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Abstract 

We recently developed a df-pn algorithm for 
AND/OR-tree search which behaves the same as 
Allis' pn-search. In this paper, we propose a new alｭ
gorithm dιpn+ by extending df-pn. The extension 
is to use two kinds of information (i.e., cost and h) 
which AO* uses. We acquire such information from 
the pattern based evaluation function constructed 
for minimax-tree search. The experimental results 
on Othello endgames show that df-pn+ is very eι 
ficient especially for large problems. On average, 
#nodes visited is reduced by a factor ! compared 
with the original df-pn when #disc is 48. 

1 Introduction 

A minimax tree such that each of the value of 
the nodes ultimately falls on either of the two valｭ
ues (i.e. , true or false) is called an AND/OR 
tree. AO* [12) is a representative algorithm for 
AND /OR-tree search and is intensively studied. Alｭ
lis developed pn・search [1) which uses both proof 
and disproof numbers. Since pn-search is an eleｭ
gant algorithm and is easy to understand, it is in 
the limelight. Both AOホ and pn-search are best司
自rst algorithms. 

PDS [10) is also a depth-first algorithm using both 
proof and disproof numbeFs, its basic concept diι 
fers from the rest. It does not behave exactly same 
剖 pn・search either. (PDS mer巴ly behaves 槌ymp

totically same 部 pn-search.) 
Nagai had developed an algorithm that is an exｭ

tension of PDS [10). The same expansion can be 
applied to dιpn. We call it df-pn+ , and if dιpn+ 
satisfies admissibility then we call it dιpn本. We will 
explain these algorithms in Section 2. 
By the way, for searching minimax trees, Alphaｭ

Beta is a representative algorithm. Although there 
are many variations and enhancements for Alphaｭ
Beta, they all uses some kind of an evaluation funcｭ
tion. Strong Othello programs use evaluation funcｭ
tion constructed automatically from the records of 
many games. However, we never heard that this 
kind of evaluation function was used for proofｭ
number search, except for a simple estimation to 
initialize (dis)proof numbers and studies by Tanaka 
and etc. [17) 
In this paper, we show a method to apply such 

an evaluation function into a framework of df-pn+. 
Section 3 explains how we constructed our evaluaｭ
tion function. Section 4 shows our application of 
this evaluation function to dιpn+. The experimen・
tal results are presented in Section 5. Finally, Secｭ
tion 6 provides our conclusion. 

Search Algorithm 

Since there is a trend to use a depth-first algoｭ
rithm so as to behave the same as a best-first one n 

(e.g. MT-SSS* [13) is a depth-first algorithm that “ 
behaves the same 田 SSS* [16)) , we quite recently 2.1 Df-pn 
developed a depth-first algori伽n df-pn [11) using 
both proof and disproof numbers. We had proved 
that df-pn behaves the same 出 pn-search in the 
meaning of always expanding a most-proving node. 
Although a depth-first algorithm using both proof 
and disproof numbers can be constructed by simply 
extending Seo's algorithm [15) (we can even give a 
proof that it behaves the same as pn・search) ， df-pn 
is a more practical depth-first algorithm. Although 

Proof number at an OR node and disproof number 
at an AND node are essentially equivalent. Simｭ
ilarly, disproof number at an OR node and proof 
number at an AND node are essentially equivalent. 
As they are dual to each other, we can rename the 
former <� and the latter O. 
(Dis)proof number is defined 出 the least number 

of tip nodes of the current search tree, which must 
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be evaluated to be true (false) in order to ensure 
that the game-theoretical value of the root is true 
(false). The formula for calculating <� and � is as 
follows. 

1. If n is a tip node 

(a) When game-theoretical value is known 

i. If game-theoretical value is true 
(false) and n is an OR (AND) node 

n.ゆ o

n.ð ∞ 

ii. If game-theoretical value is true 
(false) and n is an AND (OR) node 

nφ= ∞ 

n.� 0 

(b) When game-theoretical value is unknown 

n.ゆ 1

n.� 1 

2. If n is an internal node 

n.ゆ Min nchild.� 
nc E children of n 

n.� = . t: _ nchild'<゙ 
nc E chlldren 01 n 

Df-pn is a depth-first algorithm that behaves the 
same 部 pn-search. The characteristic feature of dι 
pn is that (1) each node has two thresholds: one for 
ゆ (thiþ) and the other for � (thö) , and that (2) Mulｭ
tiple Iterative Deepening [15] is used at all nodes. 
The brief algorithm of df-pn is 回 follows. (The proｭ
gram list of df-pn is carried on Appendix A.) 

