
Dual Lambda Searh の高速化に向けて

副 田 俊 介† 金 子 知 適† 田 中 哲 朗††

Dual λ 探索の高速化手法を提案し，実験によって将棋の終盤における手法の有効性を示した．将
棋では終盤でも合法手の数が減らないため，選択的に良い手を読む必要があるが，終盤で重要な攻め
の速さなどの要素は正確に評価することが難しい．計算機の詰将棋を解く能力は df-pn アルゴリズム
に代表される技術の進歩により大きく進歩しているものの，トップレベルの将棋プログラムでさえ単
純な間違いを終盤で犯し逆転を許すことが珍しくない．本論文では将棋の終盤で有効である dual λ
探索を高速化する手法を二つ提案した．これら手法を実装し，Gribmergen の問題集から選んだ問題
を解かせたところ，問題によっては探索時間を 10 倍程度に減らすことができ，手法の有効性を示す
ことができた．

Enhancement of Dual Lambda Search

Shunsuke Soeda,† Tomoyuki Kaneko† and Tetsuro Tanaka††

We propose some search enhancement methods for dual λ-search, and conducted experi-
ments to show their effectiveness. Advances in Shogi endgames have been drastic with the
introduction of df-pn algorithm in solving checkmate problems. However, even the top level
Shogi programs still make simple mistakes in the endgame. In Shogi, the number of legal
moves does not decrease toward the end of the game, thus generally, the combination of
forward pruning techniques and heuristic evaluation function is used for endgame positions.
Even the use of rules and fiction tuned for the endgame cannot avoid the pruning of moves
leading to a winning position, overlooking of fatal moves by the opponent. Dual λ-search al-
gorithm proposed by Soeda takes into account of threats by both players, and suits searching
Shogi endgames. In this paper, we will propose search enhancement methods to improve the
search efficiency of dual λ-search in Shogi endgames. We have implemented these enhance-
ment to our Shogi endgame solver, and conducted experiments on problems chosen from the
Grimbergen’s test set. For some problems, the enhancement allowed the solver to search up
to 11 times faster than without the enhancement.

1. Introduction

The ability of computer programs to solve

Shogi checkmate problems has advanced drasti-

cally, mainly due to the introduction of df-pn search

algorithm7). This has enabled computer programs

to find a complicated winning sequence in Shogi

endgame that even a top level Shogi player could

easily miss. However, Shogi endgame in general is

still considered to be a difficult problem for com-

puters, and even the top level programs miss an

easy winning move, and lose a game where it could

have actually won4).

† Department of General Systems Studies,Graduate

School of Arts and Science, The University of Tokyo

†† Information Technology Center, The University of

Tokyo

To solve there problems, we have proposed a tac-

tical search algorithm called dual λ-search8). In

our previous experiments, we have shown dual λ-

search can handle Shogi endgame positions effi-

ciently. However, in these experiments, we limited

both the attack moves and the defense moves that

were generated. For some problems, our program

yielded incorrect results due to the forward pruning

of defense moves.

In this paper, we show some enhancement to dual

λ-search, and show that some Shogi endgame prob-

lems could be solved with dual λ-search without

limiting the moves generated.

2. Related Work

Tactical searches are efficient because they limit

their moves related to the specific goal they han-

-150-



dle and only search a part of the game tree. Thus,

they are still effective in such games that global

search does not work well. λ-search9), Generalized

Threats Search1), iterative widening2) were applied

to solve capture games or life-or-death problems in

Go, and proof number search and df-pn search al-

gorithm were applied to solve checkmate problems

in Shogi7).

Simulation5) was first proposed to solve effec-

tively positions with useless interposing piece drops

in checkmate search, and is also shown to be effec-

tive in a solver for the game of Go6). Assume that

position P is proved, and position Q is a similar

position to P . Simulation borrows moves from the

proof tree of P and try to find a quick proof for Q.

3. Dual Lambda Search

Dual λ-search is an algorithm for searching a bi-

nary valued game tree. It uses passes together

with different orders of threat sequences, and it also

takes into account threats by both players.

The basic idea of dual λ-search is to reduce the

number of nodes read, by reading only moves where

the attacker can keep giving threats to the defender,

while the attacker does not get attack backed by a

stronger threat by the defender.

To see if a player gives a threat to his opponent,

we use passes. The strength of the threat could

be represented by how many times the player must

have his opponent to make before the player can

win.

For example, if the player makes a check move

which is not a checkmate, the player can win his

opponent if the opponent makes a pass ☆. We call

this that the player is giving a threat level of one

to his opponent.

To remove slow attacks, we use simulation to-

gether with the pass by the attacker. On attacker’s

turn, we do a pass to see if the defender has a threat.

If the attacker has a threat, we use the proof tree

of the threat, and for each move by the attacker,

try to simulate the proof tree. If the simulation

succeeds, it means that move is a slow attack, and

☆ There are no passes in Shogi, and moves that does not

resolve checks are illegal in Shogi

thus should not be read.
/* For the attacker */

attack(Node node, level, p) {

/* See the value for smaller level */

if (level > 0) {

if (node.not_calculated(level - 1, p))

attack(node, level - 1, p);

if (node.isSuccess(level - 1, p)) {

node.setSuccess(level, p);

return;

}

}

child_nodes = generate_child(node);

/* Try pass and see if the defender has a threat

*/

node_pass = generate_child_after_pass(node);

attack(node_pass, level - 1, opp(p));

/* If under threat, use simulation to remove

* slow attacks

*/

if (node_pass.isSuccess(level - 1, opp(p))) {

for (i in child_nodes) {

simulate(i, node_pass);

}

}

for (i in child_nodes) {

defense(i, level, p);

if (i.isSuccess(level, p)) {

node.setSuccess(level, p);

return;

