
Application of dιpn+ to Othello Endgames

Ayumu Nagai1 and Hiroshi ImaP

lDepartmenも of Information Science, University of Tokyo
7・3・ 1 Hongo, Bunkyo必u ， Tokyo, 113・0033 ， JAPAN

{nagai , imai}~is.s.u-tokyo.ac.jp

Abstract

We recently developed a df-pn algorithm for
AND/OR-tree search which behaves the same as
Allis' pn-search. In this paper, we propose a new alｭ
gorithm dιpn+ by extending df-pn. The extension
is to use two kinds of information (i.e., cost and h)
which AO* uses. We acquire such information from
the pattern based evaluation function constructed
for minimax-tree search. The experimental results
on Othello endgames show that df-pn+ is very eι
ficient especially for large problems. On average,
#nodes visited is reduced by a factor ! compared
with the original df-pn when #disc is 48.

1 Introduction

A minimax tree such that each of the value of
the nodes ultimately falls on either of the two valｭ
ues (i.e. , true or false) is called an AND/OR
tree. AO* [12) is a representative algorithm for
AND /OR-tree search and is intensively studied. Alｭ
lis developed pn・search [1) which uses both proof
and disproof numbers. Since pn-search is an eleｭ
gant algorithm and is easy to understand, it is in
the limelight. Both AOホ and pn-search are best司
自rst algorithms.

PDS [10) is also a depth-first algorithm using both
proof and disproof numbeFs, its basic concept diι
fers from the rest. It does not behave exactly same
剖 pn・search either. (PDS mer巴ly behaves 槌ymp

totically same 部 pn-search.)
Nagai had developed an algorithm that is an exｭ

tension of PDS [10). The same expansion can be
applied to dιpn. We call it df-pn+ , and if dιpn+
satisfies admissibility then we call it dιpn本. We will
explain these algorithms in Section 2.
By the way, for searching minimax trees, Alphaｭ

Beta is a representative algorithm. Although there
are many variations and enhancements for Alphaｭ
Beta, they all uses some kind of an evaluation funcｭ
tion. Strong Othello programs use evaluation funcｭ
tion constructed automatically from the records of
many games. However, we never heard that this
kind of evaluation function was used for proofｭ
number search, except for a simple estimation to
initialize (dis)proof numbers and studies by Tanaka
and etc. [17)
In this paper, we show a method to apply such

an evaluation function into a framework of df-pn+.
Section 3 explains how we constructed our evaluaｭ
tion function. Section 4 shows our application of
this evaluation function to dιpn+. The experimen・
tal results are presented in Section 5. Finally, Secｭ
tion 6 provides our conclusion.

Search Algorithm

Since there is a trend to use a depth-first algoｭ
rithm so as to behave the same as a best-first one n

(e.g. MT-SSS* [13) is a depth-first algorithm that “
behaves the same 田 SSS* [16)) , we quite recently 2.1 Df-pn
developed a depth-first algori伽n df-pn [11) using
both proof and disproof numbers. We had proved
that df-pn behaves the same 出 pn-search in the
meaning of always expanding a most-proving node.
Although a depth-first algorithm using both proof
and disproof numbers can be constructed by simply
extending Seo's algorithm [15) (we can even give a
proof that it behaves the same as pn・search) ， df-pn
is a more practical depth-first algorithm. Although

Proof number at an OR node and disproof number
at an AND node are essentially equivalent. Simｭ
ilarly, disproof number at an OR node and proof
number at an AND node are essentially equivalent.
As they are dual to each other, we can rename the
former <� and the latter O.
(Dis)proof number is defined 出 the least number

of tip nodes of the current search tree, which must

- 16-

be evaluated to be true (false) in order to ensure
that the game-theoretical value of the root is true
(false). The formula for calculating <� and � is as
follows.