1. Assign r.thゅ 。。

r.thö ∞ 

where r is the root. 

2. At each node n , the search process continues 
to search below n until n. <þ 三 n.thゅ or n.ð 主

n.th� is satisfied (we call it ending condition). 

3. At each node n , select the child nc with miniｭ
mum � and the child n2 with second minimum 
�. (If there is another child with minimum ð, 
that is n2 ・) Search below nc with 部signing

nc.thゅ = n.th� + nc・ゆ -L nchild.<゙ (1) 

nc ・ thö min(n.thゅ ， n2.� + 1). (2) 

Rβpeat this process until the ending condition 
holds. (Multiple Iterative Deepening) 

4. If ending condition holds, the search process 
returns to the parent node. 

5. Continue until search process comes back to 
the root. 

When we have insu伍cient memory space and 
if we 灑e at the situation that the information of 
some nodes may be removed (e.g. by SiblingGC and 
SmallTreeGC [10]) , then the substitution (1) and (2) 
should be modified into 

nc.thゅ nc ・ゆ +1 

町品ö min(n品ゅ ， max(n2.ð, nφ) + 1). 

2.2 Df-pn+ 

H uman experts searches promising moves very deep 
and narrow, on the other side, the unpromising 
moves are aggressively pruned. Df-pn searches 
promising moves deeper. Df-pn+ intends to disｭ
tinguish promising moves more accurately and to 
search them much more deeper. 
Compared with Elkar山 algorithm [8] or Seo's alｭ

gorithm, AOホ uses two kinds of additional informaｭ
tion (function g and h) during the search. Simiｭ
larly, dιpn+ uses two kinds of information. 

1. cost(必巾roof(n ， nchild) is defined as the cost 
from node n to node nchild as a part of a 
(dis)proof solution. For example, if the posiｭ
tion n is advantageous for the first player, then 
costproof h出 to become small, since cost is a 
load against searching deeper. 

The information of cost is used in order to enｭ
large the threshold of (dis )proof number than 
the original df-pn, whenever if it is the first 
(second) player's turn and if there is a move 
whose corresponding evaluation is high. The 
large threshold of (dis)proof number causes a 
deep focus on that move, resulting in a deep 
search. 

2. h(dis)proor(n) which is a heuristic estimate of 
the cost to reach any (dis )proof solution 仕om

position n. That is, h(diゆroof(η) indicates the 
distance from (dis)proof solutions. For examｭ
ple, if the position n is advantageous for the 
first player, then h( di巾roor(n) h回 to become 
small (large) , since n is closer to a proof soluｭ
t卲n. 

The information of h(dis)proof(吋 is used at leaf 
nodes. Since h( di吻roof( n) corresponds to the 
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distance from (dis )proof solution, it is used for 
initializing proof number and disproof number. 
If the position n is favorable to the first (secｭ
ond) player, (dis)proofnur出erof that position, 
which is equal to h(dis)proof(n) , gets small (since 
we construct it 部 so). Then the search process 
goes deep until satisfying the threshold. 

Df-pn is equal to df-pn+ with the following codiｭ
t卲ns. 

cost = 0 

h=1. 

If cost and h is defined, then g can be defined. 
g(dis)proof(n) is defined 拙 the cost incurred so far 
for position n 剖 a part of a (dis )proof solution. For 
example, if the position n is disadvantageous for 
the first player, then g(dis)proof(n) has to become 
large (small) , since n is closer to a disproof solution. 
Although g is an important function, we do not use 
g explicitly, but cost instead. 

If dιpn+ satisfies admissibility, then we call it 
df-pn* , since it is guaranteed to find an optimal 
(dis )proof solution if it exists. The admissibility is 
defined as 

h(di巾roof(n) 三 h*(di巾roof(n) , 

where hホ (di巾roof(η) is the actual cost to reach a 
(dis)proof solution from node n. (For details, see 
[10].) Since h used in this paper does not satisfy 
this inequality, the algorithm used is dιpn+. 

