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I. Introduction 
Go1 is a most challenging game to program. The'size ofthe Go board and the 

nature of the Go game prohibit 由e use of c1assic full-board game-tree search paradigm 
used success乱llly with chess and many other two-person perfect information games. 
Go has a very high branching factor, about 250 on the average. 1t gene凶es a huge game 

600 
tI芯e of order in the neighborhood of lOuvv. Classical full board game-tree search can only 
scralch the smface of it. NxN Go has been proved to be P-space ha1'd [Lichtenstein and 
Sipser 1980] and exponential-t出le complete [Robson 1983]. 

Go programmers have found that understanding Go game positions is extremely 
hard for thc maじhinc. Static evalllution 011 00 board c011t�ll1'ations is essentially 
impossihlc to achicvc any reasonahly high degree ()f accuracy on 陀gularbasis (except fo1' 

11ea1' end games and very calm positions). 
Despite the intrinsic combinatorial explosion and positional understanding 

problems, computer Go has made encouraging progress 担血e past 30 years. The s紅eng血
of Go programs has improved 仕omtotal novice level to intermediate amateur leve1. 
In this talk, we will discuss the following main topics: 
a. The essential Go knowledge 血at a program must have to play reasonable games and 江s
representation and org佃ization.

b. Various search methods 出at can be used to obtain knowledge and to help make move 
decision. 
c. Move decision strategies 出atcu町ent Go programs use 
d. Suggestions fo1' a new move decision strategy and an improvement to current 
p紅adigms

11. Knowledge 
00 is a tenitorial game. A 00 program looks at black and white stones scattered 

011 a 19 by 19 grid then it needs to 且gure out each side's tenitOlY and potential tel1'ﾎto1'y. 
There is a huge gap between the two ends. lt is logical to use a hierarchical model 

l c1'eating intelmediate steps and knowledge suuctures to bridge the gap. A t叩ypi'お.ca叫
hi吋ie引ra羽加a仰11'叶t

Stω()刊mes 一 Blocks 一 Cha瓜ills 一 01'0川ups 一 Tell'i江tωory

I ThegむneGo is pla;戸don a 19X19 grid using black and white stones. 百lere 訂etwo players. One uses 
black stones and 血e other uses white stones.τbey altemately place 白eir stones one at a time onωsome 
empty board intersection po泊ts. Unlike chessman, a stone never moves, but it may disappe釘企om也e
bo紅d， called captぽed， when it looses all i岱 libぽtiesi.e. completely surrounded by opponent's stones. Wi也
出eexception of Ko points, every empty grid point is a legal position for next move.百le objective of the 
game is to secure more grid po凶， called te凶toη，出血血e opponent does. Go, just like chess, is a two・

person perfect information game. 
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We shall discl1sS each level in order, in the following 1i.ve sl1bsections. 

11.1 Stones and input 
A program needs to know the cunent stone distdbl1tion on the board 叩d history 

move sequence (so it knows who is to play next, any ko or tliple ko situations , ...) • 
Logically, the board can be viewed as a two-dimensional, 19 by 19, aITays ofBlack, 
White and Empty. But for convenience of pattem matching, we usually add several 
layers of boarder around the board so that pattem-match routines do not have to 
constantly worry about invalid aITay indices. So it becomes a 2x by 2x two-dimensional 
餠Tay ofBlack, White, Empty 叩dBoarder. In order to avoid implicit multiplications 
associated with two-dimensiona1 array access, the board is declared 出 a one-dimensional 
aITay in many Go programs for efficiency re鎚on. The game history can be stored 回 a

stack to allow fast move execution and undo (during search look-ahead). 

11.2 Blocks and capturing 
A bock, also called string , is a set of adjacent stones of one color. 1岱 stones 紅e

captured in unison when they loose their libel1ﾌes (empty adjacent points). Ifwe view a 
board configuration as a graph , with stones as nodes and any two veltically or 
horizontally adjacent stones of same color determining an edge , then a block is a 
じりmponenl of this graph. Depth-lirsl-searじh based graph-じomponenl algOlithm can be 
used to identify hlocks efficiently. 

The capturing status 01" blocks can be classi1�d inlo three calegOlies: 
No danger -the other side won't he able to cap札ueit.

Critical -if the other side plays tïr引， it can be captu阻止 ifthe bock side to play 1irst it 
じan esじape.

Dead -there is no way to escape even the block side plays OOt. 
A Go program usually use captuling tactic search routines, see ill. Search, to 

detelmine 出e status of each block. T 0 save time, blocks wi出 many liberties, say 5 or 
more，紅e automatically classified 倍、od組ger". Some programs use heuristics to help 
the classificationjob. Ladder routine can 白ld a continuous Atali way to cap加re a block 
with two liberties. It h槌 an average branching factor close to 1 and is extremely fast. 
Ladder should be 如 essenti叫 module of any Go program. 

