
Parallel Monte-Carlo Tree Search with Simulation Servers

HIDEKI KATO†1,†2 and IKUO TAKEUCHI†1

Recently Monte-Carlo tree search is boosting the performance of computer Go playing pro-
grams. A novel parallel Monte-Carlo tree search algorithm is proposed. A tree searcher runs
on a client computer and multiple Monte-Carlo simulation servers run on other computers
on a network. The client broadcasts a position to be simulated to every server, which then
simulates a game from the position to the end and sends the result (win or loss) back to the
client. The statistical information in the search tree is updated by the client according to the
result. This architecture allows servers on-the-fly connection or disconnection. Experimental
results using four quad-core Linux computers on a private Gigabit Ethernet LAN show its
performance scales well.

1. Introduction

Monte-Carlo tree search (MCTS) is a pow-
erful tree search algorithm that can be ap-
plied to trial-based planning tasks including
the game of Go ⋆1.

It is empirically proved that the perfor-
mance of MCTS scales well against the num-
ber of simulations to select an optimal move
in computer Go. In addition, developing ef-
ficient parallel MCTS (PMCTS) algorithms
is important to improve the performance be-
cause single processor’s performance may
not be expected to increase as used to.

This paper is organized as follows. Sec-
tion 2 introduces previous related works,
Section 3 explains PMCTS algorithms, Sec-
tion 4 proposes our algorithm, Section 5 de-
scribes our experiments, Section 6 discusses
the results of the experiments, and Section 7
provides conclusion and describes future re-
search.

Note: Our Go playing program, Fudo Go,
which features 3 x 3 local patterns in MC
simulations and RAVE with UCT, was used
for the experiments and was 12th out of 18
and 7th (shared) out of 13 participants for 9
x 9 and 19 x 19 Go, respectively, at 13th In-
ternational Computer Games Championship
Beijing. The source code is available at http:
//www.gggo.jp/.

†1 The Department of Creative Informatics, The Grad-
uate School of Information Science and Technology,
The University of Tokyo

†2 Fixstars Corporation
⋆1 http://senseis.xmp.net/, for more info.

2. Related Work

S. Gelly et al.6) first introduced shared-
tree symmetrical multi-thread PMCTS for
shared memory computers. T. Cazenave et
al.1) proposed and evaluated three master-
slave style PMCTS algorithms on an MPI
cluster of 16 Intel Pentium-4 computers con-
nected via a 100-Megabit Ethernet LAN. G.
Chaslot et al.2) evaluated shared-tree and
two, leaf- and root-parallelization, of the
three methods proposed by T. Cazenave et
al.1) on 16-core IBM Power5 shared-memory
computers. S. Gelly et al.5) describes their
shared-tree PMCTS6) in detail and pro-
poses a PMCTS algorithm for MPI clus-
ters. Each shared-memory multiprocessor
node, on which shared-tree PMCTS runs, of
an MPI cluster periodically exchanges and
merges statistical information in the tree.

Another related work, D. Dailey et al.3),4)

showed that double the number of simula-
tions for a move increases ELO rating ⋆2

by 50 to 100 (100 ELO roughly corresponds
to one stone handicap). This clearly shows
that developing efficient PMCTS algorithms
is important to improve the performance of
any MCTS Go programs as well as good al-
gorithms or heuristics.

3. Parallel Monte-Carlo Tree Search

3.1 Monte-Carlo Tree Search
We give a brief description of MCTS algo-

rithm first (Fig. 1).

⋆2 http://en.wikipedia.org/wiki/Elo rating, for example.

- 31 -



Fig. 3 Proposed PMCTS algorithm. The difference from Fig. 1 is that the
simulation part is separated.

A typical MCTS consists of four steps: de-
scend tree, extend tree, evaluate a position
by MC simulations and update values of the
moves.

3.2 PMCTS algorithms
Currently two parallelisms of MCTS have

been developed.
One is a fine-grain parallelism, which runs

multiple MC simulations simultaneously.
A straightforward extension of a sequen-
tial implementation of MCTS algorithm,
shared-tree symmetrical multi-thread PM-
CTS (Fig. 2) has been used for almost all
MCTS programs. This is first introduced by
S. Gelly et al.6) where multiple threaded se-
quential MCTS programs share the search
tree and execute MC simulations in parallel.

Another approach, client-server model is

Fig. 1 A typical sequential Monte-Carlo tree search.

first introduced by us7), which is based on
a master-slave style PMCTS and can be
thought as an improvement of at-the-leaves
PMCTS proposed by T. Cazenave et al.1) This
is described in Section 4.

