
Improving Strategic Play in Shogi by Using Move Sequence Trees

Reijer Grimbergen

Department of Informatics, Yamagata University

Jonan 4-3-16, Yonezawa-shi, 992-8510 Japan

E-mail: grim@yz.yamagata-u.ac.jp

Abstract

The main weakness of shogi programs is considered to be in the opening and the middle game.

Deep search is not enough to cover the lack of strategic understanding, so most strong shogi programs

use a hill-climbing approach to build castle and assault formations. The problem of a hill-climbing

approach is that if the final result of two different paths is the same, then the final score will also be

the same. In shogi, this leads to high priority moves being pushed down the principal variation and in

extreme cases such moves will never be actually played. To solve this problem, move sequence trees are

proposed, which guide the program through the right order of moves. This approach was tested in the

yagura opening. A preliminary self-play experiment shows that using move sequence trees could be an

enhancement of hill-climbing approaches for strategic play in shogi.

Keywords: Move sequence trees, otoshiana method, hill-climbing, strategic play, computer shogi.

1 Introduction

In recent years, shogi programs have become strong
enough to beat all but the strongest human shogi
players. Despite this, shogi programs are consid-
ered weak in the opening and middle game due to
a lack of strategic awareness. This is caused by the
fact that shogi pieces have only limited movement,
so the opening phase of a game of shogi consists of
building a piece formation that is in a large part
independent of the piece formation the opponent is
building. The problem of playing the opening and
the early middle game in shogi is that even though
the opponent moves can often be ignored, this is
not always possible. When a piece formation is
not completely finished yet, the position is actually
quite vulnerable, often having several weaknesses.
Professional shogi players spent a lot of time (study-
ing at home or while playing a game) to find ways to
explore these weaknesses. Sometimes a small differ-
ence in the order in which a piece formation is built
can mean the difference between winning and losing
a game.

In contrast, current shogi programs in general ig-
nore the strategic subtleties of the opening phase in
shogi. Programmers spent a lot of time tuning their
programs to reach a middle game position that is
not obviously bad. The programs are strong enough
after that to have a good chance of winning from a
reasonable middle game position against almost all
human players. However, this may not be enough

to take the final steps to beating the best profes-
sional shogi players. The strategic deficiencies of
game programs are expected to be explored by the
top players. Therefore, this is one of the most im-
portant topics in computer shogi. If the opening
problems of the programs can be resolved, shogi
programs will no longer have weaknesses and should
be ready in a few years to challenge the top human
players.

Of course, this is not an easy task. Building piece
formations in shogi can take a long time. For exam-
ple, to finish an anaguma castle formation requires
13 moves by one player, so from the starting posi-
tion a 25 ply search is needed to just find a complete
formation. Add to this that the opening is not only
about playing a castle formation, but also about
developing other pieces, and it is easy to imagine
that doing search until a desired piece formation
is reached is beyond the abilities of current search
algorithms.

In shogi programs, methods based on hill-
climbing have been proposed to improve the open-
ing play in shogi ([3], [1]), but these methods are
not the final solution to the problem. In this paper,
a method based on move sequence trees will be pro-
posed that is expected to be an enhancement of the
current hill-climbing methods. The content of the
rest of this paper will be as follows. In Section 2,
the current hill-climbing methods will be reviewed.
In Section 3 the extension of these methods using
move sequence trees will be explained. In Section 4

-156-

000900000

000010000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

�������

000000000

002000000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

�������

000000000

096300000

000000000

000000000

000000000

000000000

000000000

000000000

000000000

	������

Figure 1: Hill-climbing in the opening: the otoshiana method.

some preliminary results using move sequence trees
in a limited part of the shogi opening will be pre-
sented. Finally, in Section 5 the conclusions and
ideas for future work will be given.

