
Data Structures for 2 x n Go 

RICHARD J. LORENTZ 
lorentz@csun.edu 

SIMON HA 

Department ofComputer Science 
California State University 
Northridge CA 91330-8281 USA 

Abstract 

We discuss the relative merits of various data s加ctures and data representations used in 
programming go on a board with 関心t1ytwo rows (2 x n go). We attempt to jus尚rthe choices we 
made and present some empirical evidence to show the worthiness of some of our decisions. 

1. Introduction. We begin by 
answering the two obvious qu自由ifiS: (1) Why 
2 x n go? and (2) Why discuss something as 
simple as data struc加res?

We choose to study 2 x n go for a 

number of reasons. We began looking at 也lS

game a few years ago with the thought that we 

could use a progrむn to completely solve the 
game for small values of n and 也.en quickly 

expandupon也isprogram to write a very good, 
if not perfect, player of 2 x n go [1]. It 加rns

out both ofthese goals were unrealistic. 
We拍11have not managed to solve the 2 

x 9 case, and even some of our analysis for the 
2x7cぉehas been called into question (廿lOugh
we continue to believe that our basic results are 
correct there). Also, writing a strong program 
for larger boards has proven irritatingly 

di伍c叫t. Despite也eapparent simplicity ofthe 
game, many of the difficulties encountered in 
writing s位ongprograms for the normal game of 
go appear here as well. We find ko, seki, 
cap旬ring races (a situation 也at appears wi也
great 合equency here and so s出ngth in 
capturing races is ぬnd釘nenta1 to wri也19 a 
strong program), life and death, etc. 

百世s， in fact, is the re部on 也at
encourages us to continue working on 吐出
problem. 百lOUgh we stiU see all of 也e

di伍culties of the general g釘ne of go, they 

appe釘 ina simplified setting. Some examples: 
there is really only one kind of ko in 2 x n go; 
也ereis only one kind of false eye; there in no 

notion of edge since every stone is on 也eedge. 
We fe巴l 也at if we can write a strong 

program for 也is problem then we should be 

able to generalize much of it to the ordinary 
game ofgo. Working on 也is simpler problem 
should prepare us for 也e more di伍cult task 
ahead. 
We have decided to emphasize data 

s町uctures in 吐出 paper because they are 

fundamenta1 to all go pla戸19 programs, but 
they do not seem to attract the attention 也ey

deserve. 百1ere is no question that there are 
other topics that are probably more important in 
the sense 也at a strong program will never be 
written until these areas are more fully 

developed. Certむnly pa抗em matching is 
fundamental and a great deal of work is being 
done experimenting with the best ways to 
repres巴nt pattems, search pattems, attach 
me釦lings to patt巴:rns， maintain pa坑em data 
bases, etc. 百1e same can be said about 
knowledge representation, life and death 
analysis, and many other similar topics 

However, the under1ying data structures 
thatr巴present世1e board, the stones, the strings, 
the groups，世1e eyes, the moyo, and whatever 
o血.er s位uctl江es are deemed primitive to 也e

- 46-



game must be chosen carefully so that 也巴
advantage of carrying 也isinfonnation around 
is not canceled by the burden of maintaining the 
inおnnation. This implies 也atit is not just恥
choice of the basic s佐ucturesthat is important, 
but their implementation as we11. 
In the rest of也is paper we will discuss 

what properties of the go board we choose to 
represent in our 2 x n go playing program, the 
data struc如res we use 旬 represent 也em， and 
some programming details. 

2. Preliminaries. In writing a program 
to play 2 x n go there is a temptation to 
op白血zethe program for 伽t game. 百lOugh
we are, indeed, interested in wri也Igaprogram 
that plays a s紅ong game of 2 x n go, we are 
also interested in being able to apply our 
techniques to 出e general (19 x 19) game. 

Hence, most of the techniques we employ we 
use with an eye tow紅白也.egeneral game. 
For example, in 2 x n go one condition 

for a string to be alive is for it to have at least 
10 liberties. Ignoring也efact伽tit is unusual 
for a string to obtain so many libe出esina2x

n game，血血.eordinary g鉱neof go there is no 
such condition possible. A dead string may 
have an arbitrary number of liberties. So, at 
least for now, we choose not to include such 
propert1es m our programmmg. 