1. If n is a tip node

(a) When game-theoretical value is known

i. If game-theoretical value is true
(false) and n is an OR (AND) node

n.ゆ o

n.ð ∞

ii. If game-theoretical value is true
(false) and n is an AND (OR) node

nφ= ∞

n.� 0

(b) When game-theoretical value is unknown

n.ゆ 1

n.� 1

2. If n is an internal node

n.ゆ Min nchild.�
nc E children of n

n.� = . t: _ nchild'<゙
nc E chlldren 01 n

Df-pn is a depth-first algorithm that behaves the
same 部 pn-search. The characteristic feature of dι
pn is that (1) each node has two thresholds: one for
ゆ (thiþ) and the other for � (thö) , and that (2) Mulｭ
tiple Iterative Deepening [15] is used at all nodes.
The brief algorithm of df-pn is 回 follows. (The proｭ
gram list of df-pn is carried on Appendix A.)

1. Assign r.thゅ 。。

r.thö ∞

where r is the root.

2. At each node n , the search process continues
to search below n until n. <þ 三 n.thゅ or n.ð 主

n.th� is satisfied (we call it ending condition).

3. At each node n , select the child nc with miniｭ
mum � and the child n2 with second minimum
�. (If there is another child with minimum ð,
that is n2 ・) Search below nc with 部signing

nc.thゅ = n.th� + nc・ゆ -L nchild.<゙ (1)

nc ・ thö min(n.thゅ ， n2.� + 1). (2)

Rβpeat this process until the ending condition
holds. (Multiple Iterative Deepening)

4. If ending condition holds, the search process
returns to the parent node.

5. Continue until search process comes back to
the root.

When we have insu伍cient memory space and
if we 灑e at the situation that the information of
some nodes may be removed (e.g. by SiblingGC and
SmallTreeGC [10]) , then the substitution (1) and (2)
should be modified into

nc.thゅ nc ・ゆ +1

町品ö min(n品ゅ ， max(n2.ð, nφ) + 1).

2.2 Df-pn+

H uman experts searches promising moves very deep
and narrow, on the other side, the unpromising
moves are aggressively pruned. Df-pn searches
promising moves deeper. Df-pn+ intends to disｭ
tinguish promising moves more accurately and to
search them much more deeper.
Compared with Elkar山 algorithm [8] or Seo's alｭ

gorithm, AOホ uses two kinds of additional informaｭ
tion (function g and h) during the search. Simiｭ
larly, dιpn+ uses two kinds of information.

1. cost(必巾roof(n ， nchild) is defined as the cost
from node n to node nchild as a part of a
(dis)proof solution. For example, if the posiｭ
tion n is advantageous for the first player, then
costproof h出 to become small, since cost is a
load against searching deeper.

The information of cost is used in order to enｭ
large the threshold of (dis)proof number than
the original df-pn, whenever if it is the first
(second) player's turn and if there is a move
whose corresponding evaluation is high. The
large threshold of (dis)proof number causes a
deep focus on that move, resulting in a deep
search.

2. h(dis)proor(n) which is a heuristic estimate of
the cost to reach any (dis)proof solution 仕om

position n. That is, h(diゆroof(η) indicates the
distance from (dis)proof solutions. For examｭ
ple, if the position n is advantageous for the
first player, then h(di巾roor(n) h回 to become
small (large) , since n is closer to a proof soluｭ
t卲n.

The information of h(dis)proof(吋 is used at leaf
nodes. Since h(di吻roof(n) corresponds to the

-17-

distance from (dis)proof solution, it is used for
initializing proof number and disproof number.
If the position n is favorable to the first (secｭ
ond) player, (dis)proofnur出erof that position,
which is equal to h(dis)proof(n) , gets small (since
we construct it 部 so). Then the search process
goes deep until satisfying the threshold.

Df-pn is equal to df-pn+ with the following codiｭ
t卲ns.

cost = 0

h=1.

If cost and h is defined, then g can be defined.
g(dis)proof(n) is defined 拙 the cost incurred so far
for position n 剖 a part of a (dis)proof solution. For
example, if the position n is disadvantageous for
the first player, then g(dis)proof(n) has to become
large (small) , since n is closer to a disproof solution.
Although g is an important function, we do not use
g explicitly, but cost instead.

