
Race to Capture: Analyzing Semeai in Go

Martin M�ler

ETL Complex Games Lab

Tsukuba, Japan
mueller@etl.go.jp

September 10, 1999

Abstract

Skill in analyzing capturing races , or semeai, is an
important component of Go playing strength for
both humans and computer programs. Techniques
for analyzing semeai have been developed centuries
ago , and passed on among Go players. A number
of informal descriptions of the basic methods are
available in Go books. This paper starts developｭ
ing a formal ぬeory of semeai, leading to an algoｭ
rithm for basic semeai classes that has been tested
successfulJy against top Go programs.

説3
説3 32i

Figure 1: Class 0 semeai: one essential block each ,
plain outside liberも ies ， shared liberties

1 What is a Semeai?

Figure 1 shows two simple cases of a semeai. A
もextbook-like definition is "A race to capture beｭ
tween two adjacent groups that cannot both live".
Such a definition may be good enough for humans ,
but it is noも sufficiently precise for implementing
semeai in a computer program. This paper gives
both more narrow and more general definitions of
semeai. The narrower definitions cover cases which
can be detected and evaluated statically, without
search. The more general definitions are designed
to cover potential semeai , unclear situations which

might end up as a race to capture, and can be reｭ
solved by search. However, during もhe search も

might turn out that the situation is not really a
semeai, because one side can make life , leaving the
other side dead , or because both sides should deｭ
fend themselves instead of attacking the other.
While this paper deals mainly with static analyｭ
sis of semeai, it thereby also provides a foundation
for efficient search-based algorithms.

Section 1 clarifies the term semeai , and its reｭ
lation to other tasks such as proving the safety
of territories and solving Life-and-Death (tsumego)
problems. Section 2 describes the components of
semeai such as essential blocks, liberties, and eyes,
gives the outline of a general algorithm to solve
semeai , and classifies semeai into nine categories.
Section 3 deals with the static analysis of the two
simplest semeai classes, describes how to recognize
such semeai , and gives a complete solution in terms
of combinatorial game values. The section also deｭ
scribes restrictions on which semeai can be statiｭ
cally recognized , and motivates why these restricｭ
tions are necessary by examples. Section 4 very
briefly deals wiもh semeai classes 2 and higher , and
Section 5 shows some results on full board semeai
problems.

1.1 Semeai and other Game Phases

Semeai often occur as subproblems of another task ,
such as proving the safety of stones and 句rritory ， or

solving life and death problems. Examples include:
keep a terriもory safe by winning a semeai against
an intruder, rescue stones by cutting through a surｭ
rounding wall and winning the semeai against some
part of the wall , connecting stones by setting up a

- 61

lack of liberties for the opponent: if he or she tried
もo cut, that would lead to a losも semeai.

Cases where blocks of both players have few libｭ
erties can be handled reasonably well with existing
capture search techniques. The methods presented
here are mosも useful in situations where blocks have
many liberties and/or large eyes. In such c蹴S
they are much more efficient than a purely tactiｭ
cal search.

2 Describing
stances

Semeai

2.1 Finding Semeai

Perhaps surprisingly, identification of semeai in a
given Go position requires the same preliminary
analysis as for the endgame [3, 5]: iden揃cation
of safe blocks and territories [4], followed by a parｭ
tition of the rest of ぬe board into connected comｭ
ponents called local games. Each local game, conｭ
sisting of empty points, plus possibly unsafe ston鎚
of eiぬer player, can potentially become a semeai.
This holds even if the area is currently completely
empty or contains stones of only one player.
To be able to evaluate semeai statically, much
more restrictive conditions must be satisfied. Such
conditions will be discussed in section 3.

nonessential blocks. Saving or capturing such
blocks has some priority as a heuristic, but it
does not necessarily decide the semeai.

In-

Outside liberty An empty point that is a liberty
of an essential block of one player, but not a
liberty of an essenもialopponent block. An outｭ
side liberty is called plain if it is also adjacent
to a safe opponent block, so the opponent can
fill the liberty without making additional apｭ
proach moves.

