
Modifying Existing Analogy-based N-gram Language Model

Meng Tian & Yves Lepage
IPS, Waseda University, Kitakyushu, Japan

tianmeng0112@asagi.waseda.jp & yves.lepage@aoni.waseda.jp

Abstract

By investigating the occurrence of different proportional
analogies in corpora, this paper describes an approach to
increase the performance of existing analogy-based N-
gram language models evaluated by perplexity. Our ap-
proach consists in using analogy to reconstruct N-grams
from the test data so as to give higher probabilities to
these N-grams. By giving different weights to different
patterns, we also except that some N-grams which can be
reconstructed by different patterns will get more accurate
probabilities. The use of suffix arrays for data searching
leads to a lesser computation time on text scoring tasks.

1 Introduction

A language model assigns a score to a sentence. This
score evaluates the naturalness of the sentence, i.e.
whether it is natural or not or how often it is used in real
texts. For example, the sentence “I like this book” is a
sentence which may occor many times in a text, but the
sequence of words “like this book I” may never occur.
For a language model, “I like this book” is more natural
than “like this book I”, and the former will get a higher
score than the latter.

Language modeling is used in many natural language
processing applications such as speech recognition, part-
of-speech tagging, parsing, information retrieval and ma-
chine translation. The most important part in language
modeling is smoothing. Smoothing is used to assign non-
zero probabilities to a unseen N-grams [1]. In this pa-
per, we inquire the use of proportional analogy to smooth
language models. The basic idea is as follows. If we
use the proportional analogy pattern ab : ac :: db : dc,
with the test data: ’he has’, training data: ’she is’, ’she
has’, ’he is’, then we can say that ’he has’ can be recon-
structed using the above proportional analogy pattern. ’he
has’ should be considered safer by the language model.
The goal of this paper is to modify previously proposed
analogy-based N-gram language models [8] and try to
improve their performance. Our contribution is mani-
fold: firstly, previously proposed N-gram analogy lan-
guage models relied on 2 parameters. In previous ex-
periments their parameters were set to some values, that
need to be improved. We modify the formula used to
assign probabilities to different N-grams. We also select

the best parameters by the brute-force technique automat-
ically and get a better performance. Experiments are con-
ducted for all the languages in version 3 of the Europarl
corpus (11 languages). Secondly, we use new analogy
patterns and assign different weights to different anal-
ogy patterns. As is standard, we use perplexity to esti-
mate the performence of our language model. The results
show that our proposed technique yields improvements
over previously proposed techniques.

The rest of this paper is as follows. Section 2 intro-
duce proportional analogy. Section 3 introduces patterns
used in building language models. Section 4 presents the
improvements. A conclusion is given in Section 5.

2 Proportional analogy in language
models

The use of analogy in this paper takes advantage of the
notion of proportions. Consider Equation 1. By using
the notion of proportion, this equation can be solved: x is
“��”.

O♦ :�♦ :: O� : x (1)

2.1 Definition of Analogy
In the field of natural language processing, several works
have explored the use of proportional analogy such as
[2], [7] and [4]. The definition of proportional analogy
we use comes from [5]. It imposes three constrains for
four sequences of symnols to form a proportional anal-
ogy. These constraints are given in Equation 2.1.

A : B :: C : D⇐⇒

|A|a−|B|a = |C|a−|D|a, ∀a

dist(A,B) = dist(C,D)

dist(A,C) = dist(B,D)

The above constraints can be applied to many fields by
changing the data types for “A, B, C, D” and “a”. In
this paper, “A, B, C, D” are N-grams in a corpus and
“a” stands for words in N-grams. dist(A, B) refers to the
edit distance which uses only insertions and deletions [3].
This will be detailed in the following section.

1ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-NL-215 No.2
2014/2/6

2.2 Edit Distance
Edit distance is often used to refer specifically to Leven-
shtein distance [6]. The value of the edit distance between
two sequences of symbols (= sequences of words in this
paper) is the minimal number of edit operations needed
to transform the first sequence into the second sequence.

Mathematically, the Levenshtein distance between two
strings a,b is given by distlev(|a|, |b|), the formula shows
in the following equation.

distlev(i, j) =

max(i, j) ifmin(i, j) = 0,

min

distlev(i−1, j)+1 (insertion)
distlev(i, j−1)+1 (deletion) otherwise
distlev(i−1, j−1)+ [ai 6= b j] (substitution)

(2)

The edit distance that we use in this paper is a bit differ-
ent from Levenshtein distance, as substitution is not used
in our setting. Only insertions and deletions are used. It
is the simplest edit distance that can be thought of. It can
be considered a special case of Levenshtein distance, by
setting the cost of substitutions to two. The following ex-
ample in Figure 1 shows how to calculate edit distance
in this paper. The unit is word as is used in this paper.
In Figure 1, the number of word “to” in each N-gram is
calculated and checked to see if it matches the definition
of analogy, edit distance is also calculated as definition of
analogy requires [8].

