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Abstract

A two-times sorting sequence is constructed by calculating the next number with doubling
the current number and sorting its digits into non-decreasing order. We propose the appro-
priate representation of a number with the arbitrary length of digits and the algorithms to
calculate the sequence. Using this representation, we investigate two important properties of
the sequence, i.e., cyclic and inductive. By the examination of the computer program, it is
proved that every two-times sorting sequence falls onto a periodic cycle with the cyclic length
1,2,3,4,5,6, or 12.
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1 Introduction

The characteristics of various mathematical sequences have been studied. For instance, the 3z +1-
problem is one of the famous sequences. In this paper, we study what we call the two-times sorting
sequence. This sequence is proposed by Bottomley in the Web page (“ATS: Add Then Sort” in
sequence A057615 [4]) and by Kotani in GPCC2000 (3], independently.

Definition 1 A two-times sorting sequence is constructed by the following procedure.
1. Start from any natural number.
2. Double the number.

3. Sort the digits of the number in the decimal format with non-decreasing order. (The digit
zeros are removed.) The obtained number is the next number of the sequence.

4. Go to 2.

If the digits of a number in the decimal format are sorted with non-decreasing order, the number
is called a sorted number. Otherwise, the number is called a non-sorted number. Let n be a natural
number and m be the sorted number after sorting the digits of n. Then we write sort(n) := m.
In a two-times sorting sequence {a,}, a; = sort(2 x a;—;) for all i > 1.

The succession of distinct non-zero digits in a sorted number is called a type of the sorted
number. A type of a sorted number m is denoted by type(m), which is represented as one of the
511 combinations of 1 to 9, that is, 1,2, ..., 9, 12, ..., 89, 123, ..., 789, ..., 123456789. o

Example 1 In a two-times sorting sequence {@,}, let a; = 11115568889. Then, type(a;) = 15689.
The next number a;+; is calculated as follows.
2 x a; = 22231137778, ai41 = sort(2 x a;) = 11222337778, type(ai+1) = 12378. N

As a basis, a cyclic sequence is defined.

Definition 2 The number sequence {a,} is said to fall onto a periodic cycle or simply called
cyclic if the equations



ai = Gite = QGit2e =

Qit+1 = Qipe+1 = Qi+l = 00,

Qite—-1 = Gi2e—-1 = Qi43e-1 =
hold for some i and £. The smallest £ is called the cyclzc length of {a,}, while the smallest i is
called the length before cyclic. o

The purpose of this paper is to prove the following theorem.

Theorem 1 Every two-times sorting sequence falls onto a periodic cycle and its cyclic length is
1,2,3,4,5,6o0r 12.

In our preliminary study, the convergent two-times sorting sequence, of which cyclic length is 1,
was determined without using a computer [1, 2]. In addition, we made a computer program to
calculate the two-times sorting sequences up to a certain limit, i.e., 100,000, 000 [2]. We confirmed
that all sequences up to the above limit resulted in cycles and their cyclic lengths were 1,2, 3,4, 5,6
or 12. However, since the natural number has no upper bound, the approach with using such a
program will never lead to the rigorous proof of the theorem.

Owing to the page restriction, some proofs and examples are omitted in this paper. For details,
see the full paper to be published later.

2 Data Representation

In this section, we introduce the data representation of a sorted number in order to deal with a
number with the arbitrary length of digits. Even if the initial number ao of a sequence is not
sorted, all the following numbers of the sequence are sorted numbers. Hereafter, we may assume
that any initial number aq is a sorted number.

2.1 Data representation of sorted numbers

Definition 3 Any sorted number m is decomposed into each fized part Cy,(d) and each stretch
part D, (d) for all d € {1,2,...,9}. A fixed part Cp,(d) indicates a fixed number of figures of the
digit d, while a stretch part D,,(d) indicates the arbitrary length of the digit d with the lower
bound.

Each stretch part is represented by a stretch variable L;. The lower bound of a stretch part
D, (d) is denoted by LB(D,(d)). Similarly, the lower bound of a stretch variable L, in a sorted
number m is denoted by LB,,(L:). That is, Dn(d) = Lt > LB(Dn(d)) = LB, (Le). If the stretch
part of the digit d does not exist, D, (d) = 0.

