Using Partial Order Bounding in Shogi

Reijer Grimbergen, Kenji Hadano and Masanao Suetsugu
Department of Information Science, Saga University
Honjo-machi 1, Saga-shi, 840-8502 Japan
E-mail: grimbergen@fu.is.saga-u.ac.jp

Abstract

Using a weighted sum of feature values as evaluation function has some important drawbacks. If
an evaluation function with a partial order of features is used, information which is otherwise lost by
using a weighted sum can be preserved and better move decisions can be made. Partial Order Bounding
(POB) is a new search method that promises to be more efficient than earlier attempts to search with
partial order evaluations. Thus far, POB has only be applied to Go endgames. In this paper, we discuss
the use of POB in shogi. We outline the implementation decisions that have to made when using POB.
These concern the choice of the partial order evaluation, how to set the search targets in POB and how
to manage multiple iterations of POB. We compare the results of a number of different implementation
schemes of POB in shogi. The best scheme is able to find the correct move in 27 out of 50 next move
shogi problems, using an average time of 48 seconds per problem. We consider this a good starting
point for further research in Partial Order Bounding.

Keywords: Game tree search, partial order bounding, evaluation functions, shogi.

1 Introduction

The mini-max search strategy gives a simple the-
oretical answer for perfectly playing a two-player,
perfect information game. For each position in the
search, first check if the game-theoretical value (e.g.
win, loss or draw) for this position is known. If so,
return this value. If not, generate all legal moves
from the position and generate the positions from
these moves. For each generated position, this pro-
cess of returning a value or generating new positions
is continued. If the game-theoretical value can be
backed up to the initial position, the search termi-
nates and it is known what the result will be of play-
ing the initial position when neither player makes a
mistake.

For most interesting games, the general mini-max
search strategy is infeasible. The number of posi-
tions that must be generated to end the search is
prohibitively large. Therefore, rather than search-
ing all positions until the game-theoretical value
can be established, the search is terminated accord-
ing to some criteria (usually a depth or time con-
straint) and an evaluation function is used to esti-
mate the probability of winning from that position.
The value returned by the evaluation function is
backed up and used to decide which move gives the
best chances of winning the game from the current
position.

Many search methods carry over to different

games and even to different research areas, but the
evaluation function usually contains most of the
domain-dependent knowledge of a particular game.
For different games, a different evaluation function
needs to be designed. This is a very time-consuming
process, taking years rather than months. Despite
the time-consuming nature of designing a good eval-
uation function, most evaluation functions have a
rather simple design. For each position a number
of features fi, ..., f, is established. Often used fea-
tures are the number of pieces of different types and
the safety of the king. Complex game programs like
the chess program DEEP BLUE can have thousands
of features [1].

As a next step, to each of the features a weight
is attached and the evaluation function is now the
weighted sum of the feature values:

eval = z“: w; fi

i=1
This approach has been very successful. It is sim-
ple and easy to use in combination with efficient
mini-max algorithms. However, there are some im-
portant drawbacks of using a weighted sum for the

evaluation of a position [3]:

Unstable positions Let’s assume a simple evalu-
ation function for a chess-like game with only
two features, material and attack. Further-
more, the weights of these features are both

52

Position | Material | Attack | Eval
Py 0 0 0
Py 500 -500 0
Py -500 500 0

Table 1: Three positions and their weighted sum
evaluation

set to 1. Now consider the three positions P;,
P; and P; with the feature values given in Ta-
ble 1. From the feature values it can be inferred
that position P; is very stable and the player to
move probably has a lot of freedom to choose
the next move. In contrast, positions P; and
Py are very unstable. In P, the player to move
has sacrificed material for attack and can not
afford to let the attack lose steam or the mate-
rial deficit will be decisive. It is clear that these
three positions are completely different despite
having identical evaluations.

Long term strategic features In games where
the evaluation function is a combination of
short term tactical features and long term
strategic features, it is hard to control the
long term features. Giving large weights to
long term strategic features will lead to tac-
tical problems, while giving to little weight to
strategic features will make it impossible for a
game program to follow long term plans.