2 Current Methods

The method that is used most often to guide a
shogi program through the opening is the otoshi-

ana method [3], which was first used by Hiroshi
Yamashita in his program YSS, the reigning World
Champion. This method is basically a hill-climbing
approach. For each piece a 9 × 9 table is defined,
which assigns a value to each square on the shogi
board where the piece is placed. For example,
for the mino castle in Figure 1, suppose that
there are three maps for the king, gold and silver
respectively. In this case, considering the values
given in these maps, improving the position of
the pieces would be in the following order (the
values over the arrows indicating the improvement):

59K
+3
=⇒ 48K, 48K

+3
=⇒ 38K, 38K

+3
=⇒ 28K,

39S
+2
=⇒ 38S, 69G

+1
=⇒ 58G

Note that the right gold is not moving, be-
cause it is already on its optimal square in the
starting position. The values in the table are added

to the piece values in the evaluation function,
so even if the formation is not completed, pieces
will be awarded for being “on their way” to their
optimal square. In this example, the king will get
3 points for being on 48, and 6 points for being on
38. This is better than the 0 points for being on
59, so the program will prefer to move the king in
the right direction even if the search is not able
to go deep enough to put the king on the optimal
square 28.

Looking at this natural sequence to move into a
castle formation, it seems that this method is a very
good way of guiding a shogi program through the
opening. Some additions were proposed, for exam-
ple using the same method to guide the building of
attacking formations [1], and this method quickly
became the most popular way for shogi programs
to play the opening. An important reason for this
is that by using this method, the program has a
tendency to restore broken formations if for some
tactical reason the proper building of the piece for-
mation has been disrupted.

Despite its popularity, there are two important
problems with the otoshiana method. First, even
though it works well with shallow search, in the
case of deep search there is the problem of having
different move sequences all leading to the same fi-
nal score. An example is given in Figure 2. Here, all

-157-

1� 4�� 3�� 2�� 3�� 5��(69)

2� 3�� 4�� 5��(69) 3�� 2��

3� 5��(69) 3�� 4�� 3�� 2��

�

�

Figure 2: Problem with hill-climbing methods (1): different move sequences leading to the same result.

6��(58)

6��(58) 6��(68)

Figure 3: Problem with hill-climbing methods (2): losing tempo.

-158-

three move sequences will lead to same final score:
the king on 28 will get 9 points , the gold on 58 will
get 1 point, the gold on 49 will get 9 points and the
silver on 38 will get 2 points for a total of 21 points.
Because the evaluation function is only applied in
the final position, for a program using the otoshiana

method there is no difference between these three
variations because they all lead to the same posi-
tion and thus to the same score. However, from
a human standpoint these variations are very dif-
ferent. Now if the program would actually always
be able to reach this final position there would be
no problem but unfortunately this is not the case.
When using the otoshiana method, it can often be
seen that a vital move that would make the position
safe ends up at the end of the principal variation,
never making it to the top and be selected as the
next move.

The second problem of the otoshiana method is
that during the search there are two ways to reach
the same position, but one of these is taking one
or more extra moves. An example of this is given
in Figure 3 where the gold can go straight to 67
or first go to 68 and then go to 67. Again, even
though the moves are different, the final position
that is reached is the same, so for the evaluation
function there is no way to tell the difference.

Both of the problems are caused by a general
flaw of hill-climbing methods: only the final result
counts, not the way this result was reached. In shogi
terms: only the positions are being evaluated, but
not the moves. To improve the otoshiana method,
it is important to add information about moves. In
the next section, the method of move sequence trees

will be proposed to add information about moves
that will solve the two problems given here.

3 Move Sequence Trees

The first thing that needs to be decided is what kind
of move information is helpful for strategic play in
shogi. Strong shogi players do not have all open-
ing moves they have ever seen readily available in
memory. To decide which moves are relevant in
a position and which moves are not, shogi games
are categorized using the opening strategy by each
player.

Therefore, shogi players often make comments
like: “This is a typical move for the yagura”. This
shows how higher level concepts like yagura are
linked to the primitive information about moves.
By categorizing a position into these higher level
concepts, the number of moves that need to be con-
sidered can be kept to a minimum.