¢ (d) is defined as the number of figures of the digit d in m. Obviously, £,,(d) = D (d) + Cm(d).
(o

Example 2 Let ap = 1...12336 be a sorted number of which the number of figures of the digit 1 is
equal to or greater than 3. Then, ag is represented as Dgo(1) = Ly > LB(Dgy(1)) = LBgo(L1) =
3, Ca(2) =1, Cyy(3) =2, Cqy(6) = 1 and others are 0. With using the vector notation, ag is
also representedas ( Ly 1 2 0 0 1 0 0 0 ) The number a; = sort(2 x ag) = 2...2467
is represented as D,, (2) = L1, Cq,(2) =1, Cq,(4) = C,,(6) = Co,(7) = 1 and others are 0. Here,
£,,(2) = Ly + 1. By the vector notation,a; = (0 Ly+1 0 1 0 1 1 0 0 ). Note that
L, is an arbitrary natural number that is equal to or greater than 3 but has no upper bound. <

Thus, we can deal with any sorted number with the arbitrary length. The calculation of a
sequence is performed with using the above data representation.

Definition 4 The minimum value of fixed parts related to a stretch variable L; in a sorted number
m is defined as minCp,(L;). That is, minCp, (L) = min{Cn,(d) | Dm(d) = L¢, d =1, ...,9}.

If the stretch part of a digit is a stretch variable, the count of figures of the digit should be
positive. That is, LB, (L¢) + minCp,(L;) > 1. Moreover, the minimum value of minC,, (L)
(# £ k £ j) from a; to a; in a sequence {a,} is defined as minCZJ (L;). O
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2.2 Properties of sorted numbers

In this subsection, the basic properties of the representation of sorted numbers are given. First,
we introduce a concept that represents a relation between a sorted number i in the above format
and every particular number in the possible set of the sorted number.

Definition 5 Let m be a sorted number and {dy, ..., dx } be the digits having the non-zero stretch
parts with the stretch variables {Li, ..., Ly}. Suppose that Dp(d;) = L;; for 1 < j < k.

We consider two following infinite sets:
S = {(Ll ~ .. Ly Cu) I c > LBm(Ll) ey Cy 2 LBm(Lu)} and.
M ={m,| fmp(d ) = ¢j, ¢j 2 LB (Lt;)+Cm(d;) for 1 < j < k, and {m,(d) = Crm(d) for other d}.
Each element in the set M is called an instance of m. M is called a set of possible instances of
m. Each element in the set S is called an assignment of the stretch variables in m. S is called a
set of possible assignments of the stretch variables in m. Obviously, M and S are bijective. <

Example 3 Let m be a sorted number (200 L;+3 00 Ly-200), L; > 1 L, > 4. Then 11444477,
11444444777 are instances of m, while 114447777, 11444447 are not. A set of possible instances of
m is {11444477,114444477, ..., 114444777, 1144444777, ..., 1144447777, 11444447777, ...}. The cor-
responding set of possible assignments is {(L; + 1, Ls < 4),(L; < 2,Ls + 4),...,(L; + 1,Ly +
5), (Ll — 2,Ly + 5), veey (Ll +— 1,0 6), (L] — 2,0, + 6), } <

Second, we introduce the concepts of generality and equivalence of a sorted number.

Definition 6 A sorted number m; is more general than a sorted number ms (or my is more
specific than m,) if a set My of possible instances of ms is a subset of a set M; of possible
instances of m;. In other words, m; covers a specific ms. o

Definition 7 Any two sorted numbers m; and ms are said to be equivalent iff both sets of
possible instances are the same. In addition, each digit of m; and m. is said to be equivalent.
The equivalence relation is denoted by m; = m.. o

Lemma 1 Let m; and my be two sorted numbers such that
for all d € {1,2,...,9}: Cm,(d) = Cm,(d), Dm,(d) = Dm,(d), LB(Ds,(d)) = LB(Dm,(d)).
Then, m); = ma. (]

3 Algorithms for Enumerating the Sequence Trees

We have made a program that enumerates the sequences for all the 511 types of the initial numbers,
i.e., the combinations of 1 to 9.

3.1 Calculation of the next number

Lemma 2 Let the pair (d,d') € P = {(5,1),(1,2),(6,3),(2,4),(7,5),(3,6),(8,7),(4,8), (9,9)}
represent shifting of digits. Let m be an instance of a sorted number. Then the next number m'
in a sequence is calculated as:

forall d' € {1,...,9} : € (d') = €m(d) + z(type(m),d’).
Here z(type(m), d') represents a displacement for the digit d’' in m/'. u]

Remark 1 The displacements can be calculated by applying the following procedure for every
type t. First, make a sorted number m that has two figures for each digit of the type ¢ respectively.
Then, make a new number m' only by shifting the digits of m according to (d,d') € P. On the
other hand, m" = sort(2 x m) is calculated by the normal addition and sorting. A displacement
of the digit d under the type t is £m» (d) — & (d).