Shared liberty Common liberty of essential
blocks of both Black and White.

Eye An area completely surrounded by essential
blocks of one player. The area can contain
nonessential blocks of either player. A plain
eye hωonly one surrounding block, and all
empty points inside are adjacent to that block.
This definition is broader もhan the usual one,
and includes cases where the surrounded reｭ
gion will end up as more or less than one eye.

Unknown 町ea Area that cannot be classified as
outside liberties, shared liberties, or eye.

2.3 Eye Status and Liberty Count

2.2 Classif�ation of Blocks and 0
Empty Points

。

。

0
0
0
 Classification . of poinぬ in a local game is a firsも

step in identifying semeai. In each local game, we
recognize the following types of blocks of stones and
empty points:

Essential block A block of black or whiもe stones
which must be saved from capture. Capturｭ
ing an essential block immedia同ly decides a
semeal.

Nonessential block Block which can be capｭ
tured without losing the semeai. An example
of a nonessential block is a small block conｭ
tained in 山eopponent's eye, such as the single
white stone in Figure 3.

Unknown block Contains all remaining blocks
もhat cannot be classi貧edωeither essential or

80

0

0
0
0

0

0
0
0

0
0

0
0

0
0
0

080
0

Figure 2: Basic nakade shapes

An eye area is called a nakade if the opponenも can

fill all buも one of its points by one of the basic
nakade shapes shown in Figure 2.
In semeai, small eyes with size from 1 to 3 beｭ
have in the same way, while larger eyes are stronger
boもhin terms of providing more liberties than their
size and in having an advantage in semeai against
smaller eyes. We model this behavior by an eye
status. For each eye size, Table 1 shows the status
and the number of liberもies. For 0 壬 m く n 壬 7 ， a

- 62 一

Size
Status
Liberties

m
i
一
月i

巧t
噌
E
A

Table 1: Eye status and liberties

n point nakade shape filled by m opponent stones is
equivalent to (n2 -3n)j2 + 3 -m outside liberties.
A nakade shape is unsettled if it has not yet been
reduced to only one eye, and the defender can still
make two eyes there. Figure 4 shows an example.

2.4 Steps of a Semeai Algorithm

The following steps are a general outline of a semeai
solving algorithm. Some details are discussed in
later sections.

4 Search For semeai of classes 3 or higher , use
search to find the outcome.

5 Move Generation for Semeai Play Using
the resulωof search or sもatic evaluation,
generate moves to play each semeai on the
board. Use exact combinatorial game values
when available, and a heuristic temperature
estimate otherwise.

2.5 A Classification of Semeai

The following classification proceeds from simple
semeai that can be analyzed statically to cases with
less structure, which require more and more search
to solve.

Class 0 Exactly one essential block of each color ,
only plain external and plain shared liberties,
no eyes.

connected components, called local games.

1 Board Partition Find safe blocks ofstones and
Class 1 One essential block of each color, may

territories. Partition the rest of the board into
have one plain eye potentially containing one
opponent nonessential block in a nakade shape

2 Semeai Identification Investigaもe which local
Class 2 Like class 1, bu t eyes incl ude unsettled

games are semeai candidates by the following
akad

substeps.

2.1 Eye Recognition Subdivide each local game Class.~ .Non-~lain eyes andjor external liberties
into regions surrounded by sbones of a stngle which can be proven by search to be equivalent
player.o Te;te~~h~~~hr~~ion~h~th~e; it i;~ to some plain eyejIiberty region.

plain eye for that player.

2.2 Liberty Regions After finding blocks and
eye regions , divide the rest of a local game into
liberty regions surrounded by stones of both
players. Classify liberty regions as outside libｭ
erties, shared Iiberties, or unknown.

2.3 Block Classification Classify blocks as esｭ
sential blocks, nonessential blocks, and unｭ
known blocks.

2.4 Semeai Safety Test For each color, deterｭ
mine if winning the semeai would ensure the
safety of all essential blocks.