to walk : I walk :: to laugh : I laugh
to: 1 - 0 = 1 - 0

d(to walk, I walk) = d(to laugh, I laugh) = 2

d(to work, to laugh) = d(I walk, I laugh) = 2

Figure 1: An example of proportion analogy edit distance

3 Building Language Models

3.1 Previous work: efficiency of patterns
To check the efficiency of the various proportion analogy
patterns that can be formed between bigrams or trigrams,
we check the percentages of unseen n-grams which can
be reconstructed be a given pattern. Table 1 compares the
number of occurrences of patterns of trigrams and shows
the cumulated number of occurrences of patterns for tri-
grams. The index we use to evaluate different patterns
is the number of trigrams in the test data that can be re-
constructed using a pattern. The fact that one N-gram in
the test data may can be reconstructed by more than one
pattern explains the differences in Table 1. Our training
data consists of 350,000 lines from the English part of the
Europarl Corpus. The test data consists of 36,237 lines.

Table 1 shows only the first three most efficient analog-
ical patterns. By contrast, in previous work [8] only the
pattern abc : abd :: e f c : e f d and the pattern abc : bc f ::

Table 1: Percentages of unseen n-grams which can be
reconstructed by a given pattern (%)

Pattern Separate Accumulated
abc:abd::efc:efd 76% 76%
abc:bcf::ade:def 55% 96%
bcf:abc::def:ade 19% 99%

... ... 100%

ade : de f were used to reconstruct unseen n-grams. To
give a real example: the most productive pattern for tri-
grams is:

abc : abd :: e f c : e f d

In real text, this corresponds to the following example:

opportunity to serve : opportunity to bring :: that could serve : that could bring

The second most productive pattern for trigrams is:

abc : bc f :: ade : de f

It can be illustrated by the following real data:

opportunity to serve : to serve people :: opportunity for it’s : for it’s people

3.2 Rationale for analogy-based language
models

The rationale for analogy-based language models is that
not all unseen N-grams are equal. We belive that, if an
N-gram does not appear in the training data, but can be
reconstructed by proportional analogy pattern, it should
be considered safer than an N-gram which cannot be re-
constructed. The more patterns can generate this N-gram,
the safer it should be. An N-gram language should reflect
this fact and these separate unseen N-grams according to
whether they can be reconstructed or not.

3.3 Previous work: Parameters of analogy-
based language model

Known N-grams are those N-grams which appear in
training data at least once. We give them a probability
defined in Equation 3:

P(hi.wi)

P(hi)
=

C (hi.wi)

C(hi)+δV
(3)

For unknown N-grams that donot appear in the training
data, but which can be reconstructed by analogy, we
assign a probability as given by Equation 4:

P(hi.wi)

P(hi)
=

α1

C(hi)+δV
(4)

For unknown N-grams that cannot be reconstructed
by analogy, we give them the probability defined in
Equation 5:

P(hi.wi)

P(hi)
=

α2

C(hi)+δV
(5)

2ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-NL-215 No.2
2014/2/6

The probabilities above are inspired by Lidstone
smoothing. In these formulas, the following notations are
used:

• wi: a word.

• hi: n-1 words ahead of wi.

• C (hi.wi): counts of the hi.wi in training data.

• α1: a number less than 1 to assign probability to n-
gram that can be reconstructed.

• α2: a number less than 1 to assign probability to
n-gram that cannot be reconstructed (α1 should be
bigger than α2).

• δ : a parameter to make all the probabilities add up
to 1.

• V: the length of vocabulary.

We must note that this formula is an approximate one, so
all the probabilities add up to a number which is close
to 1. In test data, suppose λ is the proportion of unseen
N-grams to all n-grams, and µ is the proportion of the
N-grams that can be reconstructed by analogy to unseen
N-grams.
By summing up all the possibilities for N-grams in the
test set, taking into consideration Equation 3, 4, 5, in this
model, δ is calculated as Equation 6.

δ = µλα1 +(1−µ)λα2 (6)

4 Experiments
Our training data consists in in 378,237 lines from the
English part of Europarl corpus. Our test data consists
in 100 randomly selected lines from the remaining 4000
lines. We repeat our experiments 10 times and the final
average results are shown in Table 2. The parameters in

Table 2: Perplexity for new language model and additive
smoothing

additive analogy
average 232.45 180.35
std dev 32.83 26.44

this experiment for additive smoothing seems not to be
the best (α1=0.0003, α2=0.00003 as default).

4.1 Introducing brute-force attack to tune
parameters for analogy

In order to select the two previous parameters α1 and α2,
we choose brute-force search to get the best values for
our language models.

• For α1, start from 10−6 to 10−3, the accuracy is
10−6, it means 1000 candidates.

• For α2, start from 10−7 to 10−4, the accuracy is
10−7, it means 1000 candidates.

• In total there are about 1000×1000/2 candidate pairs
for α1 and α2. The division by 2 comes from the fact
that α1 should be smaller than α2 according to our
formula.