1. If n is a tip node 

(b) When game-theoretical value is unknown 

n.ゆ

n.8 

2. If n is an internal node 

hゅ(π)

h�(n) 

n.ゆ_ .M..in " (nchild.8+cost<þ (n,nchild)) 
nc E children of n 

n.8 = . ~ _ (nchild.<゙ +ωt仇 nchild)) 
nc E children of n 

The following modification of the 3rd item of dι 
pn in Section 2.1 leads to the brief algorithm of 
df-pn+. (The program list of df-pn+ is carried on 
Appendix B.) 

3. At each node n , select the child nc with minｭ
imum (nc.8 + cost<þ (n, nc)) and the child n2 
with second minimum (n2.8 + costφ(n ， η2))' 
Search below nc with assigning 

nc.thゅ = n.th� + nc・ <þ

-I)nChild.<゙ + costó(n, nchild)) (3) 

nc品ó = min(n.th<þ, n2.8 + cost<þ (n, n2) + 1) 

-costφ(n ， nc). (4) 

When we have insufficient memory space, then 
the substitution (3) and (4) should be modified into 

Since we construct a negamax algorithm, hゅ， hó, 
costφ ， and cost� are defined 出 follows. nc ・thφ = ncゆ +1

1. For an OR node n 

(h(η) h�(n) 

costゅ(n)
cost�(n) 

一
hproof(n) 

hdisproof ( n ) 
costproof(η) 
costdisproof( n) 

2. For an AND node n 

(h(η) 三 hdisproof(η)
hó(n) 三 hproof(n)

cost<þ (n) 三 costdisproof(n) 
costó(n) 三 costproof(n) 

Then, relation between <þ,8 and g ,h is as follows. 

n.ゆ

n.8 

gφ (n) + h<�(n) 
g�(n) + h�(n) 

The formula for ca1culating ゆ and 8 should be modｭ
ified from the one in Section 2.1 as follows. 

nc.th� = min(ma.x(n2.8 + costゅ(n， n2) , n.φ) + 1, 
n品φ) ー costφ (n， nc). 

3 Evaluation Function 

Strong Othello programs (e.g. LOGISTELLO, HANｭ
NIBAL, BRUTUS, ZEBRA, and KEV，合NO) today use 
pattern-based evaluation function constructed auｭ
tomatically from the records of tens or hundreds of 
thousands of actual games. It can be said that this 
is a kind of learning. For details, see [5] [6] [7] [4]. 
We constructed an evaluation function for 

minimax・tree search from 60,000 games played 
between KITTY and LOGISTELLO (we call it 
recordA) 制 390 ，000 games played at IOS (we 
call it recordB). RecordA is available from ftp:// 
external.nj.nec.com/pub/igord/othello/misc/. 
Although the original data contains 100,000 games, 
we selected 60,000 games by reducing some very 
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the frequency of the configuration appeared at 
each stage 回 a weight of the corresponding 
value. 

similar games. RecordB is available from ftp:/ / 
external.nj.nec.com/pub/igord/othello/ios/. 
Although there are 470,000 games in the original 
data, we selected the games played from the initial 
position through the end of the game successfully. 組

The patterns we used are all the configuration of .. 
every 

Applying to Df-pn+ 

• rows and columns (totally 4 types) 

• diagonals of length 4 to 8 (totally 5 types) 

・ 3x3 corner 

where A is the constant. We tried to decide cost 
from the evaluation function and with the combiｭ
nation of history heuristics. But they resulted in 
failure. We were unable to think of any effective 
usage for Othello. Instead, fixing cost to a conｭ
stant w出 sufficiently effective. 
As with h(π) ， we defined it as the following sigｭ

moid function. 

hr�(n) 空ι一一 +1
1 + e-Ev副(n)jG.φ

空L一一 +1
1 + e-Eval(n)jC.s 

where B and C are the constants. (C，ゆく 0 ， Có , Bゅ，

B� > 0) 
Now we will explain how we decided the values of 

B and C. First of all, for each of the stages from 47 
to 62 discs, we solved 1000 or 2000 problems by the 
original dιpn. The problems are randomly selected 
from recordA. When the problem is proved, then by 
looking at the solution tree, we record the value of 
the threshold of � at the root (i.e. , r.tht�) which is 
sufficient to solve the problem, along with the evalｭ
uation of that problem (Eval(r)). 8imilarly, if the 
problem is disproved, we record the sufficient value 
of r.th� and Eval(r). The values of r品φ(r.thó ) and 
Eval(r) is 田ed for deciding the values of Bt� and C，ゅ
(B� and C�). 
From all these data, we decided B and C by the 

method of least squares, regarding sigmoid function 
as a regression function. It is done in this way. The 
purpose � to m���e 

Eτ『{B)= ) ~ト一一+ 1 -Yi)2 
γ1+etJ 

A 

o. 