2.5 Semeai Classification Determine which seｭ
meai class the local game belongs to.

3 Static Evaluation For semeai of classes 0 to 2,
statically evaluate the semeai to find iぬ status

and its combinatorial game evaluation.

Class 4 General eyes andjor liberty regions. More
compIicated values of regions, for example reｭ
gions that allow to gain or lose more than 1
Iiberty by a move. Regions with unsettled
eye status: players can make or prevent eye(s)
there.

Class 5 Additional unsafe blocks in liberty reｭ
gions. Connect , cut these blocks to
gainjreduce liberties. However, these blocks
are not adjacent to opponent's essential block.

Class 6 More than one essential block per player,
but they form a chain. Cutting the chain wins
the semeai for the opponent.

Class 7 General semeai in completely surrounded
local game.

Class 8 Local area not completely surrounded by
safe stones.

- 63-

Figure 3: Class 1 semeai: plain eyes

85線認jjg
Figure 4: Class 2 semeai: unsettled nakade

Figures 1 to 7 contain examples of each semeai
class. Figure 1 shows two class 0 semeai. On the
lefも， Black has one plain liberty region containing
three plain liberties, and White has two plain libｭ
erty regions containing one liberty each. On the
right, White hωone plain liberty, and もhere is one
shared liberty region containing 3 liberties.

In Figure 3 both Black and Whiもe have an eye.
Black's eye includes a white stone. This stone is
nonessential: Black should not try to capture iも，
and White can afford to lose it without losing the
semeai. During the course of the semeai the eye
area will be occupied by nonessential stones and
emptied by a capture several times.

Figure 4 shows an unsettled nakade shape. Black
must play in 抗、， to prevent White from making ~
two eyes. In. Figure 5 on the lefも， the whiぬ lib- -
erもy region is not plain because the point ‘a' is not
adjacent to a surrounding opponent block. Howｭ
ever, in semeai the area behaves like a plain three
liberty area, a facも which can be proven by search.
The right side picture shows 叩 eyearea 也前 isnot
plain, since the corner point is not adjacent to the
black block. In this case the number of liberties is
dramaもicallyreduced from 7 も03.

Figure 6 shows a class 5 semeai on the leflも，which
contains an additional white block. White can win
the semeai among the essential blocks going first,
but cannot save the marked block. In the class 6
semeai on the right side, Black has もwo e鈎ss鈴en叫川b“la叫l
blocks which form a chain and can c∞onnecも a抗t 、

o町r ‘b'. Black cannoも give up either of the essential
blocks, in contrasももo the situation in the previ-

選評
Figure 5: Class 3 and 4 semeai: non-plain liberty
at ‘a', non-plain eye space

総
潟ω
"

議長
Figure 6: Class 5 and 6 semeai: unknown block,
more than one essential block

ous 貧gure ， where White could afford もogive up one
block yet win the main fight. Figure 7 shows a genｭ
eral semeai of class 7 on the leflも， which lacks any
of the special properties of classes 0・6. The semeai
area is still completely surrounded by safe blocks.
Finally, theright side shows a class 8 semeai which
does not have a complete surrounding wall. In such
a situation players must consider additional options
such as trying to break out to the ouωide ， or counｭ
terattacking against the wall. Fixing the boundary
of the semeai becomes somewh抗 arbitrary.

Static Semeai Analysis

3.1 Semeai Evaluation

The traditional liberty-counting methods for seｭ
meai evaluation are known to many Go players. [1]
provides a de同iled introduction, while [2] contains
a more concise summary. In our classification, the
evaluation directly applies to semeai of class 0 and
1.