}

}

//all moves unsuccessful

node.setFail(level, p);

}

/* For the defender */

defense(node, level, p) {

/* We first have to determine the value for

* smaller level

*/

if (level > 0) {

defense(node, level - 1, p);

if (node.isSuccess(level - 1, p)) {

node.setSuccess(level, p);

return;

}

}

/* First try pass and see if this is a

* level position

*/

node_pass = generate_child_after_pass(node);

attack(node_pass, level - 1, p);

if (node_pass.isFail(level - 1, p)) {

node.setFail(level - 1, p);

return;

-151-



}

/* Now we try all the moves

*/

child_nodes = generate_child(node);

for(i in child_nodes) {

simulate(i, node_pass, p);

if (i.isSuccess(level, p)) continue;

attack(i, level, p);

if (i.isFail(level, p)) {

node.setFail(level, p);

return;

}

}

//all moves success for attacker

node.setSuccess(level, p);

}

4. Enhancements to Dual Lambda
Search

We propose two enhancements to dual λ-search,

and show their effectiveness with problems chosen

from Grimbergen’s test set3).

We propose two enhancements to dual λ-search;

delay defense threat and propagate proof tree.

4.1 Delay Defense Threat

When the defender makes a threat move to the

attacker, the attacker must reply to the threat be-

fore he can continue his attack. Most of the time,

the threat by the defender is useless, and the at-

tacker can defeat the defender when the defender

runs out of threat moves.

Thus it is efficient to first ignore threats by the

defender, and only read them after all other moves

are proved. We call this delay defense threat(DDT)

enhancement.
The pseudo code of this enhancements is as fol-

lows:
/* For the defender */

defense(node, level, p) {

...

child_nodes = generate_child(node);

/* First try non-threat moves */

for(i in child_nodes) {

if (is_threat(node, level, i) continue;

simulate(i, node_pass, p);

if (i.isSuccess(level, p)) continue;

attack(i, level, p);

if (i.isFail(level, p)) {

Fig. 1 Use proof tree of threat of the ancestor.

node.setFail(level, p);

return;

}

}

/* Now try threat moves */

for(i in child_nodes) {

if (!is_threat(node, level, i) continue;

simulate(i, node_pass, p);

if (i.isSuccess(level, p)) continue;

attack(i, level, p);

if (i.isFail(level, p)) {

node.setFail(level, p);

return;

}

}

...

}

4.2 Propagate Proof Tree

Often a tree proving a threat is also valid for prov-

ing threats in its offspring. When trying to prove

that the attacker has a threat against the defender,

first try to prove it with a proof tree of its ancestor

(figure 1). We call this propagate proof tree(PPT)

enhancement.

4.3 Experimental Results

We have implemented these enhancements to our

dual λ-search solver, and chose five problems from

the Grimbergen’s test set.

Our solver uses df-pn algorithm as the driver for

dual λ-search. Our solver generates all moves for

defense, but selected moves for attack. These are

check moves, moves that increases the mobility of

Rooks and Bishops owned by the player, capture

moves and moves that move pieces where, on the

-152-



Table 1 Number of nodes explored(less is better).

13 36 37 55 56

None 318863 90406 437024 252735 30372

PPT 318866 90363 424793 252526 30370

DDT 312623 90446 66545 22763 30372

BOTH 312619 90403 67604 22693 30370

next turn, can move to the 25 squares surrounding

the opponent King.

The problems chosen were problems 13, 36, 37,

55, 56. The reason these problems were chosen was

that their were relatively easy problems to solve.

For problems 37 and 55, the DDT shows great

improvement in the number of nodes visited, up to

11 times for problem 55. For problems 13, 36 and

56, the enhancements does not show significant dif-

ference in results.

5. Conclusion

We proposed two enhancements to dual λ-search,

and conducted experiments for their effectiveness in

Shogi endgames. The DDT improved performance

of the solver for some problems up to 11 times in

the number of nodes explored, but the PPT varied

in results, with very little influence.

References

1) T. Cazenave. A generalized threats search al-

gorithm. In Computers and Games, Vol. 2883

of Lecture Notes in Computer Science, pp. 75–

87. Springer, 2002.

2) Tristan Cazenave. Iterative widening. In

IJCAI-01 Proceedings, Vol. 1, pp. 523–528,

2001.

3) Reijre Grimbergen and Taro Muraoka. What

shogi programs still cannot do - a new test

set for shogi. In The 9th Game Programming

Workshop in Japan, pp. 40–47, 2004.

4) Hiroyuki Iida, Makoto Sakuta, and Jeff Rol-

lason. Computer shogi. Artif. Intell., Vol. 134,

No. 1-2, pp. 121–144, 2002.

5) Yasuhito Kawano. Using similar positions to

search game trees. In Games of No Chance, pp.

193–202. Cambridge University Press, 1996.

6) Akihiro Kishimoto and Martin Müller. Df-pn

in go: An application to the one-eye problem.

In Advances in Computer Games 10, pp. 125–

141, 2003.

7) Ayumu Nagai and Hiroshi Imai. Application

of df-pn algorithm to a program to solve tsume-

shogi problems. In IPSJ Journal, Vol. 43, pp.

1769–1777, 2002.

8) Shunsuke Soeda, Tomoyuki Kaneko, and Tet-

suro Tanaka. Dual lambda search and its ap-

plication to shogi endgames. In Advances in

Computer Games 11. Universiteit Maastricht

Institute for Knowledge and Agent Technology,

2005.

9) Thomas Thomsen. Lambda-search in game

trees — with application to go. Lecture Notes

in Computer Science, Vol. 2063, pp. 19–38,

2001.

-153-