Close to terminal positions There are many
positions where only a single feature is enough
to determine whether the position is good or
bad. An evaluation function with a weighted
sum needs to calculate many unnecessary fea-
tures. This problem is usually attacked by us-
ing a fast and a slow evaluation (see for ex-
ample [1]), but this ad-hoc method can not be
expected to lead to a general solution to the
problem.

Partial Order Bounding (POB) is a search
method that tries to deal with these problems by
maintaining the different feature values throughout
the search instead of taking them together by a
weighted sum. This method has been applied to
Go semeai [3]. Because the problems mentioned
above also occur in shogi, we decided to try and
apply POB to shogi. We will first explain Partial
Order Bounding in Section 2. Then we discuss the
problems of having an evaluation function with a
weighted sum of features in shogi and explain how
POB can be applied to shogi in Section 3. We will
give some preliminary test results of applying POB

to shogi in Section 4 and end with conclusions and
suggestions for future work in Section 5.

2 Partial Order Bounding

2.1 Partial Order Evaluation

In Section 1 we described the potential problems of
using a weighted sum of feature values as evaluation
function. If possible, we would like to keep the com-
plete vector of feature values and only make a deci-
sion based on these feature values after the search
has finished. This should improve the quality of the
move decision.

The aim of a mini-max search is to find the best
move from the current position, i.e. find the move
which is better than all the other moves. Therefore,
it is not necessary to know what the exact probabil-
ity of winning is for a move. We only need to know
that this probability is higher than the probability
of all the alternatives. Therefore, we do not need a
weighted sum of features values as long as we can
compare the evaluations of different positions.

Figure 1: Partial order evaluation example

This is the main idea of having a partial order
evaluation. Evaluation features are ordered accord-
ing to their importance and positions are compared
by comparing the feature values according to the
partial order. An example of a partial order evalu-
ation is given in Figure 1. This partial order can be
interpreted as follows: feature f; is more important
than feature f» and feature f3, which are both more
important than feature f;. Using this partial order
evaluation it is easy to compare two positions P
and P, if the feature values of these positions are
known. Some examples of different feature values
are given in Table 2.

In general, to compare two positions P; and P»
according to the partial order of Figure 1, we first
compare the value of feature f;. The position with

P, P, Comp
AR ARl[A[AlR][f]|f
1026 [252510 20| 20|50 [P > P
10| 26| 25126120 |20 (2020 P, < Ps
1010 10|26 |10 | 10| 10|30 | P < P»

Table 2: Using a partial order evaluation to com-
pare positions

the higher value is better. If both values are the
same, we compare the values of feature f3 and f3.
If the values of both these features for P, (or Ps)
are higher than those for P, (P) than P, (P;) is
the better position. If the values of fi, f3 and f3
are identical, we compare the values of fs.

Ifis was always possible to compare positions per-
fectly according to the partial order, there would be
no reason to use a weighted sum of feature values.
A partial order evaluation would be efficient and al-
ways provide the answer about which position has
the highest evaluation. The problem of using a par-
tial order evaluation is clear when we try to compare
the two positions of Table 3.

Position | f1 | fa | fs | fa
P, 0[50 [20 | O
Py 10(15130] 0

Table 3: How to compare these two positions?

For both P; and P, the value of feature f; is
identical. However, for P; the value of f; is higher
than for P,, while for P; the value of feature fg is
higher than for P;. Using the partial order evalu-
ation, it is not possible to decide which position is
better. The reason for this is that the set {fs, fa}
is an antichain of the partial order. In general, an
antichain of a partial order is a subset of the par-
tial order for which all pairs of distinct elements are
incomparable.

Partial Order Bounding is a search method that
can find the best move in a given position for a
partial order evaluation with antichains. With this
search method, it is possible to keep a vector of
feature values throughout the search, which solves
the problems that occur when using a weighted sum
evaluation function.

