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I. Introduction )

Go' is a most challenging game to program. The size of the Go board and the
nature of the Go game prohibit the use of classic full-board game-tree search paradigm
used successtully with chess and many other two-person perfect information games.

Go has a very high branching factor, about 250 on the average. It generates a huge game
tree of order in the neighborhood of 10%%. Classical full board game-tree search can only
scratch the surface of it. NxN Go has been proved to be P-space hard [Lichtenstein and

Sipser 1980] and exponential-time complete [Robson 1983].

Go programmers have found that understanding Go game positions is extremely
hard for the machine. Static evaluation on Go board configurations is essentially
impossible to achicve any reasonably high degree of accuracy on regular basis (except for
near end games and very calm positions).

Despite the intrinsic combinatorial explosion and positional understanding
problems, computer Go has made encouraging progress in the past 30 years. The strength
of Go programs has improved from total novice level to intermediate amateur level.

In this talk, we will discuss the following main topics:

a. The essential Go knowledge that a program must have to play reasonable games and its
representation and organization.

b. Various search methods that can be used to obtain knowledge and to help make move
decision.

c. Move decision strategies that current Go programs use

d. Suggestions for a new move decision strategy and an improvement to current
paradigms

II. Knowledge

Go is a territorial game. A Go program looks at black and white stones scattered
onal9 by 19 grid then it needs to figure out each side’s territory and potential territory.
There is a huge gap between the two ends. It is logical to use a hierarchical model
creating intermediate steps and knowledge structures to bridge the gap. A typical
hierarchical model is as follows:
Stones — Blocks — Chains — Groups - Territory

' The game Go is played on a 19X19 grid using black and white stones. There are two players. One uses
black stones and the other uses white stones. They alternately place their stones one at a time onto some
empty board intersection points. Unlike chessman, a stone never moves, but it may disappear from the
board, called captured, when it looses all its liberties i.e. completely surrounded by opponent's stones. With
the exception of Ko points, every empty grid point is a legal position for next move. The objective of the
game is to secure more grid points, called territory, than the opponent does. Go, just like chess, is a two-
person perfect information game.
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We shall discuss each level in order, in the following five subsections.

[1.1 Stones and input

A program needs to know the current stone distribution on the board and history
move sequence (so it knows who is to play next, any ko or triple ko situations, ...) .
Logically, the board can be viewed as a two-dimensional, 19 by 19, arrays of Black,
White and Empty. But for convenience of pattern matching, we usually add several
layers of boarder around the board so that pattern-match routines do not have to
constantly worry about invalid array indices. So it becomes a 2x by 2x two-dimensional
array of Black, White, Empty and Boarder. In order to avoid implicit multiplications
associated with two-dimensional array access, the board is declared as a one-dimensional
array in many Go programs for efficiency reason. The game history can be stored in a
stack to allow fast move execution and undo (during search look-ahead).

I1.2 Blocks and capturing

A bock, also called string, is a set of adjacent stones of one color. Its stones are
captured in unison when they loose their liberties (empty adjacent points). It we view a
board configuration as a graph, with stones as nodes and any two vertically or
horizontally adjacent stones of same color determining an edge, then a block is a
component ol this graph. Depth-first-search based graph-component algorithm can be
used to identity blocks etficiently.

The capturing status ol blocks can be classilied into three categories:

No danger — the other side won’t be able to capture it.

Critical — if the other side plays first, it can be captured, if the bock side to play first it
can escape.

Dead - there is no way to escape even the block side plays first.

A Go program usually use capturing tactic search routines, see IIl. Search, to
determine the status of each block. To save time, blocks with many liberties, say 5 or
more, are automatically classified as “no danger”. Some programs use heuristics to help
the classification job. Ladder routine can find a continuous Atari way to capture a block
with two liberties. It has an average branching factor close to 1 and is extremely fast.
Ladder should be an essential module of any Go program.

II.3 Chains and connectivity

A chain is a collection of inseparable blocks of same color. There are three ways
to recognize the connectivity of two blocks:
Heuristic - if two blocks have two or more common liberties or share one protected
liberty, they are in the same chain.
Pattern match — connection patterns can be used to recognize connectivity.
Search - goal oriented local connection search can be used.

11.4 Groups and safety

A group is a strategic unit of an army of stones. It consists of one or more chains
ol same color plus dead opponent blocks, called the prisoners, connected through empty
poimsz with influence above a threshold. For details, see [Chen 1989].

2 They are called the spaces of the group.



Every stone not in a dead block radiates influences across the board. This
influence is at maximum at its immediate neighboring spaces and decays as distance
increases. Many programs use influence method. The intfluence propagation is
programmecd differently though. For examples, Go Intellect uses exponential decay with a
distance reduction factor ¥2, Many Faces uses linear decay l/distance.

Once groups are identified, the numbers of eyes they have can be decided via
heuristics, patterns, or lite/death search.

a. Heuristics - [Chen and Chen 1999] presents a powertul classitication of eye-point
types based on diagonal index and heuristic down grading rules. Each eye region’s eye
number can be estimated heuristically. For example, the number of eyes in an eye-region,
with no deficiency and prisoners, can be determined by the following heuristic table,
where Ext(R) is the # of surrounding points of region R. Mark Boon was the first person
drew my attention to the relationship between Ext(R) and the number of eyes that R has.