The results obtained by the above procedure show that every displacement is —1, 0, or 1.



Considering Lemma 2, a sophisticated method for calculating the next number is given with
using the data representation described in Section 2.

Definition 8 Procedure for calculating the next number in a sequence
Let (d,d') € P and a; be a sorted number in a sequence. Then a;4; is calculated as follows.

1. For all d' € {1,...,9}: Da,,,(d') = Dy, (d).
2. For all &' € {1, ...,9}: Ca,,,(d") = Cu;(d) + z(type(a;), d').

3. Every stretch variable L, should satisfy LB,,,,(L:) + minC,,,(L:) > 1. Otherwise, the
conditions are imposed on the lower bounds of the stretch variables in a;4;, or the stretch
variables in a; are fixed to the smaller value and the calculation is restarted from a;.

Suppose Ly, ..., L, are such stretch variables. That is, LBg;(L¢) + minC,,,(L:) <1 (1 <
t < u). Then the split subsets of possible assignments are:

(1) in case every L; comes to satisfy that LB,,,,(L:) = 1 — minC,,, (L:):
a subset of possible assignments S; is formed.

(2) in case one or more (at most u) L;s in a; are fixed and the lower bounds of the remaining
variables (if any) are increased:
For every L, to be fixed, the possible values to be fixed range from LBy, (L)
to —minCs,,,, (Ly). For the remaining variable L;, LB, ,, (L¢#) = 1-minC,, , (Lew ).
Consequently, one or more subsets of possible assignments Ss, ..., Sp, are formed.
The calculation is restarted from a;.

The set of possible assignments S in a; is partitioned into n, subsets. That is, iz, Sk = S
(disjoint union). Note that some S may be ) because some L, is actually a linear formula
of stretch variables and is unable to have the required value. For each S, a;4+; that has the
corresponding set of possible instances is formed.

<o

Remark 2 As shown in Definition 8, all the stretch variables only cycle in the stretch parts, i.e.,
15234585 7—95—1,3—6—3,o0r9—9. There is no creation of a stretch variable in
the consecutive calculation of the next numbers. Therefore, mapping of assignments to instances
does not change.

3.2 Cyclic sequences and inductive sequences

We give the cyclic properties of a sequence of instances and a sequence of sets of instances.

Lemma 3 Let {a,} be a two-times sorting sequence, and {b,} be a sequence that consists of each
instance b, of a sorted number a,, under a certain assignment. Suppose that b; = b;, for some %
and ¢ > 0. Then, b; = bive = bigoe = ---. ]

Lemma 4 Let {a,} be a two-times sorting sequence. Suppose that a; = a;y, and mapping of
assignments to instances does not change from a; to a;4¢ (i.e., there is no induction between a;
and aiy¢). Then, a; = aiye = Gig2e = - - o

There is the other relation than cyclic in the two-times sorting sequences.

Definition 9 A two-times sorting sequence {an} is called inductive if there exist ¢ and j with
1 < j such that

(1) a; and a; are of the same type,

(2) there exist (at most 2 *) decreasing digit(s) d{* (and d§e¢) with the same non-zero stretch
parts, i.e., Ca, (d§*®) > Ca,(d§*®) and Dy, (d§*°) = D,, (d*°) =: Lygee > 0,

(3) there exist (at most 2 *) increasing digit(s) di*® (and dif) with the same stretch parts, i.e.,
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Ca, (dP) < Ca; (d*°) and Dy, (di™) = D, (d™),

(4) the other digits are the same, ie., for all d € {1,..,9}\{d§e, d3%, dir, dirc}: Cy,(d) =
Ca;(d) and D, (d) = D,;(d), :
(5) The sequence passes the induction check (See below).

The inductive relation is denoted by a; ~ a;. An inductive length £ is defined as j —i. The
numbers A(d{*¢) := Cq,; (d§*°) — Co, (d§*°) and A(d°) := Cq, (di*) — Cq, (di™°) are defined as a
decreasing step and an increasing step, respectively. <

The induction check examines if the found relation is generally inductive or not. As for the
detailed algorithm, refer to the full paper. If the check succeeds, a; and a; are really inductive.
Since the calculation of the next number depends only on the type of a number (See Lemma 2
and Remark 1), the similar sequence from a;1; to a; is repeated as long as the types of numbers
do not change. Then the inductions of decreasing digits and increasing digits hold. The numbers
examined by the induction check are so general that they include all the numbers after a; during
the induction. The induction cycle is repeated until one of decreasing digits becomes one of the
smallest values. No splits of the sequence occur except for the first cycle of the induction. If the
check fails, and a; and a; are not indeed inductive.