If dιpn+ satisfies admissibility, then we call it
df-pn* , since it is guaranteed to find an optimal
(dis)proof solution if it exists. The admissibility is
defined as

h(di巾roof(n) 三 h*(di巾roof(n) ,

where hホ (di巾roof(η) is the actual cost to reach a
(dis)proof solution from node n. (For details, see
[10].) Since h used in this paper does not satisfy
this inequality, the algorithm used is dιpn+.

1. If n is a tip node

(b) When game-theoretical value is unknown

n.ゆ

n.8

2. If n is an internal node

hゅ(π)

h�(n)

n.ゆ_ .M..in " (nchild.8+cost<þ (n,nchild))
nc E children of n

n.8 = . ~ _ (nchild.<゙ +ωt仇 nchild))
nc E children of n

The following modification of the 3rd item of dι
pn in Section 2.1 leads to the brief algorithm of
df-pn+. (The program list of df-pn+ is carried on
Appendix B.)

3. At each node n , select the child nc with minｭ
imum (nc.8 + cost<þ (n, nc)) and the child n2
with second minimum (n2.8 + costφ(n ， η2))'
Search below nc with assigning

nc.thゅ = n.th� + nc・ <þ

-I)nChild.<゙ + costó(n, nchild)) (3)

nc品ó = min(n.th<þ, n2.8 + cost<þ (n, n2) + 1)

-costφ(n ， nc). (4)

When we have insufficient memory space, then
the substitution (3) and (4) should be modified into

Since we construct a negamax algorithm, hゅ， hó,
costφ ， and cost� are defined 出 follows. nc ・thφ = ncゆ +1

1. For an OR node n

(h(η) h�(n)

costゅ(n)
cost�(n)

一
hproof(n)

hdisproof (n)
costproof(η)
costdisproof(n)

2. For an AND node n

(h(η) 三 hdisproof(η)
hó(n) 三 hproof(n)

cost<þ (n) 三 costdisproof(n)
costó(n) 三 costproof(n)

Then, relation between <þ,8 and g ,h is as follows.

n.ゆ

n.8

gφ (n) + h<�(n)
g�(n) + h�(n)

The formula for ca1culating ゆ and 8 should be modｭ
ified from the one in Section 2.1 as follows.

nc.th� = min(ma.x(n2.8 + costゅ(n， n2) , n.φ) + 1,
n品φ) ー costφ (n， nc).

3 Evaluation Function

Strong Othello programs (e.g. LOGISTELLO, HANｭ
NIBAL, BRUTUS, ZEBRA, and KEV，合NO) today use
pattern-based evaluation function constructed auｭ
tomatically from the records of tens or hundreds of
thousands of actual games. It can be said that this
is a kind of learning. For details, see [5] [6] [7] [4].
We constructed an evaluation function for

minimax・tree search from 60,000 games played
between KITTY and LOGISTELLO (we call it
recordA) 制 390 ，000 games played at IOS (we
call it recordB). RecordA is available from ftp://
external.nj.nec.com/pub/igord/othello/misc/.
Although the original data contains 100,000 games,
we selected 60,000 games by reducing some very

一 18 一

the frequency of the configuration appeared at
each stage 回 a weight of the corresponding
value.

similar games. RecordB is available from ftp:/ /
external.nj.nec.com/pub/igord/othello/ios/.
Although there are 470,000 games in the original
data, we selected the games played from the initial
position through the end of the game successfully. 組

The patterns we used are all the configuration of ..
every

Applying to Df-pn+

• rows and columns (totally 4 types)

• diagonals of length 4 to 8 (totally 5 types)

・ 3x3 corner

where A is the constant. We tried to decide cost
from the evaluation function and with the combiｭ
nation of history heuristics. But they resulted in
failure. We were unable to think of any effective
usage for Othello. Instead, fixing cost to a conｭ
stant w出 sufficiently effective.
As with h(π) ， we defined it as the following sigｭ

moid function.

