
keywords: 

Complex Games in Practice 

Bruno Bouzy 

C.R.I.P.5 
UFRdema出ématiq田s et d'informatique 

Unive凶té Ren� Descartesσaris Vヲ
45, rue des Saints・民res 75270 Paris Cedex 06 FRANCE 

tel: (33) (0)1 44 55 35 58 fax: (33) (0)1 44 55 35 35 
e-mail: bouzy@ma血・info.univ-p訂is5.fr

htto:/ /www.math-info.univ・oaris5.frI四bouzv/

Game of Go, Group Strength, Monocolor Tree Search, K.illing and Living Mov巴s Numbers 

1. Introduction 
This paper highlights an important issue linkedω 出巴 global move decision process in a Go playing 
program, in ot加 terms， how to desαibe， determine and use group s回ngth in a simple way so as to select 
the moveωplay. Our present study is based on our experi回目 in developing Indigo, a current Go 
program that ranked tenth at 出e last Ing Cup in London in November 1998. Therefore, this contribution 
mainly relies on practical ∞nsiderations， not theoretical ones. 

After a short preliminary section, this paper deals with th巴 dynamic of group streng出， which is a very 
crucial subject for computer Go. We introduce two numbers, the 阻lling Moves Number 侭MN) and the 
Living Moves Number (LMN), in order to define a <<complex 沙 game in practice. We compare our 
approach with [Conway 76] and two practical approach巴s [Tajima & Sanechika 98] and [C認enave 96]. 
The folIowing s巴ction focuses on Monocolor Tree Search (MTS). We think MTS is a good complement 
to adverse tree search. Then, within the global move decision context, the notions of urgency, 
order/disord巴r are discussed. We hope our paper will help uncover some crucial points of Computer Go 
and explicit some features not to be found in other games. 

2. AssumDtions 
After a quick description of territory evaluation, we will show how important it is for Compu句rGo to 
assess 出巴 S位巴ng出 characteristic of the different groups. 

2.1 . Quiet positions and territorv 

By means of a simple diffusion model [Zobrist 69] or mathematical moゆology [Serra 82], a program 
recognizes the territory mOI:e or less accurately on a quiet position.τ'herefore， by simply searching for 
each ∞lor at depth one, th� program provides a series of switches and thus selects the switch with the 
hottest temperature. 百1fough such a method, the progr佃1 can expand or reduce territories in a satisfactory 
way.Of ∞urs久山is method is time-consuming but 白is can be easily reduced by only evaluating moves 
selected by some patt釘ns. Another time improvement can be performed by memorizing as many switches 
as possible from one position to the next. Unfortunately，出is me出od has a weak point : it ∞mpletely 
ignores groups and it will always prefer scoring territoriesωattacking or defending groups. At 血at stage, 
a model of groups is required. 

一 53 -



2.2. Static description of the qroup strenqth and its difficulties 

The difficulties lie in defining grou戸 correctly.. .百四 groups can be designed with an influence model 
[Zobrist 69] [Boon 91] [Chen 99], which corresponds to 山 players' intuitive view.τ'hegrou戸 can also 
be design巴d 出anks to a set of connection patterns [Bouzy 95] [Cazenave 96]. Both approaches can 
occasional1y be used. In this paper, we assume 出e definition of groups is given. Whatever the definition, 
we think another difficulty arises from model1ing the group state. 百lis model must embrace live groups, 
dead groups and << in-between >> groups, thus offering many possibilities. Concerning live groups, we may 
adopt two different appro叫es : a restrictive and clear one (two eyes or s鎚抗凶e位出k悩i) or a r悶巴民Cαursi江r
(same c∞on吋凶diti山iぬon田1芯s， plus capturing an adja田nt 叩emy group, plus connecting to friendly live groups, plus 
巴scaping toward some empty space). 百le restrictive definition has the advantage of precision. It avoids 
making s巴rious mistakes in global evaluation and can be integrated into a tree search. The second 
definition is recursive (it uses the state of nearly groups) and th巴refore is difficult to handl巴・ Morever， it is 
fuzzy because it 凶es empty space which is hard to define with accuracy. In the very end it is timeｭ
consuming. But it has the advantage of corresponding to th巴 players' description in real games. Unl巴ss
proper tuning is achieved, this approach may cause big blund巴rs. In our current study, we do not intend to 
describe the static prop巴rties of a group. This is too difficult a task and it greatly depends on 出e
programmer's capacity to analyze the nature of Go. Instead, we assume that the d巴scription of group 
strength is given by a function returning 出ree possible values : DEAD, OTHER, ALlVE for each group, 
GSEF for Group Str巴ngth Estimation Function. 