2.2 Partial Order Bounding

As outlined in Section 2.1, the problem of how to
search if the evaluation function is not a weighted
sum of feature values, but a vector of feature val-
ues that are partially ordered can be reduced to the

problem of how to handle antichains in the partial
order evaluation. A simple approach to this prob-
lem is to keep partially ordered values in every node
of the search tree. However, in general this will lead
to large sets of incomparable options. There have
been attempts to reduce the size of the feature sets
by some method, but this leads to a loss of informa-
tion. Keeping the information about all the evalua-
tion function features was the exact reason for using
partial order evaluations, so this is not a desirable
solution to the problem.

Partial Order Bounding [3] is a search method
that avoids the problems of large sets of partially
ordered values by separating the comparison of the
evaluations from the process of backing up the val-
ues. The idea is to define a target vector with tar-
gets for each of the feature values in the antichain.
Search is then used to determine if the player who
is to move in the current position can reach this
target against all possible moves by the opponent.

As an example, consider the antichain {f,, fa} of
Figure 1. Let’s define two targets for the values in
this antichain: T} = {5, 3} and T3 = {6,4}. A sim-
ple example of a search tree to depth 2 is given in
Figure 2. Comparison between the bound and the
targets are only made at the leaf nodes of the tree.
For example, in node E, feature f2 has value 5 and
fs has value 7. If we compare these values to the
targets, we see that target T} is met, because 6 > b
and 7 > 3. However, target T3 is not met, since the
feature value of fa (which is 5) is lower than the
target value for fz in Ty (which is 6). If we look one
level higher in the three at node B, it is the oppo-
nent to select a move. Of course the opponent will
select the move where as many targets as possible
will not be met. From B, the opponent will select E,
and this means that in B it is possible to reach T},
but not 75. In the same way, the result in node C
is that neither 7} nor T3 can be reached. If we now
move to the root of the tree (node A), the player
to move will select the move that leads to B over
the move that leads to C, because this guarantees
him that at least target 7} will be reached. There-
fore, from this search tree we can conclude that the
player to move can reach target T}, but not 75.

3 Partial Order Bounding in
Shogi

The evaluation function in shogi suffers from the
same problems that were explained in Section 1.
Therefore, we wondered if Partial Order Bounding
could be a viable alternative in shogi as well. To
apply Partial Order Bounding in shogi, a number
of important decisions have to be made [4]:

—54—

Tl: +

T2: -
T1l: +
T2: -

B
D E

(11,5) (5,7)
Tl: + Tl: +
T2: + T2: -

Tl: -
T2: -
C
F G
(6,8) (4,3)
Tl: + Tl: -
T2: + T2: -

Figure 2: Partial order bounding example

e Which partial order evaluation to use, or more
precisely, which antichain(s)?

e How to set the search targets?
e What to do if the search target is met or fails?

e To what depth should be searched?

We will now discuss each of these in detail.

3.1 Partial Order
Shogi

An evaluation function for shogi is quite complex
and can have many incomparable features. Each of
these incomparable features is a candidate for an
antichain. In our research, we decided to start with
the following simple antichain:

Evaluation in

e Material
e Strength of attack
o Strength of defense

The reason for choosing this simple antichain is that
we wanted to have a partial order evaluation that
was representative for shogi. The three features
given here are part of every evaluation function for
shogi. Furthermore, it is expected that these three
features will dominate most other features, so that
it will be quite difficult to find an antichain which
has only a subset of these three features.

3.2 Setting the Search Targets

Setting the search targets is an important problem
in POB. If the search target is set too low, then
there will be many moves for which the target is
reached and it will be impossible to distinguish be-
tween these moves. In contrast, if the target is set
too high, there will be no moves for which the tar-
get is reached and no decision can be made about
the next move to play.

Our solution to this problem is to perform a shal-
low alpha-beta search before the actual Partial Or-
der Bounding. This alpha-beta search is done with
a scalar evaluation function, but the values of the
three features of the highest evaluation are remem-
bered and this becomes the first target of the Partial
Order Bounding phase [4].