On the other hand, fundamental to both 
gamesare ∞Ißcepts such as strings (a co11ection 
ofstones ofthe same ∞，lor which are connected 
in terms ofthe graph imposed by the grid ofthe 
go board), groups (there is no firm definition of 
也is ∞Ißcept -we wi11 discuss 也IS m more 

detaillater), and eyes (agむn， we need to be 
careful of也ede白副on)so these are 也ekinds 

of properties we implement in our g創出組dwe
叩11be discussing. 

Ano出.erimpo民組tissue in wri:由Iganygo

progr創nis deciding which structures should be 
“incremental" and which should be recalculated 
出 needed. 百ledistinction is best illustrated by 
an example. If a go program is maintaining a 
list of strings on the go board, after a move is 
made there are many chang儲 thatmight occur 
旬也B 宿泊gs. A new string might be created if 
the new stone was placed in isolation. A string 

might be enlarged by the addition of也is one 
stone. Two strings might be merged by being 
connected by 由is 駒田. Some s出ngs might 
ac加allybe removed 企omthebo紅d正副ss加ne

伺p加red some strings. To cope with these 
changes the programmer has two choices. 
Since there wi1l surely be some ch鉱tge(s)

made to the strings after a stone is played we 
could choose to sweep over the entire board and 
recalculate all ofthe strings. This me組S 也at

weせlfOWaway all the infonnation we currer叫y

know about the strings and start 企omscratchω
figure out what the string s位uc加reon the board 
IS. 

百le other choice is 加 see which s位mgs
were affected by the placernent of the new stone 
and incrementally change just those s出ngs曲at

are affected. This means going in and ch釦伊Ig

the data such 也at the appropriate s位ings are 
merged, removed, etc. 

Wilcox 紅伊es strongly 佃d eloquently 

against the use of most incremental data 
S加ctures [4]: “Incremental modification is a 
tempting idea wi也 any s佐uct町.e used to 

describe or represent叩 evolving siωation over 

time. …Incremental modification becomes a 
nightm紅巳. Because 1 had incentive to save 
time and squander memory, incremental 
modification wぉ used throughout the old 

program. … 1 spent months debu路時….官ley
were never 削ly debu邸.ed. …百le code grew 
complex. The number of special 回sesω
consider when incrementally updating a 
strucωre is larger th組 if 也at s町田知re were 

built 合om scratch. … Tactics remained 
expensive. …Thus 1 learned to hate 
incremental modification. " 
His point is we11 taken. Nevertheless, in 

order for a strong program to perform 

efficiently, a certain 鉱nount of incremental 
modification is necess訂y. It is，おr example, 
unreasonable to expect to recalculate 合om
scratch all the s出ngs every time a move is 
made. Look-ahead would become unbearably 
slow. So we must discuss what wil1 be done 
incrementally, how we will do it, and how we 
justify the programming overhead (and 
associated risks) involved in co必ng and 
debugging incremental 紺uctures.

- 47-



3. The Board. In叩 effortto keep the 
representations simple in order to facilitate 
modifications and debugging we maintain our 

board 部 a simple two dimensional 訂ray of 
what we call “ spots." Using a standard 
technique, our board actually has a number of 
e対日 rows and columns in each direction so 

that edge of board considerations can be dealt 
with using markers on 世le spots rather than a 
large number of conditional statements. 

Having claimed that we are striving for 
simplicity, however, we point out that our 
board array and most of our data s加ctures

have pointers back 組d forth between each 

other so that we have ready access to needed 
data. 百出 isso that in those areas where we do 
incremental upda也19we are able to move easily 

about the various components and do the 
upda白19quickly. After all，也eonIy reason for 
doing incremental updating is to increase speed, 
so it is import如t that we 紅Y to do it as 
efficient1y 出 possible.

Each spot in our board array contains the 
following information. There is a status item 
indicating whether the spot is occupied, vacant, 
or an artificial border point. If it is occupied it 
also indicates what color stone is there and if it 
is not it indicates ifthat spot is an illegal move 
because ofko. 

百lereare a number of pointers to various 
sむuctures 企om each spot. A spot may be a 
libe向'ofup 加 3 strings (4 in standard go, of 
course) so there are pointers to each string that 
也is spot happens tοbe a liberty of. Ifthe spot 
is unoccupied and an internal point of an eye, 
there is a pointer to 也ateye. Also, for the sake 
of generality (but at the expensive of the usual 
notion of eye) a small eye may be internal to a 

larger eye of the opposite color anﾘ so if 
necessary we provide a pointer 白血at eye as 
well. We also have a notion of group and so a 
spot may point 10 the group it is part 0王 We

say “may" because the group 託ruc加resarenot 
incremental. During look-ahead group 
information is not needed so often and the 
overhead in main'匂血ing groups incrementally 
seems exorbitant, so we have decided to 
recalculate group structures 出 needed.