3. Grou/J strenath estimation is a “ comolex >> aame in oractice 
In this section, we will take up the assumptions previously stated so asωdescribe what happens 
∞ncerning the dynamic of groups. Before defining what a << complex >> game can be in practice, we hav巴
deωed to adopt two relevant numbers, the 凶ing Moves Number (KMN) and the Uving Moves 
Number (LMN). 

3.1 . Static classification 

Figure 1 shows the three states of a group : 

DEAD I OTHER |札IVE

一----------------一一---一一一一一一一-...-------------------一γー・〉
Figure 1 

Given such a classification provided by the GSEF, the meaningful moves are the jumps from one state to 
another. Th巴 moves that do not correspond to any jump are irrelevant for the program. 

3.2. Dvnamic classifications with Adverse Tree Search (ATS) 

In our pr回ent paper, we cal1 Adverse Tree Sear油 (ATS)， a tree sear油 involving alternative colors at 
each mov巴. This is tree search in its common us巴. ATS offers the possibility to refine the <<OTHER>> 
stat巴 (Figure 1) into the following three substates : << dead >>， αunknown >> and << aliv巴>) (Figure 2) : 

DEAD I dead I unknown alive I ALIVE 

一・・・ーーー一一-ーーー・一一一--------一一一一一一一--------------一'一--一一--------------ー〉Figure 2 

ATS det巴cts th巴 groups in the << OTHER )> state of Figure 1 that cannot avoid either the << DEAD >> state, 
or the << ALlVE )) state, whoever plays first. τ'he << dead )) orαalive >) states of Figure 2 coロ巴sponds to a 
group which is not dead or alive according to the GSEF, but whoever plays first, the group will die or 
live. 

54 



Therefore we can merge th巴 states << DEAD 沙 and αd巴ad >> of Figure 2 into one single << {DEAD} >> state 

(see Figure 3 below). The same can be done for the state << {ALIVE} >>. 

{DEAD} {OTHER} {ALlVE} 
一一一一一一ー〉

Figure 3 

ATS 巴nables the program global level to use transitions {OTHER} ・> {DEAD} or {OTHER} ・〉
{ALIVE} that were not mentioned in Figure 1. ATS also eliminates transitions OTHER ・> DEAD or 
OTHER ・> ALIVE in Figure 1. Classification in Figur巴 3 is much more reliable and useful than 
classification in Figure 1. ATS pr巴vents the program from playing irrelevant moves by sel巴cting efficient 

on巴s. When ATS increas巴s， the stat巴s {DEAD} and {ALIVE} become bigger (s巴e Figure 4 below). 

{DEAD} I {OTHER} I {ALIVE} 

一一一一一一一一一一一一一・・〉

Figure 4 

As a result, our classification is modified and shows similariti巴s with Conway's classification (see Figure 
5). 

NEGATIVE I FUZZYI POSITIVE 

一一一一一一一一一一・・〉

Figure 5 

But let us go back to practice and Figure 3. In order to underline the fact that ATS has tried to prove a 
group was d巴ad or alive unsucc巴ssfully we delete the brackets and the word UNDETERMINED will be 
used to define the {OTHER} state. 