hr�(n) 空ι一一 +1
1 + e-Ev副(n)jG.φ

空L一一 +1
1 + e-Eval(n)jC.s

where B and C are the constants. (C，ゆく 0 ， Có , Bゅ，

B� > 0)
Now we will explain how we decided the values of

B and C. First of all, for each of the stages from 47
to 62 discs, we solved 1000 or 2000 problems by the
original dιpn. The problems are randomly selected
from recordA. When the problem is proved, then by
looking at the solution tree, we record the value of
the threshold of � at the root (i.e. , r.tht�) which is
sufficient to solve the problem, along with the evalｭ
uation of that problem (Eval(r)). 8imilarly, if the
problem is disproved, we record the sufficient value
of r.th� and Eval(r). The values of r品φ(r.thó) and
Eval(r) is 田ed for deciding the values of Bt� and C，ゅ
(B� and C�).
From all these data, we decided B and C by the

method of least squares, regarding sigmoid function
as a regression function. It is done in this way. The
purpose � to m���e

Eτ『{B)=) ~ト一一+ 1 -Yi)2
γ1+etJ

A

o.

Although the idea corresponding to h is already
widely used 出 an initializi碍 function for (dis)proof
numbers [2] [14] [3] [9], they requires domainｭ
specific knowledge. (80 it is categorized into one of
the enhancements.) Tanaka uses a certain function
without any parameter [17]. However, we intended
to decide h automatically from the evaluation funcｭ
tion which is mentioned in 8ection 3 without any
domain-specific knowledge.
We define cost as

costφ(η)

cost�(n)

with every 52 stages (13 to 64 discs). Each of the
configuration has a corresponding value which is
taken into account, when evaluating a position, if
the configuration appears in the position. Pattern
based evaluation function intends to predict the fiｭ
nal disc di百érence of the both players.
There are some charaεteristic features in our conｭ

struction.

• 2x4 corner

• par�y

• We used conjugate gradient method with scalｭ
ing for the preconditioning instead of steepest
descent method.

(5)

(6))

η

(

e
O

L
U

• Rare configurations makes the evaluation funcｭ
tion unreliable. We used recordA mainly and
recordB for supplementing positions which inｭ
clude rare configurations. (It means that we
used all the positions in recordA corresponding
to the 52 stages, but not all in recordB.) 8till,
there are some rare configurations. For such
configurations at the edge that include three
or more empty squares in a row, we divided
them into two configurations. For the rare con・

figurations at the corner (3x3 and 2x4 corner) ,
we reduced it into smaller configurations. 8ee
Figure 1.

樫停

醒圧

摩監

摩任

昨日平再t=l

+
陣再再m

+

Figure 1: Division of rare configuration (edge) and
reduction of rare patterns (3x3 and 2x4 corner)

• We smoothed each configuration values into
quartic function 剖 a regression function by the
method of least squares. At that time, we used

一 19

where

Since

ei

Xi

Yi

l+e一号，
Eval(r),
r.th.

δE _ 'r"'\, 1 -'U; B ‘

一一 =0 特予{一一二こ+一一)=0
θB ケ、 ei 'ei2 ,

(1nternet Othello Server) held at October 24 and
25, 1998. Remark that they are different from the
games (recordA and recordB) used for constructｭ
ing evaluation function and parame七ers of 出e sigｭ
miod function. We used 100 problems with 16 vaｭ
cant squares and calculated the average of them.
For each of the 100 problems, we solved the probｭ
lem by df-pn+ which we are focusing on and dιpn
as the standard. Then we calculated the ratio of

特 B=-ε平/詰 (7) the performance of dιpn+ (from the viewpoint of
#nodes visited and memory usage) with each ofthe
problems, and finally acquired the average of them.
Therefore, the performance of df-pn is always fixed
to 1 in this paper. CPU time is expected to be
in proportion to #nodes visited. Memory usage is
乱ctually #cells used for transposition table when
SiblingGC is in use.

θE _ ，， 1 ー引 B
8C=0 骨三JXi(ei -1)(二t + e:3))=0 (8)

Equation (7) is s山stituted into equation (8) to canｭ
cel out B. Since it is diffic叫 to solve equation (8) ,
we decided to solve it by binary search.