The other is a coarse-grain parallelism.
MoGo5) features this for a MPI cluster
where each node periodically exchanges and
merges the statistical information in the
tree, together with the shared-tree PMCTS
for each node. This can be thought as a
kind of root-parallelization in 2) or single-
run PMCTS in 1). We discuss this paral-
lelism no more in this paper, though this can
also be applied to our algorithm.

4. Proposed Algorithm

Some notes on terminology: we call our

Fig. 2 A typical shared-tree symmetrical multi-thread
parallel Monte-Carlo tree search. 4 threads.
Each thread corresponds to the outlined box in
Fig. 1.

- 32 -



GENERATEMOVE(pos)

1 root ← ADDNODE(pos, node)

2 repeat
3 node ← DESCENDTREE(root)

4 pos ← node.position

5 move ← SELECTMOVE(pos)

6 if move.visits ≥ MIN V ISITS

7 then
8 pos ← PLAY(move, pos)

9 node ← ADDNODE(pos, node)

10 move ← SELECTMOVE(pos)

11 packet.move ← move

12 packet.pos ← pos

13 packet.node ← node

14 BROADCASTPOSITION(packet)

15 packet ← RECEIVERESULT(NO WAIT )

16 if packet.received

17 then
18 UPDATE(packet.score, packet.node)

19 until TIMELEFT() ≤ 0

20 return MOSTVISITEDMOVE(root)

Fig. 4 Pseudo code for the client.

MCSERVER()

1 repeat
2 packet ← RECIEVEPOSITION(WAIT )

3 move ← packet.move

4 pos ← packet.position

5 packet.score ← DOSIMULATION(move, pos)

6 SENDBACK(packet)

7 until FOREV ER

Fig. 5 Pseudo code for the server.

algorithm ”client-server” style PMCTS and
use ”client” and ”simulation servers” for
the ”tree searchers” and the ”MC simula-
tors”, respectively, to emphasize our algo-
rithm is designed for loosely coupled PC clus-
ters over moderate speed networks, possi-
bly including the Internet. Also, as current
system consists of one client and multiple
servers, some readers may think it is strange
but please note our system allows multiple
clients which may co-operate for a game or
work independently for multiple games.

Our PMCTS algorithm is sketched in
Fig. 3. Figure 4 and Fig. 5 are the pseudo
codes of our implementation.

The differences from MCTS (Fig. 1) are just
broadcasting the positions to be simulated
and receiving the results without wait, i.e.,
if at least one result arrives the statistical

information in the tree is updated and new
iteration starts. At-the-leaves PMCTS is re-
ported being worse by T. Cazenave et al.1).
Later, G. Chaslot et al.2) pointed out the ma-
jor reason is to wait until all threads finish
simulations. So, this is not our case.

Following subsections discuss some design
issues.

4.1 Communication Time over Net-
works

The major problem implementing fine-
grain PMCTS on computer clusters is longer
communication time over network. One so-
lution is to use high-speed network interface
devices such as InfiniBand, though they are
very expensive now. Table 2 shows round
trip time (RTT) over Gigabit Ethernet (see
Section 5.2 for detail). Note that 150 µs is
longer than a typical simulation time on 9 x
9 board. RTT is virtually increases simula-
tion time and results in decreasing simula-
tion speed. One of our objects is to evaluate
these effects.

4.2 Peer-to-Peer vs. Broadcasting
The theoretical bandwidth of Gigabit Eth-

ernet is about 100 MB/s. Assuming the num-
ber of servers is 100 and the size of a packet
is 2 kB, which is a typical packet size for a
position on 19 x 19, up to 500 packets can be
sent a second using peer-to-peer communica-
tions. So, we have to broadcast a position to
be simulated otherwise upto only 500 games
can be simulated a second.

UDP/IP is said less reliable than TCP/IP9).
Losing some packets, however, is not a
big problem for our implementation but de-
creases performance only a little. This al-
lows servers on-the-fly connection or discon-
nection and makes the system fault toler-
ant. Using UDP/IP also gives some advan-
tages over TCP/IP, shorter communication
time, for example.

Hence, we choose broadcasting for sending
positions to be simulated and the results are
sent back with peer-to-peer communications
using UDP/IP.

