Application of df-pn* to Othello Endgames

Ayumu Nagai' and Hiroshi Imai!
1Department of Information Science, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, JAPAN
{nagai, imai}@is.s.u-tokyo.ac.jp

Abstract

We recently developed a df-pn algorithm for
AND/OR-tree search which behaves the same as
Allis’ pn-search. In this paper, we propose a new al-
gorithm df-pn* by extending df-pn. The extension
is to use two kinds of information (i.e., cost and h)
which AO* uses. We acquire such information from
the pattern based evaluation function constructed
for minimax-tree search. The experimental results
on Othello endgames show that df-pn* is very ef-
ficient especially for large problems. On average,
#nodes visited is reduced by a factor % compared
with the original df-pn when #disc is 48.

1 Introduction

A minimax tree such that each of the value of
the nodes ultimately falls on either of the two val-
ues (i.e., true or false) is called an AND/OR
tree. AO* [12] is a representative algorithm for
AND/OR-tree search and is intensively studied. Al-
lis developed pn-search [1] which uses both proof
and disproof numbers. Since pn-search is an ele-
gant algorithm and is easy to understand, it is in
the limelight. Both AO* and pn-search are best-
first algorithms.

Since there is a trend to use a depth-first algo-
rithm so as to behave the same as a best-first one
(e.g. MT-SSS* [13] is a depth-first algorithm that
behaves the same as SSS* [16]), we quite recently
developed a depth-first algorithm df-pn [11] using
both proof and disproof numbers. We had proved
that df-pn behaves the same as pn-search in the
meaning of always expanding a most-proving node.
Although a depth-first algorithm using both proof
and disproof numbers can be constructed by simply
extending Seo’s algorithm [15] (we can even give a
proof that it behaves the same as pn-search), df-pn
is a more practical depth-first algorithm. Although

PDS [10] is also a depth-first algorithm using both
proof and disproof numbers, its basic concept dif-
fers from the rest. It does not behave exactly same
as pn-search either. (PDS merely behaves asymp-
totically same as pn-search.)

Nagai had developed an algorithm that is an ex-
tension of PDS [10]. The same expansion can be
applied to df-pn. We call it df-pn™, and if df-pn*
satisfies admissibility then we call it df-pn*. We will
explain these algorithms in Section 2.

By the way, for searching minimax trees, Alpha-
Beta is a representative algorithm. Although there
are many variations and enhancements for Alpha-
Beta, they all uses some kind of an evaluation func-
tion. Strong Othello programs use evaluation func-
tion constructed automatically from the records of
many games. However, we never heard that this
kind of evaluation function was used for proof-
number search, except for a simple estimation to
initialize (dis)proof numbers and studies by Tanaka
and etc. [17]

In this paper, we show a method to apply such
an evaluation function into a framework of df-pn*.
Section 3 explains how we constructed our evalua-
tion function. Section 4 shows our application of
this evaluation function to df-pn*. The experimen-
tal results are presented in Section 5. Finally, Sec-
tion 6 provides our conclusion.

2 Search Algorithm
2.1 Df-pn

Proof number at an OR node and disproof number
at an AND node are essentially equivalent. Sim-
ilarly, disproof number at an OR node and proof
number at an AND node are essentially equivalent.
As they are dual to each other, we can rename the
former ¢ and the latter 4.

(Dis)proof number is defined as the least number
of tip nodes of the current search tree, which must

be evaluated to be true (false) in order to ensure

that the game-theoretical value of the root is true

(false). The formula for calculating ¢ and ¢ is as
follows.