3.3 Success and Failure

As mentioned in Section 3.2, setting a target too
high or too low is an important problem for Partial
Order Bounding. POB will not give good results if
only a single target is searched. If such a target is
reached, it is unknown whether or not an even bet-
ter target can be reached. More importantly, there
can still be a number of moves for which the target
can be reached, which means that no decision can
be made about the next move to play. Therefore,
in this case the target should be increased and a
new POB search performed. On the other hand, if
a target is not reached, the target should be lowered
until the target is met and a move can be selected.

Therefore, POB is actually a series of searches

Move POB iteration
123465

My [T]|F

M, F

M T|F|F|T

M, F|F|F

Table 4: Several POB iterations to find the best
move. T means the target has been reached, while
F stands for failure to reach the target.

with different bounds that is continued until the
best move is found or time runs out. Table 4 illus-
trates this idea. In Table 4 the search target of the
initial search is set too low. From the initial posi-
tion there are four moves that can be played, but
already the first move satisfies the target. In this
case, none of the other moves needs to be searched
and POB ends successfully. However, we still don’t
know which target can be reached and which move
is best. Therefore, we set a higher target and search
again. This time My and Mj fail to meet the target,
but by playing Mg, the target is reached. Now we
know that My is better than M; and M3, but we
still can make no difference between M3 and M,.
Therefore we raise the target again and now both
Mj and M, fail to meet the target (note that it is
no longer necessary to search M; and M;). Since
the target was set too high we lower it (but not as
low as in iteration 2) and search both M3 and M,
again. Again for both moves the target fails, so we
need to lower the target again. This time only M3
meets the target and we know that Mj is the best
move.

As can be concluded from this example, it can
take a number of POB iterations before the opti-
mal move is found. Each iteration takes an amount
of time, so for POB to be useful in practice, it is im-
portant that the targets are set in such a way that
the number of iterations is kept to a minimum. An
additional problem is which search targets to in-
crease when there are multiple features in the an-
tichain. For example, if a target with values for
material, attack and defense fails, should all three
feature targets be increased, only one or a combi-
nation of the three?

Therefore, one of the most important problems
of applying POB is to find a good scheme for low-
ering and increasing search targets. We have not
been able to come up with a general method for
doing this. Although we will continue to investi-
gate this problem, we believe that this is a tuning
problem of POB. Therefore, it is highly likely that
it is only possible to empirically compare different
schemes for increasing and decreasing search tar-

gets. Just like tuning evaluation functions to a cer-
tain game and even to certain situations in a game
(e.g. opening, middle game and endgame). POB
target settings should also be tuned to fit a certain
game best. We will describe some of the schemes
we tried in detail in the next section.

3.4 Search Depth

Another problem of POB is the depth of the search.
In many applications with specific search targets
(e.g. tsume shogi) it is easy to test if in a certain
position a target is met or not. However, in POB
this is not the case. Even when a search target is
met, a deeper search could reveal an opponent move
that makes the target fail. One could argue that it
is safe to say that a target can be reached when the
target is reached in a certain position where it is the
player to move (or the target can not be reached if
it fails in the current position and the opponent is
to play). Although we did not investigate this, we
feel that this type of nullmove condition is rare and
will not avoid a search explosion.

We also have not found a general solution to the
problem of setting the search depth. We have com-
pared different search depths, using standard meth-
ods like quiescence search to make the values of the
evaluation features more reliable.

4 Results

As pointed out, there are many ways to implement
POB. We have tried a number of different settings.
In this section we give the implementation schemes
that turned out to be the most successful.

4.1 Setting the Targets

We have compared three schemes for setting the
targets between POB iterations:

Scheme A Increasing (if the current target suc-
ceeded) or decreasing (if the current target
failed) all three search targets (material, at-
tack, defense) by the same amount. Several
tests showed that for our implementation an
increase or decrease of 250 (a pawn is worth
100 points in our evaluation function) gave the
best results.

Scheme B Giving more weight to material. This
is done by increasing or decreasing the value of
the material feature by an amount of 400 and
the attack feature and the defense feature by
100.