4.3 Use of Other Cores
The client is not parallelized but some

modern processors feature multiple cores.
Using other cores for simulation servers
should improve total performance. The

- 33 -



Fig. 6 Experimental system.

choice is internal or external.
Internal servers are implemented using

POSIX threads and communicate with the
client via FIFO queues on shared mem-
ory. External servers are independent Linux
processes and communicate through a local
loop-back network.

Table 1 shows the performances with the
use of the cores. Although the differences of
the winning rates are so small that they can
be statistical errors, using all other cores for
internal servers is likely the best choice.

5. Experiments

5.1 Experimental System
The test bed (Fig. 6) used for our exper-

iments consists of four handmade Ubuntu
Linux PCs connected via a Gigabit switching
hub, Allied Telesis CenterCOM GS908XL.

Table 1 Winning rate with changing the use of cores
in a quad-core processor. One core is ded-
icated for the client. Other cores are used
for internal and external servers. “Int” is
the number of internal servers. “Ext” is the
number of external servers. “WR” is the win-
ning rate against GNU GO 3.7.11 level 0. The
numbers after winning rates are standard de-
viations.

Int Ext WR
1 2 44.4±2.2% (-39±16 ELO)
2 1 46.2±2.2% (-27±16 ELO)
3 0 47.4±2.2% (-18±16 ELO)

Every PC has an Intel Core 2 Quad proces-
sor, Q9550 or Q6600, runs at 3 GHz and
an Intel Gigabit Ethernet (GbE) network in-
terface card (NIC), EXPI9300PT or GT. The
MTU of every NIC is set to 9000 or jumbo
packet is enabled.

5.2 Round Trip Time
Round trip time is a common measure of

the time to communicate via a network. Ta-
ble 2 shows RTTs from the client to each
server.

5.3 Results
Figure 7 shows the performance of our im-

plementation on two board sizes, 9 x 9 and 13
x 13. All results are the winning rate against

Table 2 Round trip time from client to each server on
a private Gigabit Ethernet LAN. Average of
a thousand 1 kB packets. The numbers af-
ter times are standard deviations. Ping com-
mand is used.

Server Round trip time
PC1 154±21µs
PC2 159±22µs
PC3 151±22µs

Table 3 Combinations of the servers used in Fig. 7.
”Int” and ”Ext” are the numbers of internal
and external servers, respectively.

Label Int Ext
1 server 1 0
1 pc 3 0
4 pc 3 12

- 34 -



-700-600-500-400-300-200-1000100200300

Time per move (s)Time per move (s)Time per move (s)Time per move (s)
ELO ratingELO ratingELO ratingELO rating 1 pc1 pc1 pc1 pc1 pc1 pc1 pc1 pc4 pc4 pc4 pc4 pc 0.01 0.02 0.04 0.08 0.16

0.1 0.2 0.4 0.84 pc4 pc4 pc4 pc0.05
3.2

1 2 41/21/41/81/161/321/641/1281/256
1.6 6.4

8
0.32
1 server1 server1 server1 server

9 x 99 x 99 x 99 x 9 13 x 1313 x 1313 x 1313 x 13
0.64

0.08
Fig. 7 ELO rating against GNU GO 3.7.11 level 0 with time.

-300

-200

-100

0

100

Number of servers

E
L

O
 r

at
in

g

9 x 9 (0.08s/move)

13 x 13 (0.4s/move)

1 2

3

5

7

11

15

4 8 16

Fig. 8 ELO rating against GNU GO 3.7.11 level 0 with number of servers.

GNU GO 3.7.11 level 0. Table 3 shows the
combinations of the servers in Fig. 7. Each
winning rate in Fig. 7 is an average of 2000
and 500 games for 9 x 9 and 13 x 13, respec-
tively.

6. Discussion

Although all results of our experiments are
shown in Fig. 7, other figures from different
viewpoints would be useful to analyse them.

- 35 -



y = -4E-05x + 1.5596

R2 = 0.0201

y = 0.002x + 3.0364

R2 = 0.9115

1

2

3

4

-500 -400 -300 -200 -100 0 100 200

ELO rating

E
q

u
iv

al
en

t 
sp

ee
d

-u
p

13 x 13

9 x 9

Fig. 9 Speed-up ratio by 4 pc with the winning rate against GNU GO 3.7.11 level 0.

6.1 Scalability
Figure 8 shows the scalability with the

number of servers on both 9 x 9 and 13 x 13
boards.

Scalability on 9 x 9 board seems saturat-
ing beyond 7 servers and is well on 13 x 13
at least upto 15 servers. It can be expected
that our algorithm scales as well on larger
boards.