3.3. The limits to ATS : Stabilitv “ in oractice 沖
The next problem concerns the ∞st of ATS. When ATS ends successfully, s巴veral nodes have been 

investi伊ted and time has been swapped for relevant information. But, because of time limits, ATS may 
not end successfully. In such a case, time loss is almost gratuitous and we believe ATS may not b巴 well
adapted to the problem of group strength. When ATS ends unsuccessfully, time loss may se訓n gratuitous 
to a certain extent only : the program knows it cannot reach a definite ∞nclusion. By simply observing 
that if ATS cannot prove a group is dead or alive, it means the group has got a kind 01 stability in 
practice: the group stays in the UNDETERMINED stat巴 whoever plays first. τ'his remark leads to a 
fundam巴ntal question : what must the program global level do with such <<stable>> groups ? One may 
leave them as they a問 and play elsewhere or on巴 may add moves until a real stability is reached (i.e. staぬ
DEAD or state ALIVE). These two options have their own advantages. Playing elsewhere avoids making 
unnec巴ssary moves but the risk is tοS巴巴 th巴se groups going inωthe wrong final state in a sudden and 
unexpected way. Playing on th巴se groups avoids leaving uncertainty on the board but the risk is to follow 
an unreachable goal and/or to play unnecessary moves. We think no good solution can be found without 

measuring what happens within the UNDETERMINED state. 

3.4. A measure within the UNDETERMINED state 

The GSEF is more accurate when some expertise is brought. GSEF returns more precise inforτnation by 
splitting the UNDETERMINED state into substat巴s:

DEAD a b c x y z I ALIVE 
一ー〉

Figure 6 

一 55 -



By means of this measure, the program uses e笠icient transitions [Tajima & Sanechika 98] [Bouzy 96], 
hence the moves become meaningful. As a first clue, the group that stays in the middle of the 
UNDETERMINED . can make steps in order to reach a final state. But the quest for finding a sound 
measure is still open [Fotland 96]. [Chen 99] or [Boon 99] se巴m to have a sound measur巴 because their 
programs use TS to build one switch for each group. 

3.5. The (( LMN 抽 and “ KMN 沖 numbers

When no correct measure of group streng出 is available, one simple measure consists in counting the 
number of moves of the same color in order ω kill or sa四 the group, that is the number of friendly moves 
to get out of the UNDETERMINED state into the ALIVE state or the number of enemy moves necessary 
ωreach th巴 DEAD state. The classification is now as follows : 

DEAD P・1 … 2 1 0 1 2 … Q・1 |札IVE

一一一一一一一一一一一一・〉

Figure 7 

P corresponds to the Killing Moves Number (KMN) and Q to the Living Moves Number (LMN). A group 
that stays in the UNDETERMINED state will be represented wi出版 following notation : [PIQ]. 

3.6. A “ comolex 神 aame

In our paper, we shall call complex a game where KMN and LMN are big enoughωprevent ATS from 
succeeding. Ac∞rding to us, a complex game is a game during which ATS fails and other techniques are 
n閃ded. To 出is ex旬nt， the game of Go is of ∞urse complex and so is 出巴 group strength sub-game. The 
group strength sub-game, also named the generalized life and death sub-game in the litteratu問， leads ω 
important obstacles [Wolf 96]. Furthermore, when KMN and LMN be∞me low, the group s同時出 sub
game be∞mes the classic life and d巴ath problem every Go player is familiar with and which is 
successfully addressed by GoTools [Wolf 94]. 

3.7. Imoortant transitions 

Of course, our discussion must not overlook that the transitions near the ALIVE or DEAD states (P or Q 

equals 1 or 2) are still more important than interm巴di仰 transitions (when P or Q are grea旬r than 3). 
Figure 8 links important transitions to the commonly used terms in the world of 酔mes:

from ALIVE-l to ALIVE 
from ALIVE-2 to ALIVE-l 
from DEAD-l to DEAD-2 

3.8. Related studies 

Comparison with [Conway 76] 

a terminal move 
a threat to reach the fri巴ndly goa1 
a forced move to avoid the enemy goal 

Figur巴 8

百le difference between Figure 5 and Figure 3 shows the difference betwe巴n theory and practice. In 
theory, when you play a move from the FUZZY state of [Conway 76], you are supposed to reach either 
the POSITIVE or NEGATIVE state in one single move. In practice, the information about the g創ne is not 
complete and you may spend many moves before getting out of the UNDETERMINED state. This is the 
reason why we split the intermediate state into several sub-states. Convers巴ly， Conway's numbers 
correspond to our ALIVE or DEAD states.τ'hese two final states could be split into sub-states so as to 
follow Conway' numbers but, at the moment, this possibility remains a promising perspective in our 
work. 