Although the idea corresponding to h is already 
widely used 出 an initializi碍 function for (dis )proof 
numbers [2] [14] [3] [9], they requires domainｭ
specific knowledge. (80 it is categorized into one of 
the enhancements.) Tanaka uses a certain function 
without any parameter [17]. However, we intended 
to decide h automatically from the evaluation funcｭ
tion which is mentioned in 8ection 3 without any 
domain-specific knowledge. 
We define cost as 

costφ(η) 

cost�(n) 

with every 52 stages (13 to 64 discs). Each of the 
configuration has a corresponding value which is 
taken into account, when evaluating a position, if 
the configuration appears in the position. Pattern 
based evaluation function intends to predict the fiｭ
nal disc di百érence of the both players. 
There are some charaεteristic features in our conｭ

struction. 

• 2x4 corner 

• par�y 

• We used conjugate gradient method with scalｭ
ing for the preconditioning instead of steepest 
descent method. 

(5) 

(6) )
 
η
 

(
 

e
O
 

L
U
 

• Rare configurations makes the evaluation funcｭ
tion unreliable. We used recordA mainly and 
recordB for supplementing positions which inｭ
clude rare configurations. (It means that we 
used all the positions in recordA corresponding 
to the 52 stages, but not all in recordB.) 8till, 
there are some rare configurations. For such 
configurations at the edge that include three 
or more empty squares in a row, we divided 
them into two configurations. For the rare con・

figurations at the corner (3x3 and 2x4 corner) , 
we reduced it into smaller configurations. 8ee 
Figure 1. 

樫停

醒圧

摩監

摩任

昨日平再t=l

+ 
陣再再m

+ 

Figure 1: Division of rare configuration (edge) and 
reduction of rare patterns (3x3 and 2x4 corner) 

• We smoothed each configuration values into 
quartic function 剖 a regression function by the 
method of least squares. At that time, we used 
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where 

Since 

ei 

Xi 

Yi 

l+e一号，
Eval(r), 
r.th. 

δE _ 'r"'\, 1 -'U; B ‘ 

一一 =0 特予{一一二こ+一一)=0
θB ケ、 ei 'ei2 , 

(1nternet Othello Server) held at October 24 and 
25, 1998. Remark that they are different from the 
games (recordA and recordB) used for constructｭ
ing evaluation function and parame七ers of 出e sigｭ
miod function. We used 100 problems with 16 vaｭ
cant squares and calculated the average of them. 
For each of the 100 problems, we solved the probｭ
lem by df-pn+ which we are focusing on and dιpn 
as the standard. Then we calculated the ratio of 

特 B=-ε平/詰 (7) the performance of dιpn+ (from the viewpoint of 
#nodes visited and memory usage) with each ofthe 
problems, and finally acquired the average of them. 
Therefore, the performance of df-pn is always fixed 
to 1 in this paper. CPU time is expected to be 
in proportion to #nodes visited. Memory usage is 
乱ctually #cells used for transposition table when 
SiblingGC is in use. 

θE _ ，， 1 ー引 B
8C=0 骨三JXi(ei -1)(二t + e:3))=0 (8) 

Equation (7) is s山stituted into equation (8) to canｭ
cel out B. Since it is diffic叫 to solve equation (8) , 
we decided to solve it by binary search. 

Optionally, we devised two ideas. The one is to 
double the data and the other is to smooth the conｭ
stants. 

5 

• Naively, the data acquired from (dis)proved 
problems are used only for deciding B", and C", 

(B� and C�) by regression. However, since Bφ 
is nearly equal to B� and C", is nearly equal to 
-Có , we assume the following two equations. 

Bゅ Bó

C", -C� 

Then each pair of (Eval(r) , r.thゅ) acｭ
quired from proved problems is modified into 
(-Eval(r) , r.thゅ) and is joined with the data 
acquired from disproved problems. This is 
done before the regression to sigmoid function. 
By using all these data, B� and C� can be obｭ
tained. 