Finally, there are values associated with 
every spot that correspond 10 such things as 
influence values (there are actually eight of 

these corresponding to the various combinations 
of the color of the influence and the direction 
that influence may radiate), a guess as to how 
valuable a move made by each color at 也IS

square would be (in an e島氏 to reduce the 

number of times a move's value needs to be 
recaIculated), and whetherthis square is p紅tof

a “horse" or a “horse pair," a topic that is 
discussed in Section 6. 

4. Strings. As mentioned earlier, strings 
are in some sense the most basic of the 
structures in a go game. Once formed a string 
can never be divided. It can only merge with 

another string (including strings of size one) or 

be completely captured. So it is not su中nsmg
that most ofthe data structures involve strings 
one way or another. And because of 出elr

importance, we choose to maintain them 
incrementally so we are not constantly 
recalculating them目

First of all we maintain globallists of all 
the blackωld white strings. This allows us to 

easily move around strings doing things such as 
looking for weak strings to capture or protect, 
finding “groups" of strings, identi骨ing live 

strings, etc. Also, just as each spot on the go 
board points to the string it is a member of, 
each string contains a list of the spots that it 
comprises. This allows us to quickly move 
back from the string to the board when 

necessary, for example, to determine influence 
values in the vicinity of a string 

Each string also maintains a list of its 
liberties. Since strings 釘e incremental, the 
liberties (and all other properties maintained by 
the string data structure) must, of course, also 
be maintained incrementally. So we must 
choose carefully what information we really 
want or need 10 maint創nwi也 astring since we 
do not want the overhead of maintaining too 
much information with each string to negate the 
advantages of doing incremental management. 
h出is case, however, we believe that it is self 
evident that liberties must be maintained with 
strings since liberties are fundamental to so 

- 48 一



many 出pects of strings including c却turing

(when the 1ぬerty count drops to zero), the 
health of the string (since more liberties 0丘en
means a healthier s位ing)，tactical points (since 
liberties are 0食en strong places to play when 
attacking a s出ng)，蹴.
A string rnay also out1ine parts of eyes, or 

perhaps more precisely, every eye is detined by 
the strings 也at enclose it, so the string data 
S官邸加remむntainsa list of all eyes that it is a 
p釘tof. A long string c組 bepart ofmany eyes 
so we place no limit on the number of eyes we 
associate with a s凶ng. We wi11 detine what we 
mean by 組 eyeand how we represent it in the 
next section. 

Finally, if a 柑'ingis part of a horse (see 
Section 6) then there is a pointer to the data 
structure that represents horses as we11 as 
point釘s to other strings 也at are part of the 
same horse. 

We 叩11 not go into implementation 
details here, but relat吋 tothe strings and some 
of our 0出er data 蛇uc旬res there is another 
data structure we need to mention t11at is a bit 
implementation dependent.τ'his data structure 
has to do with deciding what to maintain so that 
moves c叩 be “undone." As mentioned before, 
when making a move, strings may be created, 
merged, and even deleted. This, of course, not 
only has an effect on the strings involved but all 
other related s紅uctures such as liberty lists, 
horses, etc. So, a食era move h田 beenmade 
and all these changes have been recorded what 
do we do when it is 也neto take a move back, 
remembering that taking moves back happens 
exact1y 出 often 出 rnakingmoves when one is 
doing look-ahead? We don't want to lose all 
that we gained with the incremental data 
S位uc加rewhen it is time to take a move back. 
The simplest solution to 出is problem 

seerns to be to take snapshots of a11 the relevant 
data before a move is made. Relevant data 
includes all the s出ngs 也athave been created, 
merged, or dele旬d， a11 the liberties of all the 
strings that are a能cted，the changes to horses, 
the ko status of points (which, of∞urse， is at 
most one point), eyes that may have been 
created or destroyed, and some other basic 
也ings such 出仕lemove number. Notice 也isis 

