Data Structures for 2 x n Go

RICHARD J. LORENTZ
lorentz@csun.edu

SIMON HA

Department of Computer Science
California State University
Northridge CA 91330-8281 USA

Abstract
We discuss the relative merits of various data structures and data representations used in

programming go on a board with exactly two rows (2 x n go). We attempt to justify the choices we
made and present some empirical evidence to show the worthiness of some of our decisions.

1. Introduction. We begin by appear in a simplified setting. Some examples:

answering the two obvious questions: (1) Why
2 x n go? and (2) Why discuss something as
simple as data structures?

We choose to study 2 x n go for a
number of reasons. We began looking at this
game a few years ago with the thought that we
could use a program to completely solve the
game for small values of » and then quickly
expand upon this program to write a very good,
if not perfect, player of 2 x n go [1]. It turns
out both of these goals were unrealistic.

We still have not managed to solve the 2
x 9 case, and even some of our analysis for the
2 x 7 case has been called into question (though
we continue to believe that our basic results are
correct there). Also, writing a strong program
for larger boards has proven irritatingly
difficult. Despite the apparent simplicity of the
game, many of the difficulties encountered in
writing strong programs for the normal game of
go appear here as well. We find ko, seki,
capturing races (a situation that appears with
great frequency here and so strength in
capturing races is fundamental to writing a
strong program), life and death, etc.

This, in fact, is the reason that
encourages us to continue working on this
problem. Though we still see all of the
difficulties of the general game of go, they

there is really only one kind of ko in 2 x » go;
there is only one kind of false eye; there in no
notion of edge since every stone is on the edge.

We feel that if we can write a strong
program for this problem then we should be
able to generalize much of it to the ordinary
game of go. Working on this simpler problem
should prepare us for the more difficult task
ahead.

We have decided to emphasize data
structures in this paper because they are
fundamental to all go playing programs, but
they do not seem to attract the attention they
deserve. There is no question that there are
other topics that are probably more important in
the sense that a strong program will never be
written until these areas are more fully
developed. Certainly pattern matching is
fundamental and a great deal of work is being
done experimenting with the best ways to
represent patterns, search patterns, attach
meanings to patterns, maintain pattern data
bases, etc. The same can be said about
knowledge representation, life and death
analysis, and many other similar topics.

However, the underlying data structures
that represent the board, the stones, the strings,
the groups, the eyes, the moyo, and whatever
other structures are deemed primitive to the

game must be chosen carefully so that the
advantage of carrying this information around
is not canceled by the burden of maintaining the
information. This implies that it is not just the
choice of the basic structures that is important,
but their implementation as well.

In the rest of this paper we will discuss
what properties of the go board we choose to
represent in our 2 x n go playing program, the
data structures we use to represent them, and
some programming details.

2. Preliminaries. In writing a program
to play 2 x n go there is a temptation to
optimize the program for that game. Though
we are, indeed, interested in writing a program
that plays a strong game of 2 x n go, we are
also interested in being able to apply our
techniques to the general (19 x 19) game.
Hence, most of the techniques we employ we
use with an eye towards the general game.

For example, in 2 x n go one condition
for a string to be alive is for it to have at least
10 liberties. Ignoring the fact that it is unusual
for a string to obtain so many liberties ina 2 x
n game, in the ordinary game of go there is no
such condition possible. A dead string may
have an arbitrary number of liberties. So, at
least for now, we choose not to include such
properties in our programming.

On the other hand, fundamental to both
games are concepts such as strings (a collection
of stones of the same color which are connected
in terms of the graph imposed by the grid of the
go board), groups (there is no firm definition of
this concept — we will discuss this in more
detail later), and eyes (again, we need to be
careful of the definition) so these are the kinds
of properties we implement in our game and we
will be discussing.

Another important issue in writing any go
program is deciding which structures should be
“incremental” and which should be recalculated
as needed. The distinction is best illustrated by
an example. If a go program is maintaining a
list of strings on the go board, after a move is
made there are many changes that might occur
to the strings. A new string might be created if
the new stone was placed in isolation. A string

might be enlarged by the addition of this one
stone. Two strings might be merged by being
connected by this stone. Some strings might
actually be removed from the board if this stone
captured some strings. To cope with these
changes the programmer has two choices.