Length of Ext(R) No. of eyes

<=6 1
7 1.5
8(Square Four) 1
8(Curved Four) 2
8(any other shape) 1.5
9(containing a Square Four) 1.5
9(not containing a Square Four) 2

>=10 2

b. Patterns - many programs use eye pattern libraries to determine eye numbers.
¢. Life/death search — it is more reliable than heuristics and patterns but it is also more
time consuming. Usually, it works better when the group is nearly completely surrounded
and not as accurate when the group is more open. [Wolf 1991 & 2000]

The safety of a group is determined by its eye number, its ability to expand
(empty neighbors), to run (freedom), to connect to friendly groups, and the safeties of
adjacent opponent groups.

IL5 Territory and potential territory

Territory can be estimated by measuring interior spaces (spaces sutrounded by
grid points belonging to same group) and prisoners (dead opponent stones), adjust by the
safety of the group. A group with low safety should be counted as opponent’s territory.
The numbers of captured stones from each side are easy to keep track and will be
included in the scoring under Japanese rules. If Ing Chinese rules are used, we can start
with group area (including spaces, stones, and prisoners) and safety. A major source of
evaluation error comes from the safety estimate when a group is unsettled, especially in
the middle of a fighting. For that reason, Goliath counts a grid point as black, white, or
unsettled — crisp 1, -1, or 0. Most programs use fractional numbers in attempts to capture
uncertainty. For examples, Go Intellect uses 1/64 point as basic measuring unit & Many
Faces uses 1/50 point.

An even more difficult part of evaluation is on potential territory — how to
evaluate the values of outside influence, thickness, and moyos? The intluence function
can only play a limited role here. The number of additional moves needed to surround a
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moyo into secure territory is a useful knowledge. [Z. Chen 2000] suggests count each
extension of outside stone as 3 points of potential territory at opening. For a nearly
completely surrounded weak group, other than almost dead and very light ones, he
discounts potential territory by (16/number of additional opponent moves needed to
surround the group)*(2 - #eyes). Much additional Go knowledge is still needed to get
reasonably good estimate of potential territory. Static evaluation functions in Go
programs today are far from accurate. At a computer Go tournament, one can frequently
observe that two competing (top) programs have a difference on game evaluation of more
than 30 points on a same board conliguration. Of course, the exact accurate evaluation
function has the same complexity as the whole game of Go, which is beyond reach. An
evaluation function that can produce good approximation most of the time seems still
extremely difficult to create.

111. Search

Search is a most powertul tool for computer games, with Go included. We can use
search to discover knowledge of capturing, connecting, eye-making, territory-
surrounding, ...etc. We can roughly divide it into local goal oriented search and global
move-selection search. We shall discuss them in the next two subsections.

III.1 Local goal oriented search
Local searches generate and test local moves for achieving some specific goal that
can be measured locally. The following is a list of common local goals and their natural
basic evaluations.
Capturing:
Goal - capture one block
Evaluation — number of liberties of the block
Semaei:
Goal - capture opponent’s block before opponent captures our block for two adjacent
blocks
Evaluation — number of relative liberties of the two blocks
Multi-blocks capturing:
Goal - capture one of a set of related blocks of same color
Evaluation — number ol total weighted liberties (with blocks with fewer liberties carry
morc weights)
Connection:
Goal - connecting two chains into one chain
Evaluation — distance between two chains
Life and death:
Goal - making two eyes for a group
Evaluation — number of eyes of the group
Territory:
Goal - surround more territory
Evaluation — local territory estimate

The candidate move generation should be highly selective using heuristic domain
knowledge. For example, in capturing search, if one tries all liberties, all secondary
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liberties (empty points adjacent to liberties), and all chain connection points, then the
resulting local search will be way too slow to be practically useful. Heuristic knowledge
needed to reduce the branching factor of the search. One such heuristic is that a liberty
with higher number secondary new liberties should have higher priority. Useful search
algorithms for local search include:

Selective alpha-beta and its variations — Forward pruning is generally used to speed-up
the search. Iierative deepening is useful for time control. Genetic algorithms can be used
to tune-up search parameters.

Proof-number search [Allis & al. 1994] — Combining with heuristic candidate move
selection, it is effective for local Boolean valued goal oriented search.

Lambda-search [Thomsen 2000] — It guarantees the correctness of the search result, but
it won’t be fast enough to solve complex tactic problems in real time.

111.2  Global move-selection search

A Go game has about 250 legal moves available at each turn on the average. For
any global search algorithm to work, it has to be selective on move candidates. Moditied
Alpha-Beta searches are usually used for this purpose. Go Intellect uses global selective
search to make move decision [Chen 1990, 1998, & 2000]. It has about 20 goal oriented
move generators, cach generates 0 or more moves with associated move values. A linear
combination of each move's move-values from all move generators determines the
priority of the move. Only about a dozen or so top candidate moves, those with highest
priorities, are actually tried on the board. After two plies, any stable node is evaluated
without further node expansion in the global search tree. An unstable node must expand
unless it reaches a predetermined depth limit. The mini-max back up of the evaluations of
the terminal nodes combined with the urgency values of candidate moves determine the
move selection.