not a snapshot all 也e data structures of 社le

m古'eb伺rd. 百lÍswould be 組 ex悦mewayof

dea1ing with the problem, where the other 
extreme would bet11e a1readymentioned method 
of recalculating every血ingafter a move is taken 
back. lnstead we have chosen a compromise 
method where most of the basic data is stored 
and so does not have to be recalculated, but this 
data has to be reinserted into the globa1 
structures to recreate the pre吋ous situation. 
This compromise method was origina11y chosen 
when memory (RAM and disk) w錨 notquiteso 
readily available as 江 is now, so it would be an 
interesting experiment to see if a method could 
be devised so that the a snapshot of all memory 
associated wi也也e data s佐uctures could be 
easily captured, stored, and then restored as 
needed. A minor note related to this: we use the 
same snapshot teclu註queforta恒ngback moves 
during look-ahead and for taking back moves 
during play, through the menu system. If we 
were to try to take a snapshot of a11 of memory 
we would probably have to restrict 也at to 也巴

look-ahead portion only as even wi由 current

memory sizes, it would be unrealistic to expect 
to be able to store hundreds oftota1 snapshots 
-and unnecessary as there no need to be able to 
retract moves at t11e user level with such 
blinding speed. 

5. Eyes. Our notion of eye is imperfect 
at best, but the data s位uctures involved are 
straightforward. Just 回 wemaintain a global 
list of strings we also mむntaina globa11ist of 
eyes for t11e same sorts of reasons. Using the 
globa1list we can quickly move to critical ar回S

of the board involving eyes. Also, the global 
list makes 比 easierto re∞IfiStruct the tota1 data 
environment after a move has been taken back. 
We view an ey巴出 any region tota11y 

surrounded by strings ofthe same color and the 
edge of the board. 羽田 c阻 be a bit 
problematic in general 組deven more so in 也E

2 x nc儲e. Consider Figure 1, on the top ofthe 
nextpage: 

- 49-



Figure 1 

By our definition也お grouph出 two 可凶 butit
is by no lIli回ns a1ive yet. Hence, we must do 
more to determine whether a group is a1ive 
besides just ∞m也19the eyes. One way we do 
由lS lS 旬 recursivelyvisit s位ingsand eyesωbe 
sure 也at every string associated wi也 an eye 
touches two eyes 姐devery eye is surrounded 
by strings 也at touch two eyes. Clearly the 
group in Figure 1 does not satisfy this condition 
since there are two strings (the single stones) 
也atdo not touch two eyes. 

Unfortunately，曲isapproach h出 proven

to be too conservative in that very heal血y
groups do not sa白骨也is condition. So in an 
e節目 to improve the correctness of our 
eva1uations we do some independent臨tsonan 
eyeto s田 if江 is hea1thy, and if so, we mark it 
出 such. 百由， then, explains one component of 
our eye data s佐ucture， a flag that marks 
whether or not the eye is “r阻1"ornot. Perhaps 
an integer representing how close or far也.eeye

is from being rea1 would be be悦:er， butwe 五nd

it di血cultto do such an eva1uation and equa11y 
difficult to then use such a value. 
Another diffic叫ty也e “rea1"flaga抗empts

ωd悶1 wi也h槌 todo with si卸ations
similar to those in the following figure: 

Figure 2 

Are there two black eyes in Figure 2, just one 
white eye, a white eye inside a black eye, or 
what? Of∞urse the answer depends on whose 
move 託 isand who 叫位制elycaptures whom. 
Su伍ce itωsay that in 2 x n go capturing ra∞s 
play a critica1 role and so it is important to be 
able to reco伊ize rea1 eyes (回 itis in normal 
go, of course) 邸 so wehave 也e “rea1"flag. 

- 50 一

Continuing how we represent eyes, we 
k田pa list of a11 the spots that 紅ein the interior 
of the eye. 百世sin品rmation is used for a 
number of things including determining how 
hea1thy 血e eye is (e.g.，世1e more spots, the 
hea1thier), and seeing 正 itmatches one of our 
eye patterns. To complement this second 
usage, eye data a1so includes information about 
the expanse ofthe eye in terms ofthe number of 
rows and columns it sp旬18. The actua1 pattern 
recognition process is described in [2]. Also, 
出ereis a pointer to the actua1 pattern if there is 
a match, where information about 也epattern 
itself is stored. 