This categorization will be the basis for generat-

ing and storing move sequences. After this genera-
tion is finished, the move sequences will have to be
accessed in the search to guide the program along
the variations of the move sequences that have been
stored. These two steps will now be explained in
detail.

3.1 Extracting Move Sequences

Shogi games are categorized using the opening
strategy played by each player, which is usually
defined by the type of castle that is being played
(mino, yagura, anaguma, etc.). The first task is
therefore to extract move sequences in each type of
opening strategy. This can be done in three steps:

1. Collecting games with a specific opening strat-
egy

2. Collecting move frequency data for this strat-
egy

3. Use the moves and the move frequency data
to generate a move sequence tree, which con-
tains all information about the move sequences
played in this particular opening strategy.

These three steps will now be explained using the
yagura opening as an example.

3.1.1 Collecting Games

The 240,000 games of the Shogi Club24 database [2]
are the best way to collect a large number of games
with a specific opening strategy. The moves are
considered relevant to an opening strategy if the
player was able to build a complete castle forma-
tion. Therefore, for the yagura move sequences, the
database was scanned for those games where one of
the players completed a full yagura castle.

There are 1815 games in the database where the
sente player built a complete yagura castle. Added
to this were 733 games by professional players, giv-
ing a total of 2548 games as the basis for the analysis
of moves and move sequences in the yagura opening
by the sente player.

For the gote player there were 1520 games in
the database and adding 516 games by professional
players gives a total of 2036 games.

3.1.2 Collecting Move Frequency Data

The next step is to collect move frequency data from
the games. This is important to make a difference
between moves that are typical for a yagura opening
and moves that were tried only a few times or were
strategically suspect but forced because of tactical
reasons. Moves with a low frequency should not be

-159-

Table 1: Move frequency data for the yagura opening played by sente.

218 (78)383 (29)837 (88)

105 (28)217 (68)453 (48)843 (37)

105 (56)234 (37)476 (79)892 (27)

117 (88)233 (28)602 (26)894 (39)

118 (77)245 (48)697 (69)915 (57)

125 ()242 (25)718 (79)976 (58)

134 (48)261 (16)716 (59)987 (69)

156 (66)276 (59)721 (17)995 (49)

167 ()293 (36)787 (68)996 (67)

209 (97)324 (47)786 (79)1007 (77)

Fr (%)MoveFr (%)MoveFr (%)MoveFr (%)Move

part of the move sequence trees that will be used
during search or at least get a lower priority than
moves that have been played with a high frequency.

In the 2548 games leading to a complete yagura

castle for the sente player, there were a total of
1288 different moves played in the first 50 moves
of each game. When analysing the frequency of
these moves, only 153 moves were played in 1% or
more of the games. As an example of the moves
that can be considered typical yagura moves for the
sente player, the 39 moves that were played in more
than 10% of the games are giving in Table 1.

3.1.3 Generating Move Sequence Trees

Finally, the information of the order of moves and
the frequency of the moves is stored in a move se-
quence tree. In this tree, all moves that have been
played in sequence in any of the games are stored
with a connection between them. Also, the move
frequency of the moves is stored in the move se-
quence tree. An example of a small part of a move
sequence tree for the yagura opening played by the
sente player is given in Figure 4.

To avoid that the generated trees become too
large, move transpositions need to be detected.
During the generation of the tree, hashcodes are
used to detect transpositions. This makes sure that
the size of the trees stays within reasonable lim-
its. Despite this, the move sequence tree that is
generated in this way can become quite large. For
example, the tree that was generated for sente in
the yagura opening has 21820 nodes (for gote this
is 19028 nodes).

3.2 Using Move Sequence Trees

Because of the size of the move sequence trees, it
is not possible to keep all of them in memory at
the same time. After the program is out of book,
only the move sequence tree that is relevant to the
current position is loaded. The selection is done by
looking at the moves that were played by the sente
side or gote side to reach the current position. If
the move sequence that lead to the current position
is in the move sequence tree, this move sequence
tree is considered relevant to the current position
and selected.