11.3 Chains and connectivity 
A chain is a collection of inseparable blocks of same color. There are three ways 

to recognize the connectivity oftwo blocks: 
Heuristic -if two blocks have two or more common libelties or share one protected 
libelty, they arち in the same chain. 
Pattern match -connection patterns can be l1sed to recognize connectivity. 
Search -goal orienLed local conneclﾍon search can be L1sed. 

1l.4 Groups and safety 
A grol1p is a strategic l1nit of an almy 01' stones. It consists of one or more chains 

ofsamp じ0101・ plus dead opponent blocks, called the prisoners, connected throl1gh empty 
poinlS-WiLh in!lucnce above a Lhreshold. For details, see l Chen 1 Y89 J. 

Zτbey are called the spaces of the group. 
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Every stone not in a dead block radiates intluences across the board. This 

in�1uence is at maximum at its immediate neighbOling spaces 叩d decays 出 distance

111じ reases. Many programs use intluence method. The int1uence propagation is 
prograIl1mcd diffelで ntly though. For cxamples , Go Intellect uses exponential decay with a 

distanじe reduction factor 同， Many Faces lIses linear decay l/distance. 

011じe groups are identiíïed, the numbers of、 eyes they have can be decided via 

heuristics , pattems , or life/death search. 
a. Heuristics -[Chcn 川d Chcn 1999] prescnts a powerflll classit�ation of eye-point 

lypcs based on diagonal index and heUlistic down grading 1U1eS. Each eye region's eye 
nllmber can be estimated helllistically. For example , the number of eyes in an eye-region, 
with no defi.ciency and pdsoners , c組 be detelmined by the following heudstic table, 
where Ext(R) is 出e # ofsu口ounding points of region R. Mark Boon was 血e 血:st person 

drew my attention to the rel幻ionship between Ext(R) and the number of eyes 出at R has. 

Lenl!th of Ext(R) N o. of eves 

く=6 1 
7 1.5 
8(Square Four) 1 

8(Curved Four) 2 

8(any other shape) 1.5 
9(containing a Square Four) 1.5 
9(not containing a Square Four) 2 

>= 10 2 

わ. Patterns -many programs use eye pattern libraries to determine eye numbers. 

じ. Life/death search -iL is more reliable than heuristics and pattems but it is also more 

time consuming. Usually , it works better when the group is nearly completely surrollnded 
and not as accurate when 出e group is more open. [Wolf 1991 & 2000] 

The safety 01' a grou p is determined by its eye number, its ability to expand 
(cmpty neighbors). to 11111 (freedom) , to connect to friendly groups , and the safeties of 
ad‘Jacent opponent groups. 

11.5 Territory and potential territory 

T erritOly can be estimated by me硝llling intedor spaces (spaces sUlTounded by 

grid points belonging to same group) and pdsoners (dead opponent stones), adjust by the 
safety ofthe group. A group with low safety should be counted as opponent's territoη. 

The numbers of captured stones 企omeach side 紅ee邸Y to keep track and wil1 be 
included in the sCOlIDg under Japanese mles. IfIng Chinese mles 紅e used, we can Stllit 
with group area (including spaces, stones，組d prisoners) 叩d safety. Am可or source of 

evaluation e町or comes from the safety estimate when a group is unsett1ed, especi叫ly in 

the middle of a 且ghting. For that reason, Goliath counts a grid point 酪 black， white , or 
unsettled ー clisp 1, -1 , or O. Most programs use fi'actional numbers in attempts to capture 
unceltainty. For examples, Go Intellect uses 1164 point as basic measudng unit & Many 

Faces lIses 1/50 poinl. 
An cven more di f1‘icult pmt ()f evaluatﾍon is on potential tenitory -how to 

cvaluaLe the valllcs of olltside intluence , thickness , and moyos? The int1uence function 
can only play a limited role here. The number 01' additional moves needed to sUITound a 
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moyo into secure tenitory is a useful knowledge. [Z. Chen 2000] suggests count each 
extension of outside stone as 3 points of potential te凶tory at open血g. For a nearly 
completely sUITounded weak group, 0由er・出an almost dead and very light ones , he 
discounts potential tenitory by (16/number of additional opponent moves needed to 
sUlTl1Und the group)*(2 ・ #eyes). Much additional Go knowledge is still needed to get 
reasonably good estimate 01' potential te町itory. Static evaluation functions in Go 
programs today are 1'ar t�'om accurate. At a computer Go toumament, one can frequently 
observe that two じompeting (top) programs have a dif1'erence on game evaluation ofmore 
Lhal1 30 poinls ¥)11 a S<lmc board じ o l1 tïguration. 01'じllurse ， the exact aじcurate evaluation 
ii.ll1ction has the same complexity as 出e whole game of Go , which is beyond reach. An 
evaluation function 出at can produce good approximation most of the time seems still 
extremely difficult to create. 