Optionally, we devised two ideas. The one is to
double the data and the other is to smooth the conｭ
stants.

5

• Naively, the data acquired from (dis)proved
problems are used only for deciding B", and C",

(B� and C�) by regression. However, since Bφ
is nearly equal to B� and C", is nearly equal to
-Có , we assume the following two equations.

Bゅ Bó

C", -C�

Then each pair of (Eval(r) , r.thゅ) acｭ
quired from proved problems is modified into
(-Eval(r) , r.thゅ) and is joined with the data
acquired from disproved problems. This is
done before the regression to sigmoid function.
By using all these data, B� and C� can be obｭ
tained.

• Regression to sigmoid function is done for each
of the stages from 47 to 62 discs. (That is,
B and C depends on #disc.) We thought of
smoothing each of the values of B and C into
exponential function (Fe-Dx) 出 an regreぉion
function. The procedure is similar to the reｭ
gression to the sigmoid function. We g凶 simul

taneously partial differential equation, substiｭ
tute one equation to the other, and use binary
search.

Experimental Results

All the problems used in this experiment is made up
from the record of Othello games played at Princeｭ
tonII, the computer Othello tournament on 10S

1n Section 4, we mentioned two optional ideas
(doubling and smoothing) during the regression to
sigmoid function. Therefore, there are four possible
variants for h. Figure 2 shows the ratio of #nodes
visited with each of the variants and the c出e (shown
回“only cost") which uses only cost and not h.
costゅ is fixed to -1. Figure 2 indicates the imｭ
portance of using h especially with large problems,
since it is effective to use h when #disc is few. Al-
though it is not so clear in Figure 2, Figure 3 which
shows the ratio of memory usage with the five c剖es

indicates the necessity of doubling and/or smoothｭ
ing insもead of naive regression.

Nude V川ls uf the Fuur VarianlS of Sigmoﾎu Function

0.9 ト smlxlI hing 骨ー
t.ltlublin& y'-

O.K ト山山Ih叫吋uubling ./
nn h. l}nly cusl ・ー ./.，.J〆日

吉 0.7~ノJ
・r.'.

~ 0.6 ~#..-...-... .. ~0

~ 0; ~
Ii十../

OA
g

~ 0.3 ~ A

I h"
O.2l?"'-

0.1

0
4K 50 52 54 %

number nf l.I iscお

5K “} 62

Figure 2: Effect of Function h from the viewpoint

of #nodes visited

Figure 4 shows the ratio of #nodes visited with
the five c回目. #disc is fixed to 48. When cost
is equal to 0, it is equivalent to the c出e without
using cost. Although it is only slightly e鉦'ective to

一 20 一

N‘kle Vi !l it‘ when üm !liderin },! h an伃nr cust Functiun M引llury Usage (lf Ihe F山lr Varìanl込 of Sigll1uid Funcliun

.4fr.~~

.'主

っ 0.7 ト A

~ 0.6 ト------ ...~'
き II;~ ~ .,/':

主ト....=~
「吉 0.4 ト....
王 1 醤位ιtで引行....ピh三hてで町T一一"'..-v':一
e 0.3 ~ ..:-",.

卯M 一
cusl + h ・

0.9

O.K

nune ー
0.9 ト 州剛山市g ・.4"

叫出町 一・ ..0グ
O.K い附則'Ihing判如曲川市 ・一一一-_....ジヲr

l 川叫C山・勺/ー ~/

ω0.7ト~ $

言一./'ー〆/
::' U.6ト./ .γ
� L.... ./ ...:;,,'
i .' ./一円/〆

~ (日~~;:;/
三 0.4ト J子二J:..".......-_.'C

e 0.] ~・1・

0.2

り l0.1

の2

Figure 5: Effect of Both Function cost and h from
the viewpoint of #nodes visited