6.2 Speed-up
With no doubt, the major object of paral-

lelizing is the acceleration of execution. The
effect of our parallelization way could be
measured by the improvement of the win-
ning rate but the speed-up factor would be
better.

We use an equivalent speed-up⋆1 instead
of the number of simulations done a second,
which is commonly used on shared-memory
systems, because the benefit from each sim-
ulation varies time to time on a network en-
vironment.

Let the winning rate of 4 computers is p
with the given time for a move is t4 and one
computer has the same winning rate p if the
time for a move is t1, the equivalent speed-
up for 4 vs. 1 computer is given by t1/t4.

⋆1 Our ”equivalent speed-up” is the same as ”strength-
speed-up” in 2).

The speed-up factors in Fig. 9 are taken from
Fig. 7 with manual interpolation.

For the speed-up, we use the number of
computers instead of the servers because
our algorithm uses one core for the client
and hence it is unfair to use the number of
servers to compare overall performance with
other benchmarks.

Figure 9 shows the equivalent speed-up for
4 computers. For 9 x 9, the speed-up factor is
almost 1.55, quite fewer than 4, because the
time used for the parallel part, MC simula-
tion, is close to the time for sequential part
(cf. Amdahl’s law⋆2). In other words, there
is not enough parallelism for 9 x 9 in our im-
plementation.

In contrast, the speed-up factor increases
according to the winning rate, i.e. the time
for a move, on 13 x 13. This is somewhat
strange and needs more experiments.

7. Conclusion and Future Work

A novel PMCTS architecture using multi-
ple MC simulation servers was described.

A tree searcher runs on a client computer
and multiple MC simulators run on other
server computers on a network. The client
broadcasts a position to the servers, which

⋆2 http://en.wikipedia.org/wiki/Amdahls law, for detail

- 36 -



then send the results of the simulated game
from the position back to the client. The sta-
tistical information in the tree is updated by
the client according to the results. This ar-
chitecture allows servers on-the-fly connec-
tion or disconnection.

We already have implemented the server
on Sony Playstation3 and will report the per-
formance and scalability on a heterogeneous
PC cluster.

Acknowledgments We would like to ex-
press our thanks to Dr. Sylvain Gelly, for his
suggestion to separate the tree searcher and
the simulator. We also thank to the review-
ers for their comments that helped a lot to
improve the first version of this paper.

References
1) Cazenave, T. and Jouandeau, N.: On the

Parallelization of UCT, Proceedings of the
Computer Games Workshop 2007 (CGW 2007)
(van den Herik, J., Uiterwijk, J., Winands,
M. and Schadd, M., eds.), MICC Technical
Report Series, No.07-06, Universiteit Maas-
tricht, pp.93–101 (2007).

2) Chaslot, G. M., Winands, M. H. and van
den Herik, J. H.: Parallel Monte-Carlo Tree
Search, Proceedings of the 6th International
Conference on Computer and Games (2008).

3) Dailey, D. and volanteers: 13x13 Scalability
study, Website (2008). http://cgos.boardspace.
net/study/13/index.html.

4) Dailey, D. and volanteers: 9x9 Scalability
study, Website (2008). http://cgos.boardspace.
net/study/.

5) Gelly, S., Hoock, J.-B., Rimmel, A., Teytaud,
O. and Kalemkarian, Y.: The Parallelization
of Monte-Carlo Planning, ICINCO (2008).

6) Gelly, S., Wang, Y., Munos, R. and Teytaud,
O.: Modification of UCT with Patterns in
Monte-Carlo Go, Technical Report 6062, IN-
RIA, France (2006).

7) Kato, H. and Takeuchi, I.: A Study on Im-
plementing Parallel MC/UCT Algorithm, Pro-
ceedings of 12th Game Programming Work-
shop 2007, IPSJ (2007). http://www.gggo.jp/.
(In Japanese).

8) Kocsis, L. and Szepesvári, C.: Bandit based
Monte-Carlo Planning, Machine Learning:
ECML 2006 (Fürnkranz, J., Scheffer, T. and
Spiliopoulou, M., eds.), Lecture Notes in Com-
puter Science, Vol.4212, Springer, pp.282–293
(2006).

9) Stevens, W. R.: UNIX Network Program-
ming, Volume 1: Networking APIs: Sockets

and XTI, 2nd Edition, Prentice Hall PTR, Up-
per Saddle River, NJ, USA (1998).

- 37 -