1. If n is a tip node
(a) When game-theoretical value is known
i. If game-theoretical value is true
(false) and n is an OR (AND) node
ng = 0

nd = oo

ii. If game-theoretical value is true
(false) and n is an AND (OR) node

ng = o©
néd = 0
(b) When game-theoretical value is unknown
ng =1
nd =1

2. If n is an internal node

ng =

mn Techild-0
nc € children of n child

nd = Nehild-@

n. € children of n
Df-pn is a depth-first algorithm that behaves the
same as pn-search. The characteristic feature of df-
pn is that (1) each node has two thresholds: one for
¢ (thy) and the other for § (ths), and that (2) Mul-
tiple Iterative Deepening [15] is used at all nodes.
The brief algorithm of df-pn is as follows. (The pro-

gram list of df-pn is carried on Appendix A.)
1. Assign rthy =

rthy =

o0
oo

where 7 is the root.

2. At each node n, the search process continues
to search below n until n.¢ > n.thy or n.d >
n.ths is satisfied (we call it ending condition).

3. At each node n, select the child n, with mini-
mum § and the child ny, with second minimum
8. (If there is another child with minimum 4,
that is ny.) Search below n. with assigning

Nethy = nths +ned— Z Nehild- ¢ (1)
min(n.thg,n2.6 + 1). (2)

Repeat this process until the ending condition
holds. (Multiple Iterative Deepening)

ne.thy =

4. If ending condition holds, the search process
returns to the parent node.

5. Continue until search process comes back to
the root.

When we have insufficient memory space and
if we are at the situation that the information of
some nodes may be removed (e.g. by SiblingGC and
SmallTreeGC [10]), then the substitution (1) and (2)
should be modified into

nethy = nedp+1
neths = min(n.thg, max(ny.d,n.¢) +1).
2.2 Df-pn*

Human experts searches promising moves very deep
and narrow, on the other side, the unpromising
moves are aggressively pruned. Df-pn searches
promising moves deeper. Df-pn* intends to dis-
tinguish promising moves more accurately and to
search them much more deeper.

Compared with Elkan’s algorithm (8] or Seo’s al-
gorithm, AO¥ uses two kinds of additional informa-
tion (function g and h) during the search. Simi-
larly, df-pn* uses two kinds of information.

1. cost(gis)proof (P> Mchila) is defined as the cost
from node n to node ncyg as a part of a
(dis)proof solution. For example, if the posi-
tion n is advantageous for the first player, then
costyroor has to become small, since cost is a
load against searching deeper.

The information of cost is used in order to en-
large the threshold of (dis)proof number than
the original df-pn, whenever if it is the first
(second) player’s turn and if there is a move
whose corresponding evaluation is high. The
large threshold of (dis)proof number causes a
deep focus on that move, resulting in a deep
search.

2. hygis)proof(n) which is a heuristic estimate of
the cost to reach any (dis)proof solution from
position n. That is, hgis)proof (1) indicates the
distance from (dis)proof solutions. For exam-
ple, if the position n is advantageous for the
first player, then h(gis)proof(n) has to become
small (large), since n is closer to a proof solu-
tion.

The information of hgis)proor(12) is used at leaf
nodes. Since h(gis)proof (1) corresponds to the

distance from (dis)proof solution, it is used for
initializing proof number and disproof number.
If the position n is favorable to the first (sec-
ond) player, (dis)proof number of that position,
which is equal to hgis)proof(n), gets small (since
we construct it as so). Then the search process
goes deep until satisfying the threshold.

Df-pn is equal to df-pn* with the following codi-
tions.

cost =0
h=1.

If cost and h is defined, then g can be defined.
8(dis)proof (1) is defined as the cost incurred so far
for position n as a part of a (dis)proof solution. For
example, if the position n is disadvantageous for
the first player, then g(gis)proof(n) has to become
large (small), since n is closer to a disproof solution.
Although g is an important function, we do not use
g explicitly, but cost instead.

If df-pn* satisfies admissibility, then we call it
df-pn*, since it is guaranteed to find an optimal
(dis)proof solution if it exists. The admissibility is
defined as

h(dis)proot‘ (n) < h*(dis)proof(n)s

where h* gig)proof(12) is the actual cost to reach a
(dis)proof solution from node n. (For details, see
[10].) Since h used in this paper does not satisfy
this inequality, the algorithm used is df-pn™.