Since there will surely be some change(s)
made to the strings after a stone is played we
could choose to sweep over the entire board and
recalculate all of the strings. This means that
we throw away all the information we currently
know about the strings and start from scratch to
figure out what the string structure on the board
is.

The other choice is to see which strings
were affected by the placement of the new stone
and incrementally change just those strings that
are affected. This means going in and changing
the data such that the appropriate strings are
merged, removed, etc.

Wilcox argues strongly and eloquently
against the use of most incremental data
structures [4]: “Incremental modification is a
tempting idea with any structure used to
describe or represent an evolving situation over
time. ... Incremental modification becomes a
nightmare. Because I had incentive to save
time and squander memory, incremental
modification was used throughout the old
program. ... I spent months debugging.... They
were never fully debugged. ... The code grew
complex. The number of special cases to
consider when incrementally updating a
structure is larger than if that structure were
built from scratch. ... Tactics remained
expensive. Thus I learned to hate
incremental modification.”

His point is well taken. Nevertheless, in
order for a strong program to perform
efficiently, a certain amount of incremental
modification is necessary. It is, for example,
unreasonable to expect to recalculate from
scratch all the strings every time a move is
made. Look-ahead would become unbearably
slow. So we must discuss what will be done
incrementally, how we will do it, and how we
justify the programming overhead (and
associated risks) involved in coding and
debugging incremental structures.

3. The Board. In an effort to keep the
representations simple in order to facilitate
modifications and debugging we maintain our
board as a simple two dimensional array of
what we call “spots.” Using a standard
technique, our board actually has a number of
extra rows and columns in each direction so
that edge of board considerations can be dealt
with using markers on the spots rather than a
large number of conditional statements.

Having claimed that we are striving for
simplicity, however, we point out that our
board array and most of our data structures
have pointers back and forth between each
other so that we have ready access to needed
data. This is so that in those areas where we do
incremental updating we are able to move easily
about the various components and do the
updating quickly. After all, the only reason for
doing incremental updating is to increase speed,
so it is important that we try to do it as
efficiently as possible.

Each spot in our board array contains the
following information. There is a status item
indicating whether the spot is occupied, vacant,
or an artificial border point. Ifit is occupied it
also indicates what color stone is there and if it
is not it indicates if that spot is an illegal move
because of ko.

There are a number of pointers to various
structures from each spot. A spot may be a
liberty of up to 3 strings (4 in standard go, of
course) so there are pointers to each string that
this spot happens to be a liberty of. If the spot
is unoccupied and an internal point of an eye,
there is a pointer to that eye. Also, for the sake
of generality (but at the expensive of the usual
notion of eye) a small eye may be internal to a
larger eye of the opposite color and so if
necessary we provide a pointer to that eye as
well. We also have a notion of group and so a
spot may point to the group it is part of. We
say “may” because the group structures are not
incremental. During look-ahead group
information is not needed so often and the
overhead in maintaining groups incrementally
seems exorbitant, so we have decided to
recalculate group structures as needed.

Finally, there are values associated with
every spot that correspond to such things as
influence values (there are actually eight of
these corresponding to the various combinations
of the color of the influence and the direction
that influence may radiate), a guess as to how
valuable a move made by each color at this
square would be (in an effort to reduce the
number of times a move’s value needs to be
recalculated), and whether this square is part of
a “horse” or a “horse pair,” a topic that is
discussed in Section 6.

4. Strings. As mentioned earlier, strings
are in some sense the most basic of the
structures in a go game. Once formed a string
can never be divided. It can only merge with
another string (including strings of size one) or
be completely captured. So it is not surprising
that most of the data structures involve strings
one way or another. And because of their
importance, we choose to maintain them
incrementally so we are not constantly
recalculating them.

First of all we maintain global lists of all
the black and white strings. This allows us to
easily move around strings doing things such as
looking for weak strings to capture or protect,
finding “groups” of strings, identifying live
strings, etc. Also, just as each spot on the go
board points to the string it is a member of,
each string contains a list of the spots that it
comprises. This allows us to quickly move
back from the string to the board when
necessary, for example, to determine influence
values in the vicinity of a string.