Scheme C Giving more weight to attack. This is
done by increasing or decreasing the value of
the attack feature by an amount of 400 and the
material feature and defense feature by 100.

We also tested schemes where more weight was
given to the defense feature, but were unable to find
values that improved results over the use of Scheme
A. This could indicate that defense is not actually
part of an antichain.

If a target fails or succeeds for all the remaining
candidate moves (iteration 3 and 4 in Table 4), the
target changes are halved. For example, if Scheme
A was used and the target of iteration 2 was {250,
250, 250} and M; and M; both fail to reach the
target {500, 500, 500}, then the target for iteration
4 becomes {375, 375, 375}.

4.2 Search Depth

In our POB implementation, there are two areas
where search depth is important. First, the depth of
the alpha-beta search that is used to determine the
first search target. We used a 3 ply search for this
initial alpha-beta search. This turned out to be the
only option on the relatively slow machine (Pentium
III, 750 MHz) we used to run our experiments on.
A 2 ply search was unable to provide a reasonable
search target, while a 4 ply search often took too
long to finish.

For the actual POB iterations, we compared the
results of 3, 4 and 5 ply searches. For our tests, we
used 50 next move problems from Shukan Shogi.
We only used the first problem of the six problems
that are given in each Shukan Shogi issue. The
problems we used are from next move sets 760 to
799. The results are given in Table 5, Table 6 and
Table 7

A B C
Solved problems 17 17 16
Avg. time per problem | 0:07 | 0:10 | 0:05

Table 5: 3 ply Partial Order Bounding

A B C
Solved problems 23 19 27
Avg. time per problem | 1:00 | 1:47 | 0:48

Table 6: 4 ply Partial Order Bounding

From these results we can conclude that 4 ply
Partial Order Bounding using Scheme C gives the
best results. With this method 27 problems can be

A B C
27 23 25
17:23 | 26:13 | 12:19

Solved problems
Avg. time per problem

Table 7: 5 ply Partial Order Bounding

solved in only 48 seconds on average. b ply Partial
Order Bounding is unable to do better and takes a
lot more time.

We were surprised that giving more weight to at-
tack leads to better results than giving more weight
to material. A majority of the test problems have
solutions that aim at winning material and this was
expected to give an important advantage to Scheme
B. However, for all search depths, Scheme B had the
worst results. Further testing is needed to conclude
if this bad performance is caused by increasing the
material target by 400 or if increasing the attack
target by 100 instead of 250 had the side effect of
finding ways to gain material too late.

Detailed results of 4 ply Partial Order Bounding
for each test problem are given in Table 8. Here it
can be seen clearly that setting the weight targets
has an important impact on the test results. Even
though Scheme A, B and C solve 23, 19 and 27
problems respectively, only 6 problems are solved
by all three. This raises the important question of
the possibility of searching positions with different
kinds of search targets. This could be done in par-
allel to improve search speed.

5 Conclusions and Future

‘Work

In this paper we have presented the implementation
issues and some preliminary results of applying Par-
tial Order

Bounding in shogi. Partial Order Bounding is a
relative new search method that has not been inves-
tigated thoroughly yet. From our experience with
implementing POB in shogi, we can conclude that
POB can not be considered a general solution to the
problem of using a partial order evaluation instead
of a weighted sum of features. POB introduces new
problems when it is used in a specific game. The
choice of the partial order evaluation, the method
of setting search targets and the problem of how
to change targets between POB iterations requires
careful tuning.

There is also a general problem with POB that
we have not been able to solve: what to do if time
runs out without finding a single best move. Should
one of the moves that satisfied the target picked
at random? We have started investigating the op-