“} うお54 56

numbc:r nf di叫謁

52 50
o
~K 自2

Figure 3: Effect of Function h from the viewpoint
of memory usage

“} 5K ミ 56

number 川 dis凸

52 対}

0
~K

with both doubling and smoothing in use and when
cost is fixed to -1. On average, compared with
df-pn, #nodes visited is less than half when #disc
is 54, less than 1 when #disc is 52, and nearly ~
when #disc is 48. We can expect that the efficiency
will become still better when the problem size is
larger. Therefore, CPU time is expected to reduce
in proportion to #nodes visited.
Othello h出 a unique feature that most of the

terminal nodes locates at a certain depth and that
the branching factor gets smaller near the terminal
nodes. As a result, there is a tendency for search
algorithm to become effective when it search deep
to some degree whenever a move decision is made.
Df-pn+ is effective since cost and h was decided to
satisfy this feature.

use cost when h is used, the case using only cost
shows that it is effective to use cost. It is hard
to see from the figure, but the performance of the
C回目 using h is getting extremely slightly better
when cost is fixed to a lower constant. cost must
be decided carefully when using only cost.

NlkleV附ib the value nf CU!lt funcliun

¥nlme
\則n山】Ihing 判
¥�lubling
¥ ぉ1l1(剛山ing+uuubling
・ noh. unlヲ cusl ・ーー :
、守

、

、，

、，

、，

、，
、

‘' 、，

、，

、、一'
、 j

-ー‘，
司、、."
、，

、

、

0.9

O.K

7

4

n

5

4

3

}

}

}

}

l

t

t

t

t

t

E
W
E
-
'
5
2
Eなち
2
-
2

A new search algorithm df-pn+ is proposed by exｭ
tending df-pn. For function h , we adopted sigmoid
function as regression function and decided the pa・
rameter by the method of least squares. For funcｭ
tion h , we used a constant (-1 is su侃ciently effecｭ
tive). Df-pn+ constructed in this way is very effiｭ
cient especially when the problem size is large. Exｭ
perimental results on Othello endgames show that
#nodes visited is reduced by a factor ~ on ave珂e
compared with the original df-pn when #disc is 48.

Conclusion 6

-ーーーー

ー ..~..tt.- ・一一一l

Figure 4: Effect of Function cost from the vi巴w

point of #nodes visited

0.2
+一一→一一一←一一→・一一噌

11.1

ラ-3

CUぉ1

4 R
11

ー{、

Acknowledgements

1 would like to thank E泊 Tsuchida for having a
fruitful discussion with him and providing some imｭ
portant information for me.

- 21

7

Figure 5 shows the ratio of #nodes visited with
the cases using h and/or cost. When both of them
are not used, df-pn+ is equal to dιpn which shows
the performance of 1. Both doubling and smoothing
are used during the .regression to sigmoid function.
Although the case using both cost and h is slightly
better than the c酪e using only h , we can easily see
that it is the most effective to use both of them
when problem size is large enough.
Figure 2 shows that df-pn+ is very effective to

solve large problems when h is a sigmoid function

References

[1] Louis V. Allis, Maarten van der Meulen, and H.
Jaap v組 den Herik. Proof-Number Search. Reｭ
port CS 91・01 ， University of Limburg, Maastricht,
Netherl回ds， 1991. Also available at Artificial Inｭ
telligence, Vo1.66, pp. 91-124, 1994.

[13] Aske Plaat, Jonathan Schaeffer, Wim 町ls，組d
Arie de Bruin. A new Paradigm for Minim回
Search. Technical Report TR 94・18， Department of
Computing Science, University of Alberta, Canada,
1994.

[2] Louis V. Allis. Searching for Solutions in Games
and Arti.戸cial Inte/ligence. Ph.D. Thesis, Departｭ
ment of Computer Science, University of Limburg,
Netherlands, 1994.

[14] Martin Schijf. Proof-Number Search and Transpoｭ
sitions. M.Sc. Thesis, University of Leiden, Nether・
lands, 1993.