B* [Berliner 1979] and probability based B* [Palay 1982, Berliner & McConnell
1994] are best-first search procedures which may handle high branching factor well. For
B* to woik, a tight optimistic bound and pessimistic bound needs to obtain from node
evaluation. Otherwise, the algorithm won’t converge in real time. Program Jimmy uses a
B*-like global search. The probability distribution required for probability based B* is
difficult to construct in Go.

1V. Move decision strategies

In this section, we’ll discuss move decision strategies used by current Go
programs. They can be roughly divided into four categories: static analysis, try and
evaluate, global selective search, and incentive/temperature approximation. There are
some other approaches to move decision making in use today, such as neuron networks
and pattern matching Irom huge library ol professional games, but they failed to pwduce
strong programs.

IV.1 Static analysis

Programs in this category do not do global search, but perform various goal
oriented local searches. Since these local searches do not need to perform for each node
of a global search tree, they tend to be more thorough. Each program has its own set of
move generators to suggest candidate choices. Programs Dragon, Explorer, & FunGo are
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in this category. Dragon uses priority scheme. It divides possible moves into 13 priority
levels and selects the move in the highest non-empty priority level with the biggest move
value provided by the related move generator(s). Explorer adds the values from all move
generators for each point then select the point with maximum sum to play. FunGo uses
the maximum value over all move generators for each point and more sophisticated and
time consuming tasks will be done on the 18 points with highest values to make the final
selection.

IV.2 Try and evaluate

Candidate moves are generated then a thorough evaluation is performed with each
candidate move added to the board in turn. The one with highest evaluation will be
chosen. GnuGo, Go4++, Many Faces use this strategy. GnuGo’s move generators do not
assign valuations but rather move reasons. The actual valuation of the moves is done by a
separate single module. GnuGo’s source code is in the public domain:
hitp://www.gnu.org/software/gnugo/devel.html
God++ uses pattern matching to generate large number of candidate moves with ranking.
A thorough evaluation based on a connectivity probability map is done on each terminal
node ol this 1-ply global scarch. Many Faces performs a quiescence search for the
evaluation ol each candidate move. The search result is moditied by the estimate of
opponent’s gain if playing locally first. Move generators in Many Faces generate (reason,
value) pairs for each candidate move. Maximum value is taken in a reason category for
cach point and valucs are added over different categories for a same move point.

IV.3 Global selective search

Programs prerform some variation of alpha-beta look-ahead with heuristically
selected small set of move candidates at each non-terminal node. The mini-max back up
determines the move and scoring estimate. Programs using this strategy include Go
Intellect, SmartGo, Indigo, Go Master, Jimmy. Go Intellect uses quiescence search
moditied by urgency. SmartGo uses iterative deepening and widening. Indigo performs
global search with urgent moves and calm moves done separately. GoMaster converts
everything to points in evaluation including influence, thickness, sente, gote,...etc.
Jimmy performs global selective search using B* type upper and lower bounds associated
with each move candidate. '

IV.4 Incentive/temperature approximation

Programs in this category consider consequences of either side playing first on a
local situation. They include HandTalk, GoMate, Wulu, Haruka, KCC Igo, Goliath,
GoStar. and Golois. Programs HandTalk, GoMate, and Wulu use the sum of move values
ol both sides modified by “move efficiency” to decide the move to play. Local 100k-
aheads arc performed but no global look-aheads. Haruka performs 1~4 general local
searches, called main searches, each with about 10*10 scope and search depth 3~5, width
6 ~9. KCC Tgo identifics critical arcas then performs local searches with candidate moves
mostly from pattern matching. Goliath performs two local searches for each critical area,
one with either side playing first. The biggest difference on the results of the two searches
determines the move selection. Candidate moves are from pattern libraries with pattermns
represented by bit strings. [Boon 1989]



V. Conclusion

There is no single method that really dominates the rest methods. Performance of
a program has a lot to do with the implementation cffort — especially on how much useful
Go knowledge the programmer(s) has programmed into. It is important to follow good
programming practicc so that the program can be modified/improved conveniently over
Lime.

Dcecomposition scarch [Mucller 19991 has sound theoretical foundation in
combinatorial game theory [Berlekamp & al. 1982]. Unfortunately, except during late
stage end game, a mutually independent decomposition of the board is impossible. We
propose a modified decomposition search as follows: we loosely identify active areas of
the board then perform various local searches as suggested by the combinatorial game
theory for each area, allowing the area/scope of the search grow dynamically and
evaluating the terminal nodes globally on the full board.

Most of the global search performed by programs today based on evaluation of
points. But the reward function of Go game is really binary — win or lose. Winning a
game by 100 points is the same as winning a game by 1 point — a win. So it is more
uselul for the static evaluation function to estimate the probability of winning in stead of
the expected number of winning points.
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