Each string also maintains a list of its
liberties. Since strings are incremental, the
liberties (and all other properties maintained by
the string data structure) must, of course, also
be maintained incrementally. So we must
choose carefully what information we really
want or need to maintain with a string since we
do not want the overhead of maintaining too
much information with each string to negate the
advantages of doing incremental management.
In this case, however, we believe that it is self
evident that liberties must be maintained with
strings since liberties are fundamental to so

many aspects of strings including capturing
(when the liberty count drops to zero), the
health of the string (since more liberties often
means a healthier string), tactical points (since
liberties are often strong places to play when
attacking a string), etc.

A string may also outline parts of eyes, or
perhaps more precisely, every eye is defined by
the strings that enclose it, so the string data
structure maintains a list of all eyes that it is a
part of. A long string can be part of many eyes
so we place no limit on the number of eyes we
associate with a string. We will define what we
mean by an eye and how we represent it in the
next section.

Finally, if a string is part of a horse (see
Section 6) then there is a pointer to the data
structure that represents horses as well as
pointers to other strings that are part of the
same horse.

We will not go into implementation
details here, but related to the strings and some
of our other data structures there is another
data structure we need to mention that is a bit
implementation dependent. This data structure
has to do with deciding what to maintain so that
moves can be “undone.” As mentioned before,
when making a move, strings may be created,
merged, and even deleted. This, of course, not
only has an effect on the strings involved but all
other related structures such as liberty lists,
horses, etc. So, after a move has been made
and all these changes have been recorded what
do we do when it is time to take a move back,
remembering that taking moves back happens
exactly as often as making moves when one is
doing look-ahead? We don’t want to lose all
that we gained with the incremental data
structure when it is time to take a move back.

The simplest solution to this problem
seems to be to take snapshots of all the relevant
data before a move is made. Relevant data
includes all the strings that have been created,
merged, or deleted, all the liberties of all the
strings that are affected, the changes to horses,
the ko status of points (which, of course, is at
most one point), eyes that may have been
created or destroyed, and some other basic
things such as the move number. Notice this is

not a snapshot all the data structures of the
entire board. This would be an extreme way of
dealing with the problem, where the other
extreme would be the already mentioned method
of recalculating everything after a move is taken
back. Instead we have chosen a compromise
method where most of the basic data is stored
and so does not have to be recalculated, but this
data has to be reinserted into the global
structures to recreate the previous situation.
This compromise method was originally chosen
when memory (RAM and disk) was not quite so
readily available as it is now, so it would be an
interesting experiment to see if a method could
be devised so that the a snapshot of all memory
associated with the data structures could be
easily captured, stored, and then restored as
needed. A minor note related to this: we use the
same snapshot technique for taking back moves
during look—ahead and for taking back moves
during play, through the menu system. If we
were to try to take a snapshot of all of memory
we would probably have to restrict that to the
look—-ahead portion only as even with current
memory sizes, it would be unrealistic to expect
to be able to store hundreds of total snapshots
- and unnecessary as there no need to be able to
retract moves at the user level with such
blinding speed.

5. Eyes. Our notion of eye is imperfect
at best, but the data structures involved are
straightforward. Just as we maintain a global
list of strings we also maintain a global list of
eyes for the same sorts of reasons. Using the
global list we can quickly move to critical areas
of the board involving eyes. Also, the global
list makes it easier to reconstruct the total data
environment after a move has been taken back.

We view an eye as any region totally
surrounded by strings of the same color and the
edge of the board. This can be a bit
problematic in general and even more so in the
2 x ncase. Consider Figure 1, on the top of the
next page:

Figure |

By our definition this group has two eyes but it
is by no means alive yet. Hence, we must do
more to determine whether a group is alive
besides just counting the eyes. One way we do
this is to recursively visit strings and eyes to be
sure that every string associated with an eye
touches two eyes and every eye is surrounded
by strings that touch two eyes. Clearly the
group in Figure 1 does not satisfy this condition
since there are two strings (the single stones)
that do not touch two eyes.

