval=30)

Node deployment Random

Center of anchor nodes
deployment

(100, 100)

Deployment radius of
anchor nodes

100 ≤ Rd ≤ 400 (in-
terval=50)

Obstruction [height, width] 0 ≤ height ≤ 300
(interval=50) width =
100 [m]

the degree of a non-convex network topology
defined as the following equation.

c(t) =
ab

(a2 sin2 t + b2 cos2 t)3/2
. (4)

In Formula (4), we set a = width
2 , b = height,

and t = π
2 . A circle formed by the obstruction

bends sharply at a point, so it has high cur-
vature. We defined the positioning error as the
distance between the actual and estimated node
positions, and normalized it by the communi-
cation range. We defined the coverage as the
percentage of nodes that could localize them-
selves out of all nodes. We assumed symmetri-
cal link communication with a fixed range. We
compared ROULA’s performance with that of
other localization techniques, Centroid 7), DV-
Hop 9), and AFL 14). We ran the simulations
50 times with random seeds, and plotted the
averaged results.

5.2 Results for various
MPR COVERAGEs

First, we investigated how MPR COVER-
AGE affects the localization performance of
ROULA in a field with no obstructions, and
specified appropriate MPR COVERAGE. Fig-
ure 12 presents the coverage for various
MPR COVERAGEs. The coverage increased
as MPR COVERAGE increased. As revealed
in Section 4, the larger the MPR COVERAGE,
the more MPR nodes per node, so the nodes can
match more regular triangles. A node can thus
more easily find a map combination for merg-
ing local coordinates. Consequently, coverage
increases as MPR COVERAGE increases. The
coverages of ROULA for MPR COVERAGEs
were lower when connectivity was lower because
ROULA cannot find a sufficient number of reg-
ular triangles when the node density is low.
Increasing the number of nodes increases the
number of common nodes, which are used when
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Fig. 12 Coverage for various MPR COVERAGEs.

Fig. 13 Normalized positioning error for various
MPR COVERAGEs.

merging local coordinates. Therefore, cover-
ages improve with an increase in the number of
nodes. The coverages were almost 100% except
for MPR COVERAGE = 1 and 2, when con-
nectivity was over 15. ROULA never achieved
100% even if connectivity was high enough.
This is because ROULA does not localize all
nodes in local coordinates. However, 100%
coverage can be achieved if the nodes execute
Centroid 7) after finishing a sink node merging
phase. Considering each MPR COVERAGE,
MPR COVERAGE = 1 does not work for
localization because the coverage is too
poor. While coverage was much better for
MPR COVERAGE = 2, MPR COVERAGE
= 4 improved the coverage slightly com-
pared with MPR COVERAGE = 3. On the
other hand, Fig. 13 gives the positioning er-
rors for each MPR COVERAGE. Except for
MPR COVERAGE = 1, the positioning errors
increased slightly as MPR COVERAGE in-
creased. This is because, as presented in Fig. 9
and Fig. 11, the nodes increase the distance er-

Fig. 14 Coverage after executing Centroid
(MPR COVERAGE = 3).

Fig. 15 Normalized positioning error after executing
Centroid (MPR COVERAGE = 3).

rors when estimating 1-hop and 2-hop nodes
since the standard deviation of MPR nodes
and farthest 2-hop nodes increases. There-
fore, MPR COVERAGE should be kept as
small as possible to obtain better position-
ing accuracy. In terms of network protocol,
MPR COVERAGE is a tradeoff between the
broadcast efficiency and the robustness. Reduc-
ing MPR COVERAGE reduces network traffic.
For the above reasons, we specified an appropri-
ate value for MPR COVERAGE as 3 because it
results in better positioning accuracy and cov-
erage with smaller MPR COVERAGE.

Figures 14 and 15 show the coverage and
positioning error obtained by executing Cen-
troid after the nodes estimated their positions
by ROULA with MPR COVERAGE = 3. To
execute Centroid, a sink node floods the node
positions in the network. As shown in Fig. 14,
100% coverage is achieved if the nodes execute
Centroid after ROULA. Figure 15 shows that
executing Centroid has little effect on the posi-
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Fig. 16 Normalized positioning error for various de-
ployment radii of anchor nodes (240 nodes and
5 anchor nodes).