3.1.1 Who Wins, and by How Much?
To decide who wins a semeai, compute each player's
liberty count and eye status, as wellωboth players'
shared liberties.
A player's liberty count, LB or Lw , is the sum
of the number of outside liberties, plus the liberty

- 64-

Figure 7: Class 7 and class 8 semeai: completely
surrounded and open-ended area

Figure 8: Counting liberties

count ofthe players eye (ifthere is one). For examｭ
ple , in Figure 8 the black block has 0 ouもside libｭ
erties plus 8 -1 = 7 liberties from a five point eye
contailling one opponent stone, so LB = 0 + 7 = 7.
The white block has 6 outside liberties plus 5 libｭ
erties from a four point eye containing 0 opponent
stones, for a total of Lw = 6+5 = 11 own liberties.
The number of shared liberties S = 2.
If the eye status of players is different , th巴n the
player with poorer eye status must be the attacker.
If bo出 have equal eye s同tus ， and one player has a
surplus of own liberties, that player is もhe attacker.
If both eye status and liberty count are equal then
either player can be the attacker. Set D. = LB ーLw
ifBlack is the attacker and D. = Lw-LB otherwise.
111 the example, Whiもe IS 山e attacker because of
poorer eye status (4 vs. 5), so D. = Lw ー LB =4.
The number of forced liberties F is the number
of shared liberties that attacker has to fill もo put
defender inもoa同ri. If defender h舗 an eye, or there
are no shared liberties (S = 0) , then F = S. If
defender has no eye and S> 0, F = S -1. In もhe

example Black h槌 an eye, so F = S = 2.
The semeai formula compares the 前回cker's libｭ
erty surplus to the number of forced liberties:
The semeai formula: Aもtacker succeeds if

ム >F.

Furもhermore ， attacker needs to play only if D. =

F. If D. > F , attacker is D. -F moves ahead in the
semeai and need not play immediately. If attacker
fails，もhere are two cases: if the eye status of players
is different, or the number of shared liberties is も00

small, then aもtacker loses. Otherwise it is a seki,
in which the stronger side musも play F -tJ. moves
before it becomes unsetもled. In the example, D. >
F , so White wins and is D. -F = 2 moves ahead
in the semeai.

The outcome of the semeai can be summed up by
two numbers: Semeai status measures how many
moves the winner is ahead in the fight. Positive
values are good for Black, negative values are good
for White. If the semeai status is 0, the outcome
is either unsetもled ， or seki. SekiLevel is defined
only if semeai status is 0, and me硲ures how many
consecutive moves the stronger side can make beｭ
fore the outcome changes from seki to unsettled.
If sekiLevel = 0, the outcome is unsettled , if
sekiLevel > 0 it is a seki. The following code fragｭ
ment computes semeai status and sekiLevel , deterｭ
mines whether the semeai is unsettled and comｭ
putes the winner.

// input: betterEye,.o., .o.BW = LB - Lw , F
/ / output: semeaiStatus, sekiLevel, isUnsettled , winner
if (betterEye == none) / / same eye status: may be seki
{ if (.0.壬 F)

}

{ semeaiStatus = 0; sekiLevel = F -.0.;
}
else

seme副Status = .o.BW + ((.o.BW > O)? ・F: F);

else / / different eye status: never seki
{ seme副Status = .o.BW;
semeaiStatus += (betterEye == Black) ? F : -F;
}
isUnsettled = (sekiLevel == 0) && semeaiStatus == 0;
winner = (semeaiStatus == 0) ? none :
(semeaiStatus > 0) ? Black : White;

3.2 Semeai and the Safety of Stones

and Territories: When Winning

the Semeai Loses the Fight

3.2.1 Capture-Recapture Tactics

In some cases, being the firsも to capture the OppCト
nent does noも prevent the player's sもonωfrom beｭ
ing captured later. Examples of snapback, oi・otoshi
and ishinoshita are shown in Figures 9 and 10. In
each of these examples, semeai analysis shows that
Black can capture White going first. However, this
capture fails to secure the black stones, and they

- 65 ー

u
m
ω
ω

Figure 9: Snapback and oi-otoshi

お
劉鞠
Figure 10: Ishinoshita

will be captured when White again plays into the
empty region of the original white stones.