Using one machine with 4 GB RAM for 20.6 days, we
tune the best values for the parameters α1 and α2 (α1 =
8.1×10−4, α2 = 9×10−5). Table 3 shows the result by
new parameters.

Table 3: Perplexity for new language model and additive
smoothing

additive analogy
average 232.45 161.35
std dev 32.83 23.44

4.2 Select parameters for other languages
In the same way, we obtained the necessary parameters
for all other languages of Europarl. The values for each
language are given in Table 4.

Table 4: Parameters for 3-gram

parameters da de el en es fi fr it nl pt sv
α1×10−4 5 6 6 8 8 7 9 6 6 7 6
α2×10−5 8.0 9.4 8.9 9.0 10.0 8.8 6.8 7.1 10.0 8.0 9.5

4.3 Using more patterns
Table 1 shows that a third pattern can cover 19% of the
unknow N-grams. By taking into consideration this third
pattern, the perplexity of our language models can still be
reduced as shown in Table 5.

Table 5: Perplexity of additive smoothing method com-
pared with analogy based smoothing method using the
third pattern of Table 1 in addiction to other patterns

additive analogy(weights)
average 231.05 149.78
std dev 26.63 22.69

4.4 Giving weights to more reliable N-
grams

Another way to improve the result may be to give weights
to n-grams which can reconstruct more proportional anal-
ogy patterns. By doing this we may get a better result by

3ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-NL-215 No.2
2014/2/6

assigning probabilities more precisely, the previous for-
mula is as below:

p(wi|hi) =
α1

C(hi)+δV
(7)

We use three patterns in the research reported here. If an
N-gram can be reconstrcted by several patterns, we con-
sider it is safer. Consequentlyn we change the weights of
this N-gram by assuming that the more patterns can gen-
erate a trigram from training corpus, the safer this trigram
is.

If a trigram can be reconstructed by the three patterns
we use, i.e abc : abd :: e f c : e f d, abc : bc f :: ade : de f ,
bc f : abc :: de f : ade the probability we assign to it is
given in Equation 8.

p(wi|hi) =
a∗α1

C(hi)+δV
(8)

If a trigram can be reconstructed by any two of the above
patterns, the probability we assign to it is given in Equa-
tion 9.

p(wi|hi) =
b∗α1

C(hi)+δV
(9)

Finally, if a trigram can be reconstructed by only one of
the patterns, the probability we assign to it is given in
Equation 10.

p(wi|hi) =
c∗α1

C(hi)+δV
(10)

Using tuning, we are able to determine the three param-
eters (a, b, c). In our experiments with English, we get
a=1.5, b=1.2 and c=1.0. With these parameters, the per-
plexity we obtain is shown in Table 6. We see that the
perplexity still decreased in comparison with Table 5.

Table 6: Perplexity of additive smoothing method com-
pared with analogy based smoothing method giving dif-
ferent weight to trigrams which can be reconstructed by
more patterns

additive analogy(weights)
average 230.00 146.18
std dev 26.33 15.82

5 Conclusions

In this paper, (1) we modified an existing smoothing tech-
nique based on analogy to smooth N-gram language mod-
els. We used a new formula to assign probabilities to
N-grams, and used several other methods to improve the
performance. (2) We used brute-force search to tune the
parameters . The result shows that by using the new pa-
rameters our method outperforms the existing smoothing
technique based on analogy by about 15%.

References
[1] Stanley F Chen and Joshua Goodman. An empirical

study of smoothing techniques for language model-
ing. Computer Speech & Language, 13(4):359–393,
1999.

[2] Arnaud Delhay and Laurent Miclet. Analogical
equations in sequences: Definition and resolution.
In Grammatical Inference: Algorithms and Appli-
cations, pages 127–138. Springer, Athens, Greece,
2004.

[3] Yves Lepage. Solving analogies on words: an al-
gorithm. In Proceedings of the 36th Annual Meet-
ing of the Association for Computational Linguis-
tics and 17th International Conference on Compu-
tational Linguistics (COLING-ACL ’98), volume 1,
pages 728–734, Montreal, Quebec, Canada, August
1998. Association for Computational Linguistics.

[4] Yves Lepage. Analogy and formal languages. Electr.
Notes Theor. Comput. Sci., 53:180–191, 2001.

[5] Yves Lepage. Lower and higher estimates of the
number of true analogies between sentences con-
tained in a large multilingual corpus. In Proceed-
ings of the 20th international conference on Compu-
tational Linguistics (COLING 2004), pages 736–742,
Geneva, Switzerland, 2004. COLING.

[6] Eric Sven Ristad and Peter N. Yianilos. Learning
string-edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI ’98), 20
(5):522–532, 1998.

[7] Nicolas Stroppa and François Yvon. Analogical
learning and formal proportions: Definitions and
methodological issues. Technical Report ENST-
2005-D004, page no pagination, 2005.

[8] Ding Yi. Building n-gram language models using
analogy, July 2013.

4ⓒ 2014 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2014-NL-215 No.2
2014/2/6