Unfortunately, this approach has proven
to be too conservative in that very healthy
groups do not satisfy this condition. So in an
effort to improve the correctness of our
evaluations we do some independent tests on an
eye to see if it is healthy, and if so, we mark it
as such. This, then, explains one component of
our eye data structure, a flag that marks
whether or not the eye is “real” or not. Perhaps
an integer representing how close or far the eye
is from being real would be better, but we find
it difficult to do such an evaluation and equally
difficult to then use such a value.

Another difficulty the “real” flag attempts
to deal with has to do with situations
similar to those in the following figure:

Figure 2

Are there two black eyes in Figure 2, just one
white eye, a white eye inside a black eye, or
what? Of course the answer depends on whose
move it is and who ultimately captures whom.
Suffice it to say that in 2 x » go capturing races
play a critical role and so it is important to be
able to recognize real eyes (as it is in normal
go, of course) as so we have the “real” flag.

Continuing how we represent eyes, we
keep a list of all the spots that are in the interior
of the eye. This information is used for a
number of things including determining how
healthy the eye is (e.g., the more spots, the
healthier), and seeing if it matches one of our
eye patterns. To complement this second
usage, eye data also includes information about
the expanse of the eye in terms of the number of
rows and columns it spans. The actual pattern
recognition process is described in [2]. Also,
there is a pointer to the actual pattern if there is
a match, where information about the pattern
itself is stored.

6. Horses. The last major incremental
data structure that we maintain has to do with
groups of strings. Groups are notoriously hard
to define because they depend so much on
context such as proximity to edges and corners,
distances between components, friendly and
enemy influences near connections, etc. But
there are some situations where it is clear that
two strings are part of the same group. Such
strings connected in this way we call a Aorse
from the Korean term for this situation.

In the case of 2 x n go, there are really
only two ways strings can be connected to form
a horse. They are shown in Figure 3 below.

- F.QQ__

Figure 3

In this case all three groups are part of the same
horse, where the middle string (the single stone)
is connected to the string on the left in one way
(diagonally), and connected to the string on the
right in the other way (adjacently). Both of
these connections have the property that the
enemy, black in this case, must occupy two
squares to separate the horse. For example, for
black to cut the adjacent connection on the right
he must occupy the point between the two
strings and the point below. (Of course, he will
actually need to occupy quite a few other points

as well to give his cutting string sufficient
strength to survive the incursion. A two stone
string is unlikely to last very long after the cut.)
If he only occupies one of these two points,
white can occupy the other and connect.
Another way to view this is that the strings are
connected by miai. But this is the crucial point.
If we can maintain these connections in our data
structure, then as soon as black occupies one of
the points, white immediately knows what point
he must occupy to maintain the connection.

Because horses can remain connected if
the program chooses to, we can then use horses
as our basic unit of strategy, rather than strings.
This, presumably, should have a positive effect
on both the speed and the behavior of the
program

To maintain horses incrementally is
actually quite involved. We do most of it
through the string data structure. Every string
has a pointer to its horse (which will often be
the string by itself) which maintains general
information about the horse. Every string also
has two pointers, one to the left and one to the
right, in case it is part of a bigger horse and
there are connecting strings to the left and/or
the right. But these pointers don’t point to
other strings. Instead they point to another
structure called a pair that represents the two
points of the miai that are forming the
connection between the two strings.

A pair, in turn, keeps the information
about the status of the connection and what it is
connecting. Clearly it will keep track of the
two strings it is connecting by providing
pointers to these two strings. It also has a
pointer to its own horse for completeness.
Finally, it maintains information about the two
cutting points, such as which if any are
occupied by the enemy. If somehow both
points get occupied by the enemy then, of
course, the horse gets split into two horses.
Also, as we have done with all of our other
data, since the essence of a pair is the two spots
on the board, a board spot maintains a pointer
back to the pair if it is part of one. This was
mentioned in Section 3 where we discussed
boards and spots.

However, there is a one technicality here
that must be dealt with. It is possible for a spot
to actually be part of two pairs (in a single
horse) as seen in the following figure.

TR
—/

Figure 3

Here the spot above the single stone on the
bottom row is actually part of two pairs
associated with the two stones on the left and
the bottom stone and associated with the bottom
stone and the single stone on the right. So we
deal with this case by allowing spots to point to
two pairs, which is the most possible in 2 x n
go.