• Regression to sigmoid function is done for each 
of the stages from 47 to 62 discs. (That is, 
B and C depends on #disc.) We thought of 
smoothing each of the values of B and C into 
exponential function (Fe-Dx ) 出 an regreぉion
function. The procedure is similar to the reｭ
gression to the sigmoid function. We g凶 simul

taneously partial differential equation, substiｭ
tute one equation to the other, and use binary 
search. 

Experimental Results 

All the problems used in this experiment is made up 
from the record of Othello games played at Princeｭ
tonII, the computer Othello tournament on 10S 

1n Section 4, we mentioned two optional ideas 
(doubling and smoothing) during the regression to 
sigmoid function. Therefore, there are four possible 
variants for h. Figure 2 shows the ratio of #nodes 
visited with each of the variants and the c出e (shown 
回“only cost") which uses only cost and not h. 
costゅ is fixed to -1. Figure 2 indicates the imｭ
portance of using h especially with large problems, 
since it is effective to use h when #disc is few. Al-
though it is not so clear in Figure 2, Figure 3 which 
shows the ratio of memory usage with the five c剖es

indicates the necessity of doubling and/or smoothｭ
ing insもead of naive regression. 

Nude V川ls uf the Fuur VarianlS of Sigmoﾎu Function 

0.9 ト smlxlI hing 骨ー
t.ltlublin& y'-

O.K ト山山Ih叫吋uubling ./ 
nn h. l}nly cusl ・ー ./.，.J〆日

吉 0.7~ノJ
・r.'.

~ 0.6 ~ .....#..-...-... .. ~ ..... .....0 

~ 0; ~ 
Ii十../

OA 
g 

~ 0.3 ~ A 

I h" 
O.2l?"'-

0.1 

0 
4K 50 52 54 % 

number nf l.I iscお

5K “} 62 

Figure 2: Effect of Function h from the viewpoint 

of #nodes visited 

Figure 4 shows the ratio of #nodes visited with 
the five c回目. #disc is fixed to 48. When cost 
is equal to 0, it is equivalent to the c出e without 
using cost. Although it is only slightly e鉦'ective to 
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Figure 5: Effect of Both Function cost and h from 
the viewpoint of #nodes visited 
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Figure 3: Effect of Function h from the viewpoint 
of memory usage 
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with both doubling and smoothing in use and when 
cost is fixed to -1. On average, compared with 
df-pn, #nodes visited is less than half when #disc 
is 54, less than 1 when #disc is 52, and nearly ~ 
when #disc is 48. We can expect that the efficiency 
will become still better when the problem size is 
larger. Therefore, CPU time is expected to reduce 
in proportion to #nodes visited. 
Othello h出 a unique feature that most of the 

terminal nodes locates at a certain depth and that 
the branching factor gets smaller near the terminal 
nodes. As a result, there is a tendency for search 
algorithm to become effective when it search deep 
to some degree whenever a move decision is made. 
Df-pn+ is effective since cost and h was decided to 
satisfy this feature. 

use cost when h is used, the case using only cost 
shows that it is effective to use cost. It is hard 
to see from the figure, but the performance of the 
C回目 using h is getting extremely slightly better 
when cost is fixed to a lower constant. cost must 
be decided carefully when using only cost. 
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A new search algorithm df-pn+ is proposed by exｭ
tending df-pn. For function h , we adopted sigmoid 
function as regression function and decided the pa・
rameter by the method of least squares. For funcｭ
tion h , we used a constant (-1 is su侃ciently effecｭ
tive). Df-pn+ constructed in this way is very effiｭ
cient especially when the problem size is large. Exｭ
perimental results on Othello endgames show that 
#nodes visited is reduced by a factor ~ on ave珂e
compared with the original df-pn when #disc is 48. 

Conclusion 6 
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Figure 5 shows the ratio of #nodes visited with 
the cases using h and/or cost. When both of them 
are not used, df-pn+ is equal to dιpn which shows 
the performance of 1. Both doubling and smoothing 
are used during the .regression to sigmoid function. 
Although the case using both cost and h is slightly 
better than the c酪e using only h , we can easily see 
that it is the most effective to use both of them 
when problem size is large enough. 
Figure 2 shows that df-pn+ is very effective to 

solve large problems when h is a sigmoid function 
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} 
/ / Explore node n 

procedure MID(n) { 
/ / 1. Look up the transposition table 
Look U p TransTable( n， ゆ， �)j 
if (n.ゆ壬ゆ 11 n.� ::::; �) { 
nφ= ゆ n.ó = ﾓj 
returnj 