- 56 一



Comparison with [Tajima & Sanechika 98] 

[Tajima & Sanechika 98] has recently suggested PON, Possible Omission Number, as the number of 
moves a group can bear without being killed. First, let us make the things cIearer with Figure 9 below. 
The first two lines corresponds to our cIassification, the third line to PON and th巴 fourth line to [Tajima & 
Sanechika 98] ‘ s t巴rminology.

DEAD 
DEAD 
-N ...・2
DEAD 

UNDETERMINED |札IVE Bouzy 

P-l P-2 1 0 1 Q・ 1 ALIVE KLMN 

・ 1 0 1 ... P-2 P-1 P P+Q-2 N PON 

NEUTRAL ALIVE ... ALIVE ALIVE T&S 
---・・・・・〉

Figure 9 

The definition of PON corr巴sponds to numbers in [Conway 76]. If GSEF is well-tuned, we obtain 
FUZZY = NEUTRAL. [T司ima & Sanechika 98] cIassification assumes that the GSEF determines the life 
of a group with precision. For example, an eyeless group which is not surrounded enjoys an ALIVE status 
in [T司jima & Sanechika 98]. On the contrary, our GSEF will cIassify the same group as belonging to the 
UNDETERMINED state. We use such an approach becaus巴 the task of statically determining the life of 
groups which are not surrounded is very difficult. But of course, the decision to have a simple GSEF or a 
sophisticated on巴 depends on its integration with the other program components. 

Comparison with [Cazenave 96] 

[Cazenave 96] has proposed an explicit representation of uncertainty inherent in Go sub-games by using a 
taxonomy of states v巴ry useful in practice.τne most general state of taxonomy is the state <<1>> for a 
game whose left and right outcomes are not known (<< 1>> stands for <<Incertain >> which means uncertain 
in Fre即h). So as to represent these two unc巴rtain outcomes, this game should also be defined as << II >>・ A

game << IP >> is a game wh巴re Right may make the game lost for Left in one move and where one does not 
know about Left outcome. A game << IIIP >> is a game wher巴 Right can have the game lost by playing two 
mov巴s in a row and wher巴 the other three outcomes are not known. Symmetrically, the game <<GI >> is a 

game where Left can win in on巴 move and where th巴 right outcome is not known. 百le gam巴<< GP >> is 
equivalent to the game ホ in [Conway 76]. This cIassification offers an explicit representation as regards 
the lack of information. This is very useful in practice because the computer cannot always complete a 
full TS. 

[Cazenave 96] did inspire our present work. Cazenave's cIassification was applied to elementary Go subｭ
games such as eye formation and connection between strings.τnerefore ， this work mainly focused on 
games such as IP, IIIP, GI, GIII, GP, GIP but not much on GIIl...IIIP games (with a lot ofI). [PIQ] in our 
terminology corresponds to GIII...IIIP (with P times the letter 1 on the left and Q times the letter 1 on the 
right) in [Cazenave 96]. Therefore, our notation with KLMN is simpler. 

DEAD 
P 

Conclusion 

P-1 P-2 
IP IIIP 

o ... Q・ 1 ALIVE 

GIII...IIIP … GI G 
一・〉

Figure 10 

KLMN 
Cazenave 

We can say that, when the program impos巴s very restrictive conditions for Iife and death, the pair of 
KLMN numbers is a good way to d巴scribe a group which stays in the UNDETERMINED state. One can 

- 57 



choose to use PON when the program already uses a well-tuned GSEF.τ'he FUZZY state [Conway 76] is 
not useful in most practical cases that arise when estimating group strength. We think using KLMN 
numbers or Cazenave's classification can be better in practice because Go programs have so far failed to 
be strong. 