We call the number after the induction as the final induction number or fin, which is calculated
by the procedure of built-in induction. As for the detailed algorithm, refer to the full paper.
Actually, the calculation should be restarted from the number one cycle before a final induction
number in order to check a cycle related to the numbers in the last induction cycle. We call it
the pre-final induction number or pre-fin. Note that the final induction number and the pre-final
induction number respectively correspond to a; and a; when the count of induction cycles is 1.

Example 4 Let ag be 6...6 with £,,(6) = Ly (L; > 5). Then,

ag = 46..... 689 = (0 0 0 10 Li-2 01 1),
as = 3..... 3789 = (0 0 L;-2 0 0 O 111),
a¢ = 56....6778 = go 00 01 L-3 2 1 0),
a7 = 113....35856 = (2 0 L[;-3 0 2 1 0 0 0),
ag = 112226...67 = (2 3 0 0 0 Li-4 1 0 0),
a9 = 223...34445 = (0 2 L[;-4 3 1 0 000),
ajg = 446...6889 = 50 00 2 0 L1—4 0 2 1 .

Here we see a4 and a;9 have the same type 4689. Comparing a;o with-a4, the digit 6 is decreas-
ing with Do, (6) = Da,,(6) = L1, A(6) = —2. minC3}°(L;) = Cayy(6) = —4, minCg}°(L1) +
LB,,,(L1) = -4+ 5 =1 > 1. The digits 4 and 8 are increasing with A(4) = 1, A(8) = 1. For all
other digits, £, (d) = £s,,(d). Therefore, the above sequence satisfies the conditions from (1) to (4)
in Definition 9. Then the induction check is performed with using from a4 to a1o. The induction
check starts from a number by = 4...46..68..89= (0 0 0 Ly 0 Ly 0 Ly 1). After6
steps in a sequence, b shouldbe (0 0 0 L,+1 0 L,—2 0 Lp+1 1 ). From b to
bg, no splits should occur under the condition obtained from a,q, that is, L; > 3t and Ly > 2.

The check succeeds. Then the sequence is inductive with a4 ~ a1p. The inductive length is
6. That means that for every i = 6k + 4 £,,(6) = Ly — 2k — 2 and £4;,(4) = £,;(8) = k+1
(0 <k < |(L1 — 3)/2]). The induction count is represented as a formula y; = (L; — 3)/2if L is
odd, or yo = (L, —4)/2 if L, is even. The minimum induction count is min(y;) = min(yz) = 1.
Therefore, the final number on this induction would be either

afn =4.468.89 =(0 0 0 Ly 0 1 0 Lj 1 ) Ly=(Ly—1)/2>2if L is odd, or

af" =4..4668..89 =(0 0 0 L} 0 2 0 Lj 1 ) Ly=(L-2)/2>2if L, is even.
In the enumeration described below, the pre-final induction numbers are used instead of the final
induction numbers. These are

af" —(0 00 L, 0 3 0 Ly 1) Lj=(L —3)/2>1if L, is odd, or

agf™ =(0 0 0 Ly 0 4 0 Ly 1) Lj=(Li—4)/2>1if L is even. <

*These facts were confirmed by our early program.
TNote that —A(6) = 2 is added to LBp,y(L1) in order to check the next induction cycle after a1o.
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3.3 Procedure for the enumeration

In order to deal with the inductive relation, we have made a routine for the built-in induction. The
routine first checks if the found induction is general. If the sequence is not indeed inductive, the
routine is stopped and the enumeration is continued. Otherwise, the routine calculates one or more
pre-final numbers, which are considered as the numbers after the induction. The enumeration is
restarted from these numbers.

The enumeration proceeds in a depth-first manner. The split occurs when there is more than
one possibility (1) whether some stretch variable is greater than a certain value or is fixed to
the smaller value, and (2) when the built-in induction gives more than one number. Thus, the
enumeration has a tree structure of sequences. With the split of a sequence, the conditions imposed
on the sequence are accumulated as the conjunction. Generally, the conditions imposed later in
a sequence are more strict or detailed than the earlier ones. Since our program does not check
the consistency of the accumulated conditions, the enumeration tree may include the unsatisfiable
subtrees in places.