6. Horses. The last m匂or incremental 
data structure that we maintain has to do with 
groupsofs位ings. Groups are notoriously hard 
to define because they depend so much on 
context such 儲 pro泊mityto edges and corners, 
distances between components，合iendly 叩d

enemy influences fli回r connections, etc. But 
there are some situations where it is cle紅白紙
two strings are part ofthe same group. Such 
strings cOlmected in 也is way we 伺11 a horse 
from the Korean term for 也issituation. 
In the case of 2 x n go，也ere 釘ereally 

only two ways strings can be connected to form 
a horse. Theyare shown in Figure 3 below. 

Figure 3 

In this case all three groups are part of也.esame

horse, where the middle s位ing(the single stone) 
is connected to 也es位加gon the left in one way 
(diagona11y), and connected加 thestring on the 
right 泊 the other way (adjacently). Both of 
也ese connections have 白 property 伽t 也e

enemy, black in this c儲e， must occupy two 
squ紅白 toseparate the horse. For example, for 
black to cutthe a司jacentconnection on the right 
he must occupy the point between the two 
strings and the point below. (Of course, he will 
actua11y need to occupy quite a few other points 



as well to give his cutting string sufficient 
S臨時也ωsurvivethe incursion. A two sωne 

stri喝 isunlikely to last very long after the cut.) 
If he on1y occupies one of these two points, 
white c組 occupy the other and connect. 
Anotherway旬 vlew 也IS IS 白紙 the s位ingsare 

∞m民:tedby miai. But也is is 首lecrucia1 point. 
Ifwec釦maintain也eseconnections in our data 
struぬlfe， th間部 soon舗 blackoccupies one of 

the points, white inunediately knows what point 
he must occupy to maintain the connection. 
Because horses can remain conn巴ctedif 

the program chooses to, we can then use horses 
出 ourbasic unit of s位ategy， ra也.er祉協n臨ings.

官邸， presumably, shou1d have a positive effect 
on bo出 the speed and the behavior of the 

program 
To maintain horses incrementa11 y is 

actua11y quite involved. We do most of it 
through the s凶喝白;tastructure. Every string 
has a pointer 加 its horse (which wil1 0武enbe 
the s位ing by itself) which maintains genera1 
information about the horse. Every string a1so 
has two poin'旬rS， one 旬 theleft and one to 也e

right, in case it is part of a bigger horse and 
there are connecting strings to the left and/or 

也e right. But these pointers don't point to 
other strings. Instead they point to ano出.er

s佐印刷reca11ed a pair that represents the two 
points of 也βmiai 白紙 are forming 也e

connection between the two strings. 

A pair, in 加m， keeps the information 
about the sta加sof the connection and what it is 
connecting. Clearly it will keep track of the 
two s凶ngs it is connecting by providing 
pointers to these two strings. It a1so h出 a

pointer to its own horse for completeness. 
Fina11y, it maintains infomlation about the two 
cu凶ng points, such as which if any are 
occupied by the enemy. If somehow both 

points get ocωpied by 也e enemy then, of 
course, the horse gets split into two horses. 
A1so, as we have done with a11 of our other 
data, since也eessenl田 ofa pair is the two spots 
on the board, a board spot maintains a pointer 
back to the pair if江 ispart of one.τrus was 
mentioned in Section 3 where we discussed 
boards and spots. 

However, there is a one technica1ity here 
that must be dea1t with. It is possible for a spot 
to actually be part of two 阿.rs (in a sing1e 
horse) 錨 seenin the following figure. 

Figure 3 

Here the spot above the single stone on 也e

bottom row is actua11y part of two pairs 
associated with the two s旬Ines on 也.e left and 
thebot刷nstoneand儲sociatedwi自由.ebo伽m

sωne and the single stone on the ri.位t. So we 
dea1 with this c部eby a110wing spotsωpointto 
two pairs, which is the most possible in 2 x n 
go. 

Finally, the data structure for the horse 
includes information like a list of the strings 

comprising the horse (we don't provide a list of 
pairs since they can be quick1y e油'actedfrom 

the strings list), the tota1liberties ofthe horse, 
how likely the horse is 旬 live， etc. 百leidea is 
that the horse now becomes our basic unit of 
町ategy (rather 也組曲e s出ng) and so we 

access horses to see what is 紺'Ong，what can be 
attacked, etc. Since horses 釘e maintained 

incrementa11y because of their 白ndamenta1
impo抗ance， wenl巴edto put horse infomlation in 
our move snapshots so their 柑uc加re can be 

quick1y recovered when we retract a move. 