4"-_M1JI1ocolor Tree Search fMTS) 
We call Monocolor Tree Search (MTS) a search during which only one player only is making several 
moves in a row in order ωreach a goal. MTS is v釘y useful because it enables the programωfind KLMN 
by selecting e釘ïcient moves (i.e. a set of moves that driv巴中ickly to 印刷VE or DEAD sta陥). We 
have identified three possible uses of MTS in a Go playing program : goal selection and move selection at 
strat疋gicallevel and move generation within ATS. 

4J . Goal selection at strateaical level 

Asr巴gards goal s巴l巴ction， MTS can be used appropriately. Provided you can estimat怠 the gain G obtained 

by reaching the goal, you can compute a rentability R attributed to the goal with : 

R = G / KMN or R = G /LMN. 

4.2. Move selection at strateaical level 

By definition, MTS selects the most efficient moves. Then, at strategical 1巴vel， the problem is to choose 
moves among a set of moves with different KLMN, an issueωb巴 discussed in the next paragraph -mov巴
selection at th巴 strategi回11巴vel has similarities with move generation within ATS. 

4.3. Move aeneration within ATS 

When KLMN are small enough (巴qual 2 or 3) 批 moves which are found by M百 help 山 ATS move 

generation. To this extent, MTS might be considered as a preprocessing to ATS. 

During ATS, the program reaches some positions where evaluation is meaningful. On such positions, the 
group states are either DEAD or ALIVE but not UNDETERMINED. More generally, when evaluation is 
meaningful, it is composed of sub-games whose states are either WON or LOST but not 0τ'HER. Under 
time constraints, ATS must be guided toward such quiet positions and sub-game terminal moves are able 
to drive the global search toward these calm positions.τ'herefore， sub-game terminal moves must have a 

high urgency within the move generation process. Terminal moves establish order inside the positions. 
Consequently, we call them, ordering 11l0ves. 

On the other hand, the sub-game forced moves are disordering moves. First, by definition, they 巴rase the 

terminal ordering moves associated to the sub-game, second, they lead to the middle area of the 
UNDETERMINED state, impossible to evaluate with certainty, third, they may generate other sub-games 
with UNDETERMINED states and thus, still increase the uncertainty of the evaluation. 

Threats have an ordering quality because they guide the search toward the WON state which is an ordered 
state. But this ordering quality is weak because such moves will generate both ordering moves (at least 
one terminal move) and disorderi昭 ones (at least one forced move) at the next position. Therefore, we 
call such moves, weak ordering moves. 

Mov巴s that correspond to th巴 WON->WON-l transition ar巴 purely disordering mo四s. (Such moves exist 
because a game may be virtually but not actually won; see for example, aαladd巴r breaker>> or an 
αatari )) on a safe string). Th巴y destroy the order of a terminal state (P or Q = 0) and create a new state 
with uncertainty (P or Q > 0). 

58 -



In summary, we propose a decreasing urgency for these 4 move c1asses that reflects their ability, on th巴
on巴 hand ， to establish order inside the position and, on the other hand, to decrease the position 
uncertamty: 

Urgency(terminal move) 
> Urgency (threat) 

> Urgency (forced move) 
> Urg巴ncy 仰ON->WON-l)

Of course the above urgency must be refined with a factor that depends on the naωre of the sub-game. 
For example, the urgency of a terminal move linked to a capturing string sub-game wi11 not be the same 
as the urgency of a terminal move linked to a connection sub-game. At 出e very end, th巴 urgency wi11 also 
depend on the size of the sub-game, that is the size of the group for a group strength sub-game or the size 
of the string for a capturing string sub-game. 

4.5. Implementina MTS in Indiao98 

MTS Implementation was part of Indig098. Before d巴pth 3, MTS is not very consuming. For instance, 
finding terminal moves is easy. Finding threats takes more time because the program must verify that a 
terminal move will follow the threat. Finding forc吋 moves is stilllonger, because the program must find 
at least one terminal move for the en巴my， th巴n 汀y a possible friendly move and verify that there will b巴
no ensuing terminal move for th巴叩巴my. MTS beyond depth 3 was not implement巴d b民aus巴 of time 
constraints. To us, this approach seems to be a cost-effective way to find promising moves in the group 
strength sub-game without using the very expensive ATS. 