There might be multiple move sequence trees that
are relevant, but to keep the current implementa-
tion as simple as possible, only one move sequence
tree is loaded. To decide which tree is picked if
there are multiple alternatives is an interesting is-
sue. A good idea seems to pick the move sequence
tree where the move frequency of the moves that
can be played in the current position is highest.
However, in this paper only partial results using the
move sequence tree for sente and the move sequence
tree for gote in the yagura opening are presented, so
this decision procedure has not been resolved yet.

Once a move sequence tree is selected, it needs
to be accessed in the tree. Our implementation has
a pointer to the move sequence tree in every node
of the search tree. If a move sequence is followed
during the search, the pointer is updated. If a move
sequence is abandoned during search, the pointer is
set to null. By using this pointer it is possible to
detect if the search is following a variation that is
in the move sequence tree. For each move that is
following a variation in the move sequence tree, a
bonus is awarded. The total bonus for the moves

-160-

Start (77)

(27)
876

2813

(67)

6

(49)
5

(39)

(69)

(57)

(59)

(28)

5

4

3

3

2

(79)
942

(27)
976

(67)
549

(39)
85

(69)
80

(88)

(79)

()

(17)

(57)

(88)

(49)

(59)

(37)

58

32

27

15

14

12

9

5

2

360
(79)

(67)**

Same

position

517

(68)

(57)

(39)

(27)

(69)

(28)

(17)

315

7

5

3

2

2

1

Figure 4: Partial move sequence tree for sente with move frequencies. (Note: (**) is a terminated
sequence because of move transposition).

is added to the evaluation function value for posi-
tions at leaf nodes. It seems clear that the bonus
value should be based on the move frequency of the
moves in the move sequence tree, but our first im-
plementation just adds a fixed bonus for each move
played according to the move sequence tree.

Note that even though this process will slow down
the search a little, it will only be used in the opening
and early middle game phase of the game where the
number of moves is still small and deep search was
possible anyway. Therefore, the overhead of this
method is not significant.

4 Experimental Results

As explained, the current implementation only has
the move sequence trees for sente yagura and gote
yagura. As a first test to evaluate the new method,
self-play experiments were done between a program
only using the otoshiana method and programs us-
ing both the otoshiana method and the move se-
quence trees with different move bonuses. These
experiments were to evaluate if move sequence trees
could improve the strategic play of a program using
a hill-climbing approach.

Because there are only the move sequence trees
for the yagura, the self-play experiments all started

with positions that were reached after 10 moves
from the initial position, where in each position
the move sequence tree had been followed, i.e. a
yagura opening according to the move sequence tree
was still possible for either side. Time limitations
only allowed for a limited number of games to be
played. 25 positions were selected as starting posi-
tions for the experiment and both programs played
sente once in each of these positions, so a total of 50
games was played. The time limit was 10 minutes
per side.

Four versions of the program using move sequence
trees in combination with the otoshiana method
were used. Each version assigned a different, fixed
bonus for moves that were in the move sequence
tree. In version MST25 the bonus was a quarter
of the value of a pawn (in the test program Spear,
the value of a pawn is 100 points), in version MST50

the bonus was half a pawn, in version MST75 the
bonus was three quarters of a pawn and in version
MST100 the bonus was a the value of a pawn1. The
results of these self-play experiments are given in
Table 2.

1Because in shogi pieces don’t disappear from the game

after being captured, the evaluation value swing of a pawn

exchange is actually twice the value of a pawn, i.e. 200

points.

-161-

Table 2: Results of the self-play experiments. All matches are against a program only using the otoshiana

method. WP is the winning percentage of the programs using move sequence trees. MST25 means that
the bonus given to moves was 25 points, which is a quarter of the value of a pawn. In the column Yagura,
the number of times a complete yagura formation was build by the program using move sequence trees
(MST) and the program only using the otoshiana method (OTO).