Finally, the data structure for the horse
includes information like a list of the strings
comprising the horse (we don’t provide a list of
pairs since they can be quickly extracted from
the strings list), the total liberties of the horse,
how likely the horse is to live, etc. The idea is
that the horse now becomes our basic unit of
strategy (rather than the string) and so we
access horses to see what is strong, what can be
attacked, etc. Since horses are maintained
incrementally because of their fundamental
importance, we need to put horse information in
our move snapshots so their structure can be
quickly recovered when we retract a move.

7. Conclusions and further research.
Despite the dire warnings of Wilcox, we have
chosen to implement a great deal of our 2 x n
go playing program using incremental data
structures. We believe maintaining strings
incrementally is absolutely necessary and have
designed our program around this philosophy.
As a result we have no empirical evidence to
justify the claim that this is the best way to go
since we have no experience with a program
that recalculates strings. But we remain
confident.

The situation with eyes is less clear. Our
implementation of eyes is still not perfect, but

we have chosen what seems to be a reasonable
middle ground. We maintain the physical
notion of eyes incrementally. By this we mean
the aspect of eyes that has to do with an eye
being surrounded by strings of the same color.
However, the features of an eye (except those
we extract through pattern matching) such as
whether it is false or not, and if false, how
likely it can become a real eye, these we
calculate on an as needed basis, mainly during
evaluation.

On the other hand, group information in
the large sense, i.e., beyond the level of horses,
is not done incrementally at all. This is mainly
because our program is not sophisticated
enough to use group information very often and
because we are still struggling with the correct
definition of group. Perhaps if we ever settle on
a reasonable definition for group it will become
a candidate for incremental implementation.
And then we might find more uses for it, as we
mention below concerning horses.

As for horses, we have versions of the
program with and without incremental
implementations. Empirical evidence indicates
that the program runs about ten percent faster
with the incremental horse. At first this sounds
a bit discouraging. But there are other positive
side effects of having incremental horses. Since
they are calculated incrementally, this means
that they are always available in the data
structures. As a result we are encouraged to
use this information more often as a result of its
ready availability. The effect of this has been
that not only is the program ten percent faster
than it was, but it also plays better since we
find we can now use horse information in many
places such as during leaf evaluations, when
pruning nodes, when ordering moves, etc. One
is certainly less inclined to use information if it
must be recalculated every time you want it.

As we said earlier, all of the
implementations were done with the general
game of go inmind. As a result we believe that
much of what we have done can be quickly
applied to a program that plays the general
game.

However, we now find ourselves in the
position where we want to know more about 2

x'n go. Can we write a very strong program?
We are thinking of moving in the direction of
programming 2 x n go specifically to see how
strong we can make the program. We are also
wondering if the game isn’t simple enough to
evaluate analytically to see if we can find a
perfect player. We have had no luck to date,
but it is not at all clear that it can’t be done.
Also, Sanechika has suggested to us that we
might consider different rules, e.g., forbidding
passing. Clearly this will have an effect on
small boards, but it is less clear what effect, if
any, it would have on larger boards.

At the other end of the spectrum perhaps
2 x n go is provably hard. Maybe it can be
proven to be NP-hard (in which case it will
probably be PSpace-hard, too, as seems to
frequently happen with games, e.g., general go
[3]). This seems less likely to be true though,
because the restriction to two rows makes it
difficult to reduce from the standard NP-
Complete graph oriented problems which
typically have a decidedly two dimensional feel
to them and would seem to be the natural
candidates to use in this situation.

8. References.
[1] Lorentz, R.J., 2 x n Go, in Proceedings of
the Game Programming Workshop in Japan
‘97, (October 1997), 65-74.

[2] Lorentz, R.J., Pattern Matching in a Go
Playing Program, in Proceedings of the Second
Game Programming Workshop in Japan,
(September 1995), 167-174.

[3] Lichtenstein, D., and Sipser, M., Go is
polynomial-space hard, Journal of the
Association of Computing Machinery, 23
(1980), 393-401.

[4] Wilcox, Bruce, Reflections on Building
Two Go Programs, Special Interest Group on
Artificial Intelligence, (October 1985), 29-43.