5. Conclusion 

In this paper, we have studied the group dynamic in the game of Go within a practical framework. A 
static c1assification (DEAD, OTHER and ALIVE) was assumed ωbe provided by an Group Strength 
Estimation Function (GSEF). Adverse TS (ATS) applied to 恥伊up strength sub-game was timeｭ
consuming in the wrong case and may not be well-adapted. Consequently, we suggested two numb巴rs
<< KMN >> (for 阻Iling Moves Number) and <<LMN>> (for Living Moves Number) corresponding ωthe 
number of moves to be played in a row so as to kill or save the group. We defined a <<∞mplex >> game in 
practi田 as a game where KMN or LMN are high. We presented the<< Mono∞lor Tree Search >> (MTS) to 
compuぬ KMN and LMN. We compared our contribution with the G, 1, P c1assification of [C砿enave 96], 
with the Possible Omission Number (PON) of [Tajima & Sanechika 98] and with the Fuzzy, Positive, 
Negative, Zero c1assification of [Conway 76]. We identified three possible uses of MTS : affecting a 
rentability to goals that are selected at strategicallevel, selecting promising moves at strategicallevel and 
preparing ATS move generation. Finally, we discussed the notion of urgency when P and Q are small 
(equal 1 or 2) in th巴 con旬xt of the global move decision context. 

We think that, in the near future, practical studies on complex games like the group strength sub-game in 
Go will enhance the importance of simple tools and concepts such as KLMN or MTS. 

- 59-



6. References 

[Boon 91] Mark Boon, Overzicht van de 仰仰比keling van een Go spelend programma, Afstudeer scriptie 
inforrnatica onder begeleiding van prof. Bergstra J, Amster廿釘n， 1991.

[Boon 99] Mark Boon, messa伊 sentωthe comouter-Iw(@hsc.f:r mailing list on May 17lh 1999. 

[Bouzy 95] Bruno Bouzy, Mod駘isation cognitive du joueur de Go, thとse de l'universit� Paris 6, 13 
janvier 1995, http://www.math-info.univ-paris5.fr/-bouzy 

[Bouzy 96] Bruno Bouzy, There are no winning move 紅白'Pt the last, Proceedings of the 61h International 
Conference on Information Processing and Management of Uncertainty in Knowledge Based Systems, 
IPMU'96, Granada, Spain, July 1 ・5， 1996.

[Cazenave 96] Tristan Caz巴nave， Syst鑪e d'apprentissage par auto-observation. Application au jeu de 
Go, thとse de l'universit� Paris 6, 13 d馗embre 1996. http://www.ai.univ-paris8.fr/-c回enave

[αlen 99] Chen Zhixing, Programming Technics in Handtalk, htto:/，畑ww.wulu.∞mL， 1999.

[Conway 76] John Conway, OnNumber And Games, Academic Press, 1976. 

[Fotland 96] ・ David Fotland, Computer Go Dωign Issues, Message sent to the computer-go@hsc.fr 
mailing list on October 151 1996. 

[Tajima & Sanechika 98], Morihiko Tajima, Noriaki Sanechika, Estimating the Possible Omission 
Number for Groups in Go by the Number of n-th Dame, , First International Conference on Computer and 
Games 98, in Lecture Notes in Computer Sci叩印， nO 1558, H.J. van den Herik, Hiroyuki Iida (eds), pp. 
265・281 ， Springer. 

[Serra 82], Jean Serra, Image analysis and mathematical morphology, Academic Press, London, 1982. 

[Wolf 94], Thomas Wolf, The program GoTools and its computer-generated tsume-go database. First 
Game Programming Workshop in Japan, Hakone, 1994. 

[Wolf 96], Thomas Wolf, About problems in generalizing a tsumego program to open positions. Game 
Programming Workshop in Japan'96, Hakone, 1996. 

[Zobrist 69], A Zobrist,A model ofvisual organisationfor the game ofGo, Proceedings AFIPS 34, 
pp103・112， 1969.

- 60 一