111. Search 
Search is a most powerful tool 1'or computer games, with Go included. We can use 

search to discover knowledge of captudng , connecting, eye-making, terdtory-
sUITounding, •• .etc. We c組 roughly divide it into local go叫 odented search and global 
move-selection search. We shall discuss them in the next two subsections. 

111.1 Local goai oriented search 
Local searches generate and test local moves for achiev血gsomespec温c goa1 that 

can be measured locally. The following is a list of common local goals and 也eirnatural 
basic evaluations. 
Capturing: 
Goal -cap回re one block 
Evaluation -number oflibelties of the block 
Semaei: 
00a1 -capture opponent's block before opponent captures our block for two adjacent 
hloじ ks

E valuation -number of relati ve liberties of the two blocks 
Multi-blocks capturing: 
Goal -capture one of a set of related blocks of same color 
EvaluaLiol1-numbcr ofLoLal weighted liberties (with blocks with fewer libelties caITy 
morc wcights) 
Connection: 
Goal -connecting two chains into one chain 
Evaluation -distance between two chains 
Life and death: 
Goal -mはing two eyes for a group 
Evaluation -number of eyes ofthe group 
Territory: 
Goal -sUlTound more tenitory 
Evaluation -local territory estimate 

The candidate movegeneration should be highly selective using heudstic domain 
knowledge. For example, in captur力19 search, if one tdes alllibelties, all secondary 
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libelties (empty points adjacent to libelties), and all chain connection points，出en the 
resulting local search will be way too slow to be practic叫lyusefuL HeUlistic knowledge 
needed to reduce the branching factor of the search. One such heuristic is that a libelty 
with higher number secondary new liberties should have higher priolity. Useful search 
algorithms for local search include: 

Selective alpha-beta and its variations -FOlWard p1Uning is gene凶ly used to speed-up 
the search. lterative deepening is useful for time control. Oenetic algorithrns can be used 
to tune-u p search par加neters.

Proof-number search lAllis & al. 1994] -Combining with heuristic candidate move 
selection, it is e民ctive for local Boolean valued goal oriented search. 
Lambda-search [Thomsen 2000] -lt guarantees the COll'ectness of出e search result, but 
it won't be fasl enollgh to solve complex tactic problems in real time. 

111.2 Global move-selection search 
A Go game has abol1t 250 legal moves available at each turn On the average. For 

any global seanじ;h al抱go】川江r叫11n tωo > wo山)rk， it h 凶 to be selective on move candidates. Modifi.ed 
Alpha-Bela searches are lIsually l1sed t"or this pllrpose. 00 Intellect l1ses global selective 
search to make move decision IChen 1990, J 998 , & 20001. lt has about 20 goal odented 
1110ve genera lOrs , each generales 0 or more moves with associated move values. A linear 
combination 01' each move's move-values fi'om all move generators detelmines 血e

priority of the move. Only about a dozen or so top candidate moves, those with highest 
priolities，創:e actually tlied on the board. After two plies , any stable node is evaluated 
without fUlther node expansion in the global search tree. An unstable node must expand 
unless it reaches a predetermined depth limit. The mini-max back up ofthe evaluations of 
the terminal nodes combined with 血e urgency values of candidate moves detelmine 血e

move selection. 

B* [Berliner 1979] and probability based B* [Palay 1982, Berliner & McConnell 
1994] are best-first search procedures which may handle high branching factor well. For 
B * to work, a tight optimistic bound and pessimistic bound needs to obtain 企om node 
evaluation. Othelwise, the algod血mwon't converge in real time. Progr創nJ加lmy uses a 
Bたlike global search. The probability distdbution required 1'01' probab出ty based B * is 
di1'ficlllt to constmct in Go. 

1 V. Move decision strategies 
In this section , we'll disCllSS move decision strategies used by current 00 

programs. They can be roughly divided into 1'our categories: static analysis, tly and 
evaluate, global selective search , and incentive/temperature approximation. There are 
some other approaches to move decision mak.ing in use today, such as neuron networks 
and pallcrn malじhing lﾌ"llm huge Library l>rprotessional games, bul they failed to produce 
strong progrωns. 

IV.l Static analysis 
Programs in this categOly do not do global search, but perform v紅白us goal 

odented local searches. Since these local searches do not need to perlorm for each node 
of a global search tree, they tend to be more thorough. Each program has its own set of 
move generators to suggest candidate choices. Programs Dragon, Explorer, & FunGo are 
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in this category. Dragon lIses pIioriLy scheme. It divides possible moves into 13 pIior江y

kvds an� sCkclS lhc movc in thc highcst non-empty priority level with the biggest move 
va111c pmvi�d hy thc re1aled 11l0VC gencratOlい). Explorer adds the vallles from a11 move 
generatl>rs 1'or each point then select the point with max.imum sum to play. FunGo uses 
the maximum value over a11 move generators for each point and more sophisticated and 
time consuming tasks will be done on 出e 18 points with highest values to make the final 

selection. 