7. Conclusions and further research. 

Despite the dire warnings of Wilcox, we have 
chosenωimplement a gr回.tdea1 ofour 2 x n 
go playing program using incremental data 

structures. We believe maintaining strings 
incrementa11y is absolutely necessary and have 
designed our program around 也isphilosophy. 

As a resu1t we have no empirica1 evidence to 
justifシ theclaim that 也isis the best way to go 
since we have no experience with a program 
也at reca1cu1ates s出ngs. But we remain 
confident. 

百lesituation wi也 eyes お lessclear. Our 
implementation of eyes is stil1 not perfect, but 

- 51 ー



we have chosen what seems to be a reasonable 
middle ground. We maintain the physical 

notion of eyes incrementa11y. By也lsweme組
the aspect of eyes that has to do with an eye 
being surrounded by 抑泊gs ofthe same color. 
However, the features of an eye (except those 
we extract 也roughpa抗emmatching) such as 

whether it is false or not, and if fals鳥 how
likely it can become a real eye, these we 
calculate on組 asneeded basis, mainly during 
evaluation. 
On the other hand, group infonnation in 

the large sense, i.e., beyond th巴 levelofhorses，

is not done incrementa1ly at all. This is mainly 
because our program is not sophisticated 

enough to use group information very often and 

because we are still struggling with the correct 
definition of group. Perhaps ifwe ever settle on 

a reasonable definition for group it will become 
a candidate for incrementa1 implementation. 
And then we might 血ldmore uses for 弘前 we

mention below conceming horses. 

As for horses, we have versions of the 
program with and without incremental 

implementations. Empirical evidence indicates 
白紙也eprogram runs about ten percent faster 
with the incrementa1 horse. At first也issounds 

a bit discour砲ing. But there are other positive 
side effects ofhaving incrementa1 horses. Since 
也ey are calculated incrementa11y，出is means 
that they 訂e always available in the data 

s位uc加res. As a result we are encouraged to 
use也isinfonnation more often 回 aresult of its 

readyavailability. 百le effect of也ishas been 

出atnot only is the program ten percent f:出ter

也an it was, but it also plays better since we 
find we can now use horse infonnation in many 
places such 出 dur泊g leaf evaluations, when 
pruning nodes, when ordering moves, etc. One 
is certainly less inclined to use infonnation if it 
must be recalculated every time you w叩t 江
As we said earlier, all of the 

implementations were done wi也也e general 
game of go in mind. As a result we believe也at

much of what we have done c組 be quickly 
applied to a program 也at plays the general 
game. 

However, we now 白ld ourselves in the 
position where we w叩tto know more about 2 

xn go. C叩 wewrite a very strong program? 

We 紅ethinking of moving in the direction of 

programming 2 x n go specifically to s回 how

紺ongwe can make the program. We are also 
wondering ifthe game isn't simple enough to 

evaluate analytically to see if we can 白ld a 
perfect player. We have had no luck to date, 
but it is not at all clear that it can't be done. 
Also, Sanechika has suggested to us 也at we 

might consid巴rdifferent rules, e.g., forbidding 
passing. Clearly this will have an effect on 

small boards, but it is less clear what effect, if 
any, it would have on larger boards. 
At the other end of由巳 spectrumperhaps 

2 x n go is provably hard. Maybe it can be 
proven tοbe NP-hard (in which case it will 

probably be PSpace-hard, too, as seems to 
企equentlyhappen with games, e.g., general go 
[3]). 百註s seems less likely to be true though, 
because the restriction to two rows makes it 
difficult to reduce 企om 也e standard NPｭ
Complete graph oriented problems which 

typically have a decidedly two dimensional feel 

to them and would seem to be the natural 

candidates to use in this si知山on.

8. References. 
[1] Lorentz, R.J., 2 x n Go, in Proceedings 01 
the Game Programming Workshop in .fIαrpan 
'97, (October 1997), 65ー74.

[2] Lorentz, R.J., Pattem Matching in a Go 
Playing Progranl, inProceedings olthe Second 
Game Programming Workshop in Japan , 
(September 1995), 167-174. 

[3] Lichtenstein, D.，組d Sipser, M., Go is 
polynomial-space hard, Journal 01 the 
Association 01 Computing Machinery, 23 
(1980)， 393・40 1.

[4] Wilcox, Bruce, Reflections on Building 
Two Go Programs, Speciallnterest Group on 
Artificiallntelligence, (October 1985), 29-43. 

- 52-