Version Won Lost WP Yagura

MST OTO

MST25 23 27 46% 20 21
MST50 27 23 54% 32 20
MST75 28 22 56% 27 15
MST100 25 25 50% 23 15

Although the results of the self-play experiments
are not conclusive, they seem to indicate that using
move sequence trees in combination with the otoshi-

ana method can improve the playing strength of a
program. The program versions with a bonus value
of half a pawn and a quarter of a pawn both won
their matches against the program that was only
using the otoshiana method. The results of 27-23
for MST50 and 28-22 MST75 statistically only give
a probability of 71% that MST50 is stronger than
using only the otoshiana method and a 80% proba-
bility that MST75 is stronger. Matches with more
games are needed to reach a conclusion about the
merits of using move sequence trees.

From the self-play experiments there is a different
piece of data that seems to indicate that using move
sequence trees is an improvement. For each match,
the number of times a complete yagura castle was
built by either side was counted. The results are
given in the column Yagura of Table 2. It was found
that MST50 managed to complete the yagura castle
in 32 games, while the program only using the oto-

shiana method only completed the yagura 20 times.
MST75 also managed to complete the yagura more
often: 27 times while the otoshiana method only
completed the yagura 15 times.

Finally, from the self-play experiments it is clear
that if move sequence trees are used, a bonus be-
tween half a pawn and a quarter of a pawn is best.
MST25 lost its match 23-27 and MST100 was un-
able to win the match, indicating that a bonus of
a full pawn is too much. Furthermore, MST25 did
not build a complete yagura more often than the
program using only the otoshiana method, indicat-
ing that the bonus of a quarter of a pawn is too
small to guide the program in the right direction.
MST100 built a complete castle more often than
the otoshiana method, but less often than MST50

and MST75. This indicates that the bonus of a full
pawn is too large, leading to tactical oversights (like
giving away a pawn). The games then become early

fights and neither side is able to finish the castle for-
mation.

5 Conclusions and Future

Work

In this paper, a method using move sequence trees
was proposed to deal with the problems of the hill-
climbing methods used by shogi programs in the
opening and early middle game. The idea of this
method is to add evaluation not only to positions,
but also to moves that lead to these positions. To do
this, move sequences and information about move
frequencies in common shogi opening strategies are
extracted from a large database of shogi games and
this information is stored in a move sequence tree.
This tree is then accessed during normal search and
an evaluation bonus is given to moves that follow a
sequence in a move sequence tree.

Preliminary results for a partial implementation
of this method were given and even though these
first results are encouraging, further experiments
are needed to reach a conclusion about the feasi-
bility of the method.

The next step is to generate move sequence trees
for all the major opening strategies. Also, the evalu-
ation bonus attached to moves (which is currently a
fixed value) should be based on the move frequency
in the move sequence tree. Finally, it was some-
times observed that even though the move order
from which a position resulted was not in the move
sequence tree, the partial position (only sente pieces
or only gote pieces) was in the database. Therefore,
the initial selection of move sequence trees should
not only be based on the moves that lead to the cur-
rent position, but on whether the partial hashcode
of the position is in the move sequence tree.

The proposed method may not be the solution to
the problem of making a shogi program that can

-162-

play strategically at the same level of top human
players. However, based on the preliminary results
presented here, a full implementation of move se-
quence trees may be a significant enhancement of
the otoshiana method.

References

[1] R. Grimbergen and J. Rollason. Board Maps
and Hill-climbing for Opening and Middle Game
Play in Shogi. In J.Schaeffer, M.Muller, and
Y.Bjornsson, editors, Computers and Games:

Proceedings CG 2002. LNCS 2883, pages 171–
187. Springer Verlag, Berlin, 2002.

[2] H. Kume. Shogi Club 24 Saikyou Kifu Database.
Sekio Shobo, Japan, 2004. CD-ROM, (In
Japanese).

[3] H. Yamashita. YSS: About its Datastructures
and Algorithm. In H. Matsubara, editor, Com-

puter Shogi Progress 2, pages 112–142. Tokyo:
Kyoritsu Shuppan Co, 1998. ISBN 4-320-02799-
X. (In Japanese).

-163-

