
Inspection of SOFL Specifications through Building Traceability

Jinghua Zhang and Shaoying Liu

Graduate School of Computer and Information Sciences, Hosei University

jinghua.zhang.6w@stu.hosei.ac.jp, sliu@hosei.ac.jp

Abstract

When developing a formal specification for a software project using the SOFL three-step modeling

approach, it is essential to ensure the conformance relation between every two level specifications. In

this paper, we describe an inspection method through building traceability for rigorously verifying the

conformance relation. The method consists of two steps: (1) traceability establishment and (2)

inspection of the target specifications through building traceability. A small case study is given to

show how the proposed method can be applied in practice.

1. Introduction

One of the primary problems in software projects is that

the requirements documented in specifications may not

be accurately and easily understood by the developers

carrying out different tasks [1]. One way to improve the

quality of specifications and therefore the quality of the

corresponding software is to formalize specifications.

We choose Structured Object-Oriented Formal Language

(SOFL) as a formal notation in this paper.

The SOFL method provides a three-step approach to

developing formal specifications. Such a development is

an evolutionary process, starting from an informal

specification, to a semi-formal one, to finally a formal

specification [1]. However, as a formal method, there are

still many places that can be improved in practice,

especially about the purification through three level

specifications. Our research mainly focuses on how to

sustain the consistency between different level

specifications.

In this paper, we present an inspection method

through building traceability that helps users check the

consistency in their specifications.

2. Inspection through building traceability

There are two steps in our inspection method through

building traceability. Firstly, we generate the traceability

between three different specifications. The traceability

means the congruent relationships of elements which

represent the same users’ requirements in different

specifications. For example, a function in the informal

specification may be correlated to a process in the

corresponding semi-formal specification. Secondly, by

measuring the effectiveness of traceability, we inspect

corresponding elements in different specifications

together.

2.1. Building traceability between different

specifications

Because there are three specifications, we put the

traceability into two parts to make it more clearly: (1)

traceability between informal and semi-formal

specifications, (2) traceability between semi-formal and

formal specifications.

During the first part, user’s requirements will be

purified and described more precisely. For covering

user’s requirements as many as possible, the structures

are rough. They contain only three components:

functions, data resources and constraints. Because of the

partition in informal specification, the conversion to

semi-formal specification is quite flexible and mainly

depends on user’s experience. However, we can still

compare corresponding elements based on structures in

different specifications as shown in Table 1 below.

Table 1.Connected elements in different specifications

Informal specification Semi-formal specification

Function Function, Process, Module

Data resource Type identifier, Constant

identifier, Variable

Constraint Invariant

For the second part, structures are almost the same

between semi-formal and formal specifications. We can

generate traceability based on building functional

scenarios provided in [2]. Let P(Piv, Pov)[Ppre, Ppost]

denote the formal specification of an operation P, where

Piv and Pov are the sets of all input and output variables.

Ppre and Ppost are the pre-condition and post-condition of

operation P, respectively. Let Ppost=C1∧D1∨C2∧D2

∨…∨Cn∧Dn, where Ci (i∈{1, 2, ..., n}) is a guard

condition and Di is a defining condition. Then, a

conjunction ~Ppre ∧ Ci ∧ Di is called a functional

scenario.

Because the corresponding operations in semi-formal

and formal specifications describe same requirements,

functional scenarios should be same. Then, we can

generate traceability by put same functional scenarios

together.

After generating two parts of traceability, we can

inspect elements through the whole one.

2.2. Inspection through building traceability

When inspecting corresponding elements in different

level specifications, we can put them together based on

traceability. At the same time, measuring the

effectiveness of traceability is a feasible way to check

the traceability is good enough or not. This measuring

focuses on different changes about corresponding

elements in the traceability. To the specification base, a

lack of elements in compared specification will get a

negative value (-1) while an unexpected one which is

not included in the base will get a positive value (+1),

respectively. By calculating the percent of negative and

positive values, we can measure the effectiveness of

traceability and check possible errors easily.

2.3. A case study

Here, we use a case study to show how our inspection

method through building traceability works. The case

study is SOFL different level specifications used for

describing requirements of the JTB system.

The JTB system mainly includes four functions: (1)

making the tour plan, (2) reserving flights, (3) making

bus arrangement, (4) reserving hotel. Firstly, we can

generate traceability between different specifications.

For example, when we try to find the traceability of the

function called “Reserve for Flight” in informal

specification, we can get the corresponding elements in

semi-formal specification as shown in Figure 1.

After generating the traceability, we can put

corresponding elements in three different specifications

together to inspect them. According to the number of

corresponding elements, we can measure the

effectiveness of traceability shown in table 2.

Figure 1. “Reserve for Flight” in semi-formal specification

Table 2.Effectiveness of traceability

 Elements Positive Negative

Informal 19 -- --

Semi-formal 32 3 2

Formal 35 0 1

In the informal specification, we write 19 elements to

describe user’s requirements as the benchmark. Based

on this, we purify 32 elements in the semi-formal

specification. As measuring the effectiveness of

traceability, we get 3 positive values and 2 negative

values. That means when writing semi-formal

specifications, we add three elements which can’t be

connected in informal specification. These may be errors

or new requirements that should be added in the

informal specification. For example, after checking this,

we find the lack of “Confirm Tour Contract” in informal

specification. At the same time, the negative values

show that two corresponding elements are lost in the

semi-formal specification. By using the measuring

method, we can orientate possible errors quickly and

help users inspect elements in different level

specifications precisely.

References

[1] Shaoying Liu: Formal Engineering for Industrial

Software Development Using the SOFL Method,

Springer-Verlag, 2004

[2] Mo Li, Shaoying Liu: Automated Functional

Scenario-based Formal Specification Animation,

Proceedings of the 19th Asia-Pacific Software

Engineering Conference (APSEC 2012), IEEE CS

press, pages 107-115, 2012