[3] Dennis M. Breuker , Louis V. Allis，叩d H. Jaap v叩
den Herik. How to Mate: Applying Proof-Number

[15] Masahiro Seo. The C砂 Algorithmfor AND/OR Tree
Search and iぉ Application to a Tsume-Sh09i Proｭ
gram. M.Sc. Thesis, Department of 1nformation Sciｭ
ence, University of Tokyo, Japan, 1995.

Search.AdtJances in ComptLtET CMss, Vol-7, pp.1161George c.Stockman.A Minimax Algorithm Better
251-272,1994.thmAlpha-Beta?ATtineid Intell匂ence， Vol. 12,

pp. 179-196, 1979.
[4] Mark Brockington. KEYANO Unplugged -The Conｭ

struction of 加 Othello Program. Technical Reｭ
port 97・05 ， Department of Computing Science, Uniｭ
versity of Alberta. Available at http:/ /官官官 .cs.

ualberta.ca/-g回目/key副0/.

[17] Seiichi 加aka， Hiroyuki Iida, and Yoshiyuki
Kotani. An Approach to Tsume-Shogi: Applying
ProoιN umber Search with Estimation Function of
Mating. (1n Japanese) Game Programming Work・

shop in Japan '95, pp. 138-147, 1995.
[5] Michael Buro. An Evaluation Function for Othello

Based on Statistics. NEC1 Technical Report #31,
1997. A Program List of Dιpn

[6] Michael Buro. Experiments with Multi-ProbCut
加d a New High-Quality Evaluation Function for
Othello. Workshop on game-tree sea陀h， NEC1, Auｭ
gust 1997. Also available as NEC1 Technical Reｭ
port #96, 1997 at http: / /官官官 .neci.nj.nec.com/
homepages/mic/publications.html.

The program list of dιpll is carried below. As � and
ﾓ at each node 釘e dual to each other, an algorithm
corresponding to negamax algorithm in the context of
minimax-tree search c叩 be constructed.

[7] Michael Buro. From Simple Features to So・

1 / / lterative deepening at the root
2 procedure Nega・dιPI凶earch(r) {
3 r.ø= ∞ r.ó = ∞;

MID(r)j
phisticated Evaluation Functions. The First In・

ternational Conference on Computers and Games 4

(CG'98) , Ts此uba， Japan. To be published in a 5
forthcoming LNCS, Springer-Verlag. 6

7
[8] Charles Elkan. Conspiracy Numbers and Caching 8

for Searchillg And/Or τ'rees and Theorem-Proving. 9
Proceediη，gs IJCAI-89, pp. 341-346, 1989. 10

[9] Jacco Gnodde. Aïda, New Sea問h Techniques Ap- 11
plied to Othello. M.Sc. Thesis, Ulliversity of Leide~， 12
Netherlands, 1993. 13

14
[10] Ayumu Nagai. A new DeptlトFirst・Search Algorithm 15

for AND/OR 1干'ees. M.Sc. Thesis, Department of 16
Information Science, University of Tokyo, Japan, 17
1999. 18

19 [11] Ayumu Nagai. Proof for the Equivalence Between
20 Some Best-First Algorithms and Depth-First Al-
21

gorithms for AND/OR Trees. KOREA-JAPAN
22 Joint Workshop on Algorithms and Computation,
23 pp. 163-170, 1999.
24

[12] Nils J. Nilson. Pバnciples of A rtificial Intelligence. 25
Tioga Publishillg Company, Palo Alto, CA, 1980. 26

}
/ / Explore node n

procedure MID(n) {
/ / 1. Look up the transposition table
Look U p TransTable(n， ゆ， �)j
if (n.ゆ壬ゆ 11 n.� ::::; �) {
nφ= ゆ n.ó = ﾓj
returnj