} 
/ / 2. Generate all the legal moves 
if (n is a terminal node) { 

} 

if ((n is an AND node && 
Eval(n) == true) 11 

(n is 叩 OR node && 
Eval(π) == false)) { 

n.ゆ=∞ n.ó = Oj 
}else {n.ゆ= Oj n.� = ∞ j } 
PutlnTransTable(π ， n.φ， n.�)j 
returnj 

GenerateLegalMoves 0 j 
/ / 3. A void cycles by using transp. table 
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Putlnτ'ransTable(n ， n.rþ, n.�); 
/ / 4. Multiple iterative deepening 
while (1) { 

/ / Terminate 江 either ゆ or � 
/ / is at least its threshold 
if (n.rþ 三 ßMin(n) 11 n.ð 壬 φSum(n)) { 

n.φ = ゚ Min(n); n.� = φSum(n); 

PutlnTransTable(n, n.rþ, n.�); 
return; 

36 } 
37 �c = φ; 

38 nc = SelectChild(n，ゆc ， ðc, �2); 
39 nc.r� = n.� + ゆc ー φSum(π); 
40 nc.� = min(n.φ ， �2+1); 
41 MID(nc); 
42 } 
43 } 
44 / / Selection 細ong the children 
45 procedure SelectChild(n, &φc ， &ðc , &�2) { 
46 �ound = �c; 

47 �c = ∞ ð2 = ∞; 
48 for (each child nchild) { 
49 LookUpTransTable(nchild , rþ, �); 
50 if (ゆ#∞) � = max(ð, �ound); 
51 if (ð く ðc){
52 nbest = nchild; 
53 �2 = �c; r�c =ゆ ðc = �; 
54 }else if (� < �2) �2 = �; 
55 if (φ ∞) return nb制;
56 } 
57 return nbest; 
58 } 
59 / / Look up trans. table for the entry of n 

60 procedure LookUpTransTable(n, &rþ, &�) { 
61 if (n is recorded) { 

ゆ =T畠.ble[n同n叫];φφ ð = Table[n同n叫lト.ð
}else {φ= 1; � = 1; } 

62 
63 
64 } 
65 / / Record into tr佃sposition table 
66 procedure PutlnTransTable(n，ゆ， ð) { 
67 Table[n]φ= ゆ T油le[n].ð = �; 
68 } 
69 / / Ca1culate minimum � among 山 children
70 procedure ßMin(π) { 

71 min = ∞; 
72 for (each child nchild) { 
73 LookUpTransTable(nchild，仇 ð);
74 min = 凶n(min ， �); 
75 } 
76 return min; 
77 } 
78 / / Calculate the sum of ゆ of n's children 
79 procedureφSum(n) { 
80 sum = 0; 
81 for (each child nchω{ 
82 LookUpτ'ransTable( nchild，仇 ð);

83 sum = sum + ゆ;
84 } 
85 return sum; 

B Program List of Dιpn+ 

Dιpn+ is aεqired by modifying the progr創n in Apｭ
pendix A as follows. 

44 / / Selection among the chi1dren 
45 procedure Sel巴ctChi1d(n ， &φc ， &ðc , &�2) { 

46 �ound = �c; 

47 min = αコ mzn2 = αコ;

48 for (each child nchild) { 
49 LookUpτ'ransTable( nchild , rþ, �); 
50 if (ゆ#∞)

�= max(ð, �ound -costゅ (n ， nchild)); 
51 if (� + costø(n, nchild) < min) { 
52 nbest = nchild; 

mzn2 = mzn; 
min = � + costφ(π ， nchild); 

53 �2 = ðc ; ゆゆ ðc = �; 
54 }else if (� + costゅ (n， nchild) < min2) { 

�2 = �; min2 = � + costø(n , nchild); 
} 

55 if (ゆ--∞) return nb叫;

57 return nbest; 
58 } 
59 / / Look up trans. table for the entry of n 
60 procedure LookUpTransTable(n, &rþ, &�) { 

63 }else {ゆ =hφ(π); � = h6(n); } 
64 } 
69 / / Calculate minimum ð むnong n's chi1dren 
70 procedure M゚in(n) { 

74 min = 凶n(min ， � + costゅ (n ， nchild)); 

77 } 
78 / / Calculate the sum of r� of n's chi1dren 
79 procedure φSu叫

83 sum = sum + ゆ + cost6(n , nchild)j 
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