Pos A B C Pos A B C

760 | 1:23 T X [0:31 [X [1:62 [O || 776 | 3:12 | X | 14:39 | X | 1:00 | O
761 | 0:53 | X | 0:07 | x | 0:10 | x [[776 | 0:68 | O | 0:12 | x {0:256 | O
752 | 2:23 | x| 0:38 | O o027 | x || 717 062 | x| 0:19 | O f0:15 | %
763 | 0:43 | X [0:13 | O|0:11 | O [778 | 1:08 | O | 0:21 | x [0:22 | %
754 | 2:31 [x | 0:19 | x |0:42 | x [[779 | 8:14 | X | 0:46 | O | 1:45 | O
755 | 1:38 | X | 827 | x | 0:18 | x || 780 | 0:23 | O [0:04 | x | 0:03 | X
756 | 1:22 [O | 0:25 | O | 0:24 | O || 781 | 19:24 | X 1:32 | X | 0:38 | X
757 | 3:17 [X | 1:06 | X [0:18 | x || 782 | 0:22 | x | 0:13 | O | 0:02 | O
768 | 0:63 | O 0:22 [O]0:20) O || 783 | 1:10 | X | 0:17 | X | 0:16 | X
759 | 13:13 | X | 4:50 | x | 7:06 | x [784 | 1:21 | O 0:26 | O | 0:19 | x
760 | 4:24 | X | 3:02 | X | 1:05 | x || 785 | 2:46 | X | 5:656 | X | 0:56 | O
761 2:03 |O| 0:26 |O|[0:14{ O || 786 | 1:08 | X | 0:36 | X | 0:18 | X
762 | 0:67 | X | 12:30 | X | 0:39 | x || 787 | 0:18 | x | 0:06 | O | 0:05 | O
763 | 5:38 | X | 2:38 | X [2:04 | x || 788 | 1:13 | x | 0:41 | O [0:29 | O
764 | B5:16 | X | 3:38 | X [0:44 | x || 789 | 1:57 | O | 0:27 | x | 0:13 | %
765 | 7:33 | X | 3:47 | x | 1:67 | x |[790 | 1:47 | x | 8:07 | X [057 | O
766 | 0:47 | X [0:22 [X | 0:14 | O | 791 | 6:02 | X | 4:12 | O |0:28| O
767 | 1:04 | X | 0:24 | X 0:16 | X || 792 | 12:04 | X | 4:57 | x | 2:05 | %
768 | 1:33 | O | 0:31 | X | 0:19| x || 798 | 0:06 | O | 0:02 | O | 0:04 | X
769 | 0:15 | X | 0:06 | X [0:08 | X || 794 | 3:39 | O | 1:3¢ | O | 0:30 | x
770 | 0:21 (O 0:10 |O[0:03! O {795 | 5:52 | O] 0:67 | x | 0:28 | O
71| 1:43 |O [0:40 (O 0:28| O {796] 0:40 | O | 0:09 | O[0:14]| O
772 | 0:26 [X | 0:02 | X | 0:04 | x || 797 | 3:21 | X | 4:35 | x | 0:57 | %
773 | 4:11 | X | 0:13 | X [1:08 | x || 798 | 0:26 | x | 0:08 | O | 0:02 | x
774 [10:10 | X [1:12 | X | 0:47 | x || 799 | 0:43 | x | 0:21 | O | 0:17 | %

Table 8: Time and results for 50 next move problems from Shukan Shogi using three different types of
POB

tion of reserving a certain amount of search time
to perform normal alpha-beta search on the moves
for which the target is reached [2]. So far, we have
not reached any conclusion about the feasibility of
this approach. Therefore, this remains a target for
future research.

Our research shows that using conventional
search still outperforms POB. However, we also be-
lieve that the results show that POB is a promising
search method in shogi. For example, using differ-
ent search targets in parallel can be an important
future research topic.

References

[1] M. Campbell, A.J. Hoane Jr., and F-h. Hsu.
Deep Blue. Artificial Intelligence, 134:57-83,
2002.

[2] K. Hadano. Improving Partial Order Bounding
in Shogi. Graduation thesis, Saga University
2003. (In Japanese).

[3] M. Miiller. Partial Order Bounding: A new Ap-
proach to Evaluation in Game Tree search. Ar-
tificial Intelligence, 129:279-311, 2001.

[4] M. Suetsugu. Using Partial Order Bounding in
Shogi. Graduation thesis, Saga University 2002.
(In Japanese).