Figure 11: Hidden nakade shape

3.2.2 Capture Does not Create Two Eyes

For determining whether a capture will guarantee
two eyes for a player, it is not enough もoanalyze the
currenも shape of the opponent's stones. In Figure
11 , the current shape of もhe white stones in the
corner is not a nakade, so Black might have some
hope of living. However , White can creaもe nakade
at ‘a' any time, and Black cannot prevent it, so
Black is dead with only one eye. Figure 12 shows
another example: Black connects at 1, expecting
White もomake two eyes in the corner at 'b' so Black
can connect at 'a'. However, White can play at 'a' ,
and it is useless for Black to ‘kill' the corner. If
Black captures two stones, White recaptures and
connects, leaving a 6 point nakade shape. Black

Figure 12: Another hidden nakade shape

Figure 13: 88 stone capture problem

has only one eye.
Figure 13 shows a classic problem composed by
Intetsu Akaboshi in the 18th cenもury， in which
Whiωcaptures a total of 88 black stones but still
dies. The problem starts 0πwith a 16 stone capture
which leads to only one eye.
A relaもed question is whether a nakade-like siレ
uation guarantees at least seki by two shared libｭ
erties for the player on the outside. In Figure 14 ,
blocks ‘A' are alive in seki, but blocks 'B' are dead.
A general classification procedure for eye shapes is
beyond もhe scope of this paper.

3.2.3 Two Simple Rules for Ensuring
Safety

One of two simple static rules can often be apｭ
plied to ensure that winning the semeai willlead to
safety. Rule 1 ensures safety by connection , Rule
2 by making a second eye for a group that already
has one eye. As the examples of Figures 11 , 12 and
13 demonstrate , it may not be easy to come up with
good static rules for the third case: ensuring two
eyes by capturing.
Rule 1: A player's essential block in semeai will
be safe after winning the semeai if there exist two
opponent stones which are adjacent to both the

• 66

Figure 14: Seki(A) and seki・like nakade shape(B)

block and a safe block of the same player.
Rule 2: A player's essential block in semeai will
be safe after winning the semeai ifit has one eye and
there exists another region containing 叩 adjacent

opponent block which is l-vital [4] for the player.

3.3 Determining the Game Value

We will use Japanese rules for counting. Chinese
rules differs mainly in case of seki. The game value
for semeai of classes 0 and 1 is simple: if the winｭ
ner is decided , or if it's a seki , the score is an inｭ
旬ger. If the semeai is unsettled , the score is a
switch. The game value can be computed using
two auxiliary functions returning an integer: Winｭ
nerScore(player) and SekiScore().

WinnerScore印layer) is determined as follows:
every shared liberty and every opponent external
liberty counts 部 one point. Every opponent stone
counts as two points. From the sum of these values,
subtract the number of nece鎚ary defensive moves.
Finally, the sign of the to同1 score is +1 for Black
and ・ 1 for Whi旬.

I WinnerScore(player) I = shared + ext(opp)
+2 x stones(opp) ー Defensi凹Mo凹s(player)

The number of necessary defensive moves, Deｭ
fensiveMoves印layer)， is a nonnegative value，もhe
minimum of two values: the number of moves reｭ
quired もocapture the opponent, and もhe number of
moves the player has to make to remain ahead in
the semeai if the opponent fills all ouぬideliberties.

DefensiveM oves(player) = max(O ,
min(ext(player) + 1 -lsemeaiStatusl ,

libs(opp) + shαred))

SekiScore() is close to 0, but takes into account
the number of stones in an eye thaも can be capｭ
tured. An eye of size 2 is worth one point, an eye
of size 3 three poinもs. For example, a seki between
a black 2 point eye and a whiω3 point eye has
score 1 -3 = -2.
The game value can now be computed as follows:

ComputeGameValue()
{
if (isUnsettled)
{ int bValue = CanWin(Black) ?