IV. 2 Try and evaluate 
Candidate moves are genera民dthen a thorough evall1ation is pelformed with each 

candidate move added to 出e board in tum. The one with highest evaluation will be 
chosen. GnuGo, G04++, Many Faces use 出is 副首egy. GnuGo's move generators do not 
assign valuations but rather move re出ons. The ac回al valuation of the moves is done by a 
separate single module. GnuGo's source code is in 出e public domain: 
httn://www. t!Il U.org/softwarでlímul:!o/deve1.html 
Go4++ uses pattem matching to generate large nl1mber of candidate moves with ranking. 
A thorough evalllalion oase� on a connectivity probability map is �ne on each terminal 
ll11dじ l)r lhis トp1y gl11ba1 scarch. Many Faccs performs a 4uiescence search for the 

evalualion 01' each じandidate move. The search r芭sult is modi1�d by the estimate of 
oppOl1enl's gain i1' playing locally firsl. Move generators in Many Faces generate (reason, 
value) pairs 1'or each candidate move. Maximum value is taken in a reason categ01y f01' 
cach poinl and va111cs arc addcd ovcr difterent じ ategories for a same move point. 

IV.3 Global selective search 
Progr細s prerfOlm some vaIiation of吻恥beta look-ahead wi血 heutistically

selected small set of move candidates at each non-terminal node. The mini-max back up 
determines the move 釦d scoring estimate. Programs using this s紅ategy include Go 
Inte11ect, SmattGo , Indigo , Go Master, Jimmy. Go Intellect uses quiescence search 
modified by urgency. SmattGo uses iterative deepening and widening. Indigo performs 
global seat'ch with urgent moves and calm moves done sep紅ately. GoMaster converts 
evely出ing to points in evall1ation including influence, thickness , sente, gote,.. .etc. 
Jimmy pelfolms global selective seat'ch using Bホ typeupper and lower bounds associated 
with each move candidate. 

IV.4 Incentive/tem perature approximation 
Programs in this categ01y consider consequences of either side playing fir司 on a 

10ca1 situation. They include HandTalk, GoMate , Wulu , Hmuka, KCC Igo , Golia出，
GllSlar. and Gl>10is. Programs HandTa1k , GoMate , and W1I1u use the sllm ()fmove vallles 
t>r oolh si�s mo�t�� oy "move effiじiency" to �ci� the move to play. Locall�k-
ahea� are pertl>lmcù Ollt no glooallook-ahea�. Haruka performs 1-4 generallocal 
searches , calle� mail1 searches, each with abollt 10* 10 sじope and search dep血 3-5 ， width 
()-り • KCC rgl > iÙl忙kl山ご訂n礼lli山i Jïcs (じCI汀ri計江川it比川ti化tじ;λ川刈a川.11 arc，凶l悩s t出h刊削c山3訂11 perfo川}ηrms 10犯cλ沿刈a川11 searches with candidate moves 
l1lost1y from pattem matching. Go1iath pe凶】Ims two 10cal searches for each clitical area, 
one with either side playing t�st. The biggest difference on the res111ts ofthe two seat'ches 
determines the move selection. Candidate moves at"e fi'om pattem libraties with pattems 
represented by b江 sttings. [Boon 1989] 
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V. Conclusion 

Thcrc is 11ll sil1glc mClhuu lhal rcally UUl1lil1alCS lhc rcsll1lclhous. Pcrforl1lancc of 

a program has a 10l to UO with the implementation cllort -especially on how much usefl.ll 

Gll kl10wlcugc lhc programmcr(s) has programmcu il1to. It is imp0l1ant to rollow goou 

programming practicc so that thc program can bc modified/improved conveniently over 
1I11lじ.

UじじりI1lpOSilioll scarch I Mucllcr 1 りりり I has suunu thcorelicallﾌJundation in 

comtヲinatorial gamc theory [Berlekamp & al. 1982J. UnfOlt l.lnately , except during late 
stage end game, a ml.ltually independent decomposition ofthe board is impossible. We 

propose a modit�d decomposition search as follows: we loosely identify active areas of 

the board then perfOlm variol.ls local searches as suggested by the combinatorial game 

theory for each area, allowing the arealscope of the search grow dynamically and 
evaluating the telminal nodes globally on the full board. 

Most ofthe global search perfOlmed by programs today based on evaluation of 

points. But the reward l�.ll1ction ofGo game is really binmy -win or lose. Winning a 

game by 100 points is the same as winning a game by 1 point -a win. So it is more 

lIseflll for the static evaluation function to estimate the probability of winning in stead of 

the expected number of winning points. 
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