The enumeration is terminated when a cyclic sequence is found. A cycle can be recognized as a
terminal node in an enumeration tree. The program detects a cycle by checking the equivalence of
two sorted numbers in a sequence with going backward up to the restarted number of the previous
induction or the initial number (See Lemma 4).

In case of the split whether some stretch variable is greater than a certain value or is fixed to
the smaller value, the condition is applied retroactively with going backward in the sequence, up
to the restarted number of the previous induction or the initial number. The enumeration tree
branches retroactively at the restarted number of the previous induction or the initial number.

On the other hand, in case of the split when the built-in induction gives more than one number,
the enumeration tree branches just at the restarted number of the induction. This is reasonable
because there exist no cycles between the numbers before an induction and the numbers after the
induction (which was confirmed by the outputs of the program; See Section 4).

Figure 1 shows some typical types of the cycles. In the figure,
the cyclic relation and the inductive relation are denoted by A B C
an arc with an arrow and by an arc with a star, respectively.
The type A is the simplest case with no induction. The type B
means that a simple cycle is found after one induction. The
type C means that the found cycle starts from a number in the D
last induction cycle. Other types of cycles may be possible. The
type D and E indicate that a cycle starts from a number in the
middle of induction cycles and a cycle includes the induction
cycles, respectively. Though our program can detect the cycles
of type A, B and C, it cannot detect the cycles of type D and
E. If such cycles exist in the enumeration trees, the program
would terminate abnormally.

h)
TRy
((W
el
M.
77¢

Figure 1: Illustration of the typ-
3.4 An example of the enumeration trees ieal types of possible cycles.
Example 5 Figure 2 shows the enumeration tree starting
from ag = 6...6 with £,,(6) = L; (Ly > 1), which is one
of the 511 cases. The first split occurs at the first step. If L, = 1, a, is a particular
number 12, which falls onto a cycle with the cyclic length 4 from a4. Otherwise (L; >
2), a; is a general number (1 1 L;—1 0 0 0 0 0 0 ), which is followed by a; =
(01010L1-1000).

Thus, the enumeration proceeds with the branches at a3, ag, and ag. Then, the inductive relation
between a4 and ajg is found. There are two possible pre-final induction numbers.

If L, is odd, the pre-finis (0 0 0 L} 0 3 0 L; 1 ) Ly = (L1 — 3)/2, L} > 1. The
enumeration is continued from this number as a;;. Here the difference between 11 and the actual
number of steps considering the steps of induction is calculated as a formula and stored. Next,



2,=6..6=(00000L,000)

L,22 L=l
) IfL, is odd,
6,12, 24, 48, a,.=pr?-ﬁn 1=000L,’030L," 1), L,"=(L,-3)2

a,=(11L,-1000000)  2=69,138,..,2,=69

2,=(01010L,-1000)  cyclic (length=4).// ay=010L,+2000L,"+I 1)
= i
L23 L=2 a5=(010L,'+4000L, )
3,=(01L-2100001) 246,249, inductive (length=6
2,=(00010L2011)  3=489,789, ., 20=489 pre-in 120 10 L,)oooz )
ag=(00L,-2000111) cyclic (length=6). // L,=G*L,9)2.
L, 2/\'--=3 ag=pre-fin 1= (0 1 0L,0002 1)
© 3789,5778, ..., a; = |
3=(00001L-3210) 438889, .., a,, = 488889 2320001000 L,+4 1)
2;=(20L-3021000) cyclic (length=6). // |
L'ZS/N#‘ 2,5=(000 1000 Ly+4 1)
cyclic (length=6). //
23=(23000L,4100) a, = 113556, ..., lengthy . = 6*L, - 1 with 2 inductions
2,=(02L,-4310000)  a,=11355
2,=(00020L,-4021) cyclic (length=6). // IfL, is even,
inductive (length=6) a;=pre-fin 2=(000L,"040L," 1), L,'=(L,-4)/2
If L, is odd IfL, is even 2=(L,"+2010L,’+21000)
|
pre-fin 1 pre-fin 2 a=(L,’+2010L,'+21000)
=(000L030L, 1) =(000L,’040L,1) cyclic (length=56). //
L, =(L-3)2 L, = (L-4)2 length,,. = 3*L, - 5 with 1 induction

Figure 2: The enumeration tree starting from ag = 6...6.

another inductive relation between az3 and ayg is found. The only possible pre-fin of the induction
is(0 1 0 Ly, 0 0 0 2 1) Ly=(3L;~9)/2, L > 3. The enumeration is continued
from this number as azp. Finally, the sequence falls onto a cycle where a43 = a49 after two times
of induction. The length before cyclic is represented as a linear formula 6L; — 1.