}
/ / 2. Generate all the legal moves
if (n is a terminal node) {

}

if ((n is an AND node &&
Eval(n) == true) 11

(n is 叩 OR node &&
Eval(π) == false)) {

n.ゆ=∞ n.ó = Oj
}else {n.ゆ= Oj n.� = ∞ j }
PutlnTransTable(π ， n.φ， n.�)j
returnj

GenerateLegalMoves 0 j
/ / 3. A void cycles by using transp. table

22 -

ヲ
'
o
o
n
v
A
U
4
4

内.
4
。
、u
n
t
E
u

n
J
a円
，L

円
4
q
O

旬
。
っ

d
q
a
q
d
q
o

Putlnτ'ransTable(n ， n.rþ, n.�);
/ / 4. Multiple iterative deepening
while (1) {

/ / Terminate 江 either ゆ or �
/ / is at least its threshold
if (n.rþ 三 ßMin(n) 11 n.ð 壬 φSum(n)) {

n.φ = ゚ Min(n); n.� = φSum(n);

PutlnTransTable(n, n.rþ, n.�);
return;

36 }
37 �c = φ;

38 nc = SelectChild(n，ゆc ， ðc, �2);
39 nc.r� = n.� + ゆc ー φSum(π);
40 nc.� = min(n.φ ， �2+1);
41 MID(nc);
42 }
43 }
44 / / Selection 細ong the children
45 procedure SelectChild(n, &φc ， &ðc , &�2) {
46 �ound = �c;

47 �c = ∞ ð2 = ∞;
48 for (each child nchild) {
49 LookUpTransTable(nchild , rþ, �);
50 if (ゆ#∞) � = max(ð, �ound);
51 if (ð く ðc){
52 nbest = nchild;
53 �2 = �c; r�c =ゆ ðc = �;
54 }else if (� < �2) �2 = �;
55 if (φ ∞) return nb制;
56 }
57 return nbest;
58 }
59 / / Look up trans. table for the entry of n

60 procedure LookUpTransTable(n, &rþ, &�) {
61 if (n is recorded) {

ゆ =T畠.ble[n同n叫];φφ ð = Table[n同n叫lト.ð
}else {φ= 1; � = 1; }

62
63
64 }
65 / / Record into tr佃sposition table
66 procedure PutlnTransTable(n，ゆ， ð) {
67 Table[n]φ= ゆ T油le[n].ð = �;
68 }
69 / / Ca1culate minimum � among 山 children
70 procedure ßMin(π) {

71 min = ∞;
72 for (each child nchild) {
73 LookUpTransTable(nchild，仇 ð);
74 min = 凶n(min ， �);
75 }
76 return min;
77 }
78 / / Calculate the sum of ゆ of n's children
79 procedureφSum(n) {
80 sum = 0;
81 for (each child nchω{
82 LookUpτ'ransTable(nchild，仇 ð);

83 sum = sum + ゆ;
84 }
85 return sum;

B Program List of Dιpn+

Dιpn+ is aεqired by modifying the progr創n in Apｭ
pendix A as follows.

44 / / Selection among the chi1dren
45 procedure Sel巴ctChi1d(n ， &φc ， &ðc , &�2) {

46 �ound = �c;

47 min = αコ mzn2 = αコ;

48 for (each child nchild) {
49 LookUpτ'ransTable(nchild , rþ, �);
50 if (ゆ#∞)

�= max(ð, �ound -costゅ (n ， nchild));
51 if (� + costø(n, nchild) < min) {
52 nbest = nchild;

mzn2 = mzn;
min = � + costφ(π ， nchild);

53 �2 = ðc ; ゆゆ ðc = �;
54 }else if (� + costゅ (n， nchild) < min2) {

�2 = �; min2 = � + costø(n , nchild);
}

55 if (ゆ--∞) return nb叫;

57 return nbest;
58 }
59 / / Look up trans. table for the entry of n
60 procedure LookUpTransTable(n, &rþ, &�) {

63 }else {ゆ =hφ(π); � = h6(n); }
64 }
69 / / Calculate minimum ð むnong n's chi1dren
70 procedure M゚in(n) {

74 min = 凶n(min ， � + costゅ (n ， nchild));

77 }
78 / / Calculate the sum of r� of n's chi1dren
79 procedure φSu叫

83 sum = sum + ゆ + cost6(n , nchild)j

- 23-