Fig. 17 Coverage for various deployment radii of an-
chor nodes (240 nodes and 5 anchor nodes).

tioning error.
5.3 Results for Various Deployment

Radii of Anchor Nodes
Figures 16 and 17 give the normalized po-

sitioning error and coverage for various deploy-
ment radii of anchor nodes for 240 nodes and
5 anchor nodes. GDOP, represented by G,
is plotted against deployment radius of anchor
nodes. As shown in Fig. 16, DV-Hop had the
highest positioning error when the deployment
radius of anchor nodes was 100. This is be-
cause DV-Hop trilaterates nodes based on an-
chor nodes, so the positioning accuracy is af-
fected by GDOP, which is large when the an-
chor nodes are close together. Thus, DV-Hop is
infeasible when the deployment of anchor nodes
is limited. ROULA, AFL, and Centroid had
better positioning accuracy regardless of var-
ious deployment radii of anchor nodes. Al-
though Centroid had good positioning accu-
racy, it had the worst coverage, as shown in

Fig. 18 Normalized positioning error for various ob-
struction heights (240 nodes and 5 anchor
nodes).

Fig. 19 Coverage for various obstruction heights (240
nodes and 5 anchor nodes).

Fig. 17. The coverage of Centroid depends on
the number of anchor nodes. The positioning
error for ROULA and AFL slightly decreased as
the deployment radius became larger. This is
because ROULA and AFL become more robust
against errors when a node converts to absolute
coordinates, as the deployment radius of anchor
nodes is larger.

5.4 Results for Various Obstruction
Heights

Figures 18 and 19 present the results for
normalized positioning error and coverage for
various obstruction heights for 240 nodes and
5 anchor nodes. Curvature represented by C
is plotted against obstruction height. DV-
Hop and AFL had the higher positioning er-
rors when the obstruction height was large. As
the obstruction height increased, the curvature
forming the non-convex network topology be-
came steeper. Therefore, DV-Hop and AFL
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were directly affected by the curvature. On the
contrary, ROULA achieved about 50–60% po-
sitioning errors regardless of the curvature of
non-convex network topology.

As a whole, our performance evaluation
demonstrated that ROULA can accurately es-
timate node positions in various scenarios in-
cluding a non-convex network topology and a
limited deployment radius of anchor nodes. Al-
though ROULA had the positioning errors of
about 40–50% at least, nodes such as in the
sensor networks should be able to identify the
origin of an event with better accuracy in the
scenarios we assumed. Evaluating the perfor-
mance of a network protocol based on the loca-
tion information provided by ROULA remains
as future work.

6. Conclusion

In this paper, we presented ROULA, a local-
ization algorithm that satisfies the following key
design requirements: (i) independency from an-
chor nodes, (ii) robustness for non-convex net-
work topology, and (iii) compatibility with net-
work protocol. ROULA is compatible with the
OLSR network protocol, and it uses character-
istics of the underlying network layer process.
We revealed the characteristics of the MPR se-
lection and the farthest 2-hop node selection
that contribute to reducing the distance error
for a localization scheme without using ranging
devices. Using simulation, we first investigated
the appropriate MPR COVERAGE, which is
defined to control the number of MPR nodes in
OLSR, and found that MPR COVERAGE =
3 is preferable for ROULA. We compared the
performance of ROULA with that of other lo-
calization techniques and found that it achieved
desirable performance in various network sce-
narios including limited deployment radius of
anchor nodes and a non-convex network topol-
ogy.

In this work, we assumed that nodes
have a fixed communication range to enable
us to determine the basic ROULA perfor-
mance. A validation of the optimal value
of MPR COVERAGE considering an unstable
communication range and a performance eval-
uation of ROULA in such a range are our fu-
ture work. As a possible solution for unstable
communication range on localization, remov-
ing the asymmetric link communication which
incurred unstable communication range by us-
ing the mechanism identifying asymmetric link

communication in OLSR is expected to miti-
gate the localization error. We plan to evaluate
ROULA in a simulator with more realistic pa-
rameters.
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