On the other hand, if L, is even, the pre-finis (0 0 0 L} 0 4 0 L} 1) L{=(L -
4)/2, L} > 1. The enumeration is continued from this number and the cyclic relation asg = agg is
found. The length before cyclic is 3L; — 5. <

3.5 Discussion on the degenerated cases and particular cases
We need to consider the cases in which some stretch variables satisfy a set of linear equations.

Definition 10 Let m; and m2 be sorted numbers. Suppose that Cp,, (d) = Cpm,(d) and D, (d) =
Dy, (d) for all d € {1,...,9}, and all stretch variables in m; are independent and free except for
the lower bounds. A sorted number m, is said to be degenerated if for some d,, ..., di such that
D, (d;i) = L, > 0, a set of linear equations E = { e(Ly,,...,L,) =0 } holds.

In other words, m; covers a degenerated mq, or mz is a degenerated case of m;.

Especially, if E = {L;, = ¢, ..., Lt, = ¢, } holds, m is called a particular case of m;. o

Lemma 5 The degenerated or particular case of a sorted number m is less general than m. O

Our program only checks the simple cases such as L;, = L;,, etc. By checking this type of
degeneration, the sequences of which cyclic length is 1 have been found. That is sufficient for our
purpose.

4 Proof of Theorem 1

The outputs of our program have shown that all two-times sorting sequences result in the cycles
of which lengths are 1, 2, 3, 4, 5, 6, or 12. That means there are no cycles of the type D or E in
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Figure 1 in the enumeration. We can give an example sequence of which cyclic length £ is 1, 2, 3,
4, 5, 6, or 12, respectively.
Z‘—‘].: (L1 L1 0 L1 L1 0 Ll L1 Lg)Ll,Lzzl,

=22 (21021021 L) L1>1,
£=3 (1 20110 21 L) Li>1,
=4 (1 0 Ly 0 0 0 0 1 0) Ly >1,
£=5 9~ 18— 36 — 27 — 45 — 9 (virtually only one cycle with no general ones),
¢=6: (0 03 1000 Ly 1) L >1,

£=12: (1 0 0 0 0 L, 1 O 0) Li>1.

Since our program deals with the general cases, many particular instances are included in such
general numbers. The fact that all the general sorted numbers fall onto cycles shows that all the
sorted numbers including all particular instances fall onto the same cycles. In addition, though
the enumeration trees may have the non-existent subtrees, we have found at least one example of
which cyclic length is 1, 2, 3, 4, 5, 6, or 12, respectively.

However, there is still the possibility of existence of the particular cycles other than we have
found. Here, we discuss the possible cycles that the degenerated cases or the particular cases may
fall onto. We see that the set of possible cycles of general cases is {1, 2, 3, 4, 5, 6, 12}. Since
the outputs cover all general cases that include any degenerated or particular case, the particular
shorter cycles have to be within the found cycles. Therefore, if there exist some particular cycles,
the cyclic lengths of those cycles have to be the divisors of those of the general cycles. Since the
set of divisors of each element in the set {1, 2, 3, 4, 5, 6, 12} is also {1, 2, 3, 4, 5, 6, 12}, there are
no other cyclic lengths than that.

5 Conclusion

The program outputs the length before cyclic as a constant if no inductions occur before reaching
a terminal, or as a formula of some stretch variables if one or more inductions occur. We see that
all formulae are linear on one or more stretch variables. The maximum number of variables in a
formula is 5. Therefore, the length before cyclic is unbounded.

Heretofore, we only consider the sorted numbers. We can easily prove that any instance of any
sorted number in the enumeration trees can be the second number of a sequence with starting from
a certain natural number. For instance, if we want to form any instance of any sorted number m
as the second number in a sequence, we can choose a natural number n = (m x 10)/2 as the first
number. Moreover, if we choose a natural number n = (m x 100)/2 as the first number, it is not
in the enumeration trees because it contains one or two zeros. Therefore, the number of steps for
any natural number is at most the value for the 511 root cases plus one.

Our approach on this study mainly uses the enumeration of sequences by the computer. This
approach will possibly be applicable to other integer sequences. Our program and its outputs
(huge!) are available on the Web http://caster.cs.inf.shizuoka.ac. jp/ “sakuta/TTSS/.
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