}

WinnerScore(Black) : SekiSco目0;
int wValue = CanWin(White) ?
WinnerScore(White) : SekiSco問0;
game = Switch(bValue, wValue);

else if (winner == none)
game = IntGame(SekiScoreO);
else
game = IntGame(WinnerSco問(winner));
} / / ComputeGameValue

To get the exact combinatorial games, all scores
must be adjusted by ホ if an odd number of dame
points remains after resolving the semeai.
One special case musも be handled differently: a
block with a big eye might be in atari. In this
cωe， the player should often move immediately
even if the semeai status is not unsettled. Howｭ
ever, if the player is losing the fight anyway, the inｭ
centive for moving might be only a small semedori
value, the difference between the opponent winning
in one move and winning by filling a number of libｭ
erties. The game value also changes accordingly.
We have implemented the necessary modificωlons
in our program, buも lack space to show the details
here.

4 Solving Other Semeai

We have implemenもed static evaluation for class
2 semeai, and a search method for classes 3 and
higher. Again, because of a lack of sp配e we must
postpone a detailed description of these methods to
a future technical report. A few examples of semeai
search and some preliminary results are contained
in a previous paper [6].

4.1 Class 2 Semeai: U nsettled Eye

Class 1 semeai are not ‘closed' under play: during
play, if nakade sもones are captured, an unsettled
eye shape such as the one in Figure 4 can result,

- 67-

so the semeai classificωion changes to class 2 for
one move. A single player's unsettled eye shape
can be handled similarly もo the case of a group in
atari mentioned above. Further rare special cases
can occur: One player can be doubly unsettled:
the player's group is in aもari ， and the opponent
can live in an unsettled eye shape. In this case
the player has lost without further moves (unless
the opponent is also in atari). If boもh players 訂e

unsettled because of an unsettled eye and/or atari ,
players must decide between attack and defense,
depending on もhe scores and outcomes ぬat would
result.

Figure 15: Double senωplay in class 2 semeai

Explorer against two of もhe recent world chamｭ
pion programs, Many Faces and Go 4-1•. Exｭ
plorer won most test games by large margins，。ι
ten gaining more than 100 points over the gameｭ
theoretic outcome. Detailed results are given
in [6]. The test positions and game records in
SGF format are also accessible through the inｭ
もernet at http://www瓜l伊.jp/etl/suiron/ ・ muel­

ler/cgo/semeai.html. From this experiment, it is
clear もhat our method is able もo evaluate semeai
much earlier and much more precisely than the
other tested programs.

References

[1] R. Hunter. Counting liberties, How to win capｭ
turing r配es. In R. Bozulich, ediもor ， The Second
Book 01 Go, chapもer 7,8. Kiseido , Tokyo , 1998.

[2] K.F. Lenz. Die Semeai-Formel. Deutsche Goｭ
Zeitung, 57(4), 1982.

In Figure 15 Black can make seki, while White [3] M. M�ler. Computer Go as a Sum of Lo・
can live with 9 poinもs againsも Black's 5. The game cal Games: An Application of Combinatorial
value is 381 * " -41-45* , a 4 point double sente Game Theory. PhD thesis, ETH Zürich, 1995.
play in classical endgame もerminology. Diss.Nr.11.006.

5 Test Examples: Full Board
Semeai Problems

Figure 16: Full board semeai problems 1 and 2

The semeai evaluation method described here has
been integrated into our Go program Explorer
[3]. For testing, we constructed two full board
Go positions that contain a large variety of seｭ
meai positions of classes 0・2 ， as shown in Figｭ
ure 16. Starting from these positions, we played

[4] M. M�ler. Playing it safe: Recognizing secure
もerritories in Computer Go by using static rules
and search. In H. Matsubara, ediもor ， Proceedｭ
ings 01 the Game Programming Workshop in
Japαn '97, pages 80-86, Computer Shogi Asｭ
sociation , Tokyo, Japan , 1997.

[5] M. M�ler. Decomposition search: A combinaｭ
torial games approach to game tree search , with
applications もo solving go endgames. In IJCA J.・

99, volume 1, pages 578-583, 1999.

[6] M. M�ler. Partial order bounding: Using parｭ
もial order evaluation in game tree search. Techｭ
nical Report TR・99-12 ， Electrotechnical Laboｭ
ratory, Tsukuba, Japan , 1999.

- 68