Since we construct a negamax algorithm, hg, h;,
costgy, and cost; are defined as follows.

1. For an OR node n

(h¢,(n) = hproof(n)
hs(n) = hdisproof(n)
costy(n) = costpreor(n)
| costs(n) = costgisproof(n)
2. For an AND node n
hy(n) = hgisproor(n)
hs(n) = hproof(n)
costy(n) = costgisproof (1)
costs(n) = costproef(n)

Then, relation between ¢,d and g,h is as follows.

n.¢
n.d

gs(n) +hy(n)
gs(n) + hs(n)

The formula for calculating ¢ and 4 should be mod-
ified from the one in Section 2.1 as follows.

1. If n is a tip node
(b) When game-theoretical value is unknown

n.g hy(n)
n.d hs(n)

2. If n is an internal node

n.g = Min

Tichild-0 + costy (T, Neh
o ciid o n(child #(1y Nchitg))

n.d =

= : (nchila-¢ + costs(n, nenita))
nc € children of n

The following modification of the 3rd item of df-
pn in Section 2.1 leads to the brief algorithm of
df-pn*. (The program list of df-pn* is carried on
Appendix B.)

3. At each node n, select the child n, with min-
imum (n..6 + costy(n, nc)) and the child ny
with second minimum (n2.6 + costg(n, n2)).
Search below n. with assigning

ne.thy = n.ths + ne.d
= > (nchila-¢ + costs(n, nenina)) (3)
ne.thy = min(n.thg, na.6 + costy(n,n2) + 1)

(4)

— costy(n, nc).

When we have insufficient memory space, then
the substitution (3) and (4) should be modified into

nc.thd,
ne.thg

ne.d+1
min(max(n2.0 + costy(n,n2),n.¢) + 1,
n.thg) — costy(n,ne).

3 Evaluation Function

Strong Othello programs (e.g. LOGISTELLO, HAN-
NIBAL, BRUTUS, ZEBRA, and KEYANO) today use
pattern-based evaluation function constructed au-
tomatically from the records of tens or hundreds of
thousands of actual games. It can be said that this
is a kind of learning. For details, see [5] [6] (7] [4].
We constructed an evaluation function for
minimax-tree search from 60,000 games played
between KITTY and LOGISTELLO (we call it
recordA) and 390,000 games played at I0S (we
call it recordB). RecordA is available from ftp://
external.nj.nec.com/pub/igord/othello/misc/.
Although the original data contains 100,000 games,
we selected 60,000 games by reducing some very

similar games. RecordB is available from ftp://
external.nj.nec.com/pub/igord/othello/ios/.
Although there are 470,000 games in the original
data, we selected the games played from the initial
position through the end of the game successfully.

The patterns we used are all the configuration of
every

rows and columns (totally 4 types)

diagonals of length 4 to 8 (totally 5 types)
3x3 corner

2x4 corner

e parity

with every 52 stages (13 to 64 discs). Each of the
configuration has a corresponding value which is
taken into account, when evaluating a position, if
the configuration appears in the position. Pattern
based evaluation function intends to predict the fi-
nal disc difference of the both players.

There are some characteristic features in our con-
struction.

e We used conjugate gradient method with scal-
ing for the preconditioning instead of steepest
descent method.

e Rare configurations makes the evaluation func-
tion unreliable. We used recordA mainly and
recordB for supplementing positions which in-
clude rare configurations. (It means that we
used all the positions in recordA corresponding
to the 52 stages, but not all in recordB.) Still,
there are some rare configurations. For such
configurations at the edge that include three
or more empty squares in a row, we divided
them into two configurations. For the rare con-
figurations at the corner (3x3 and 2x4 corner),
we reduced it into smaller configurations. See

Figure 1.

TR

Figure 1: Division of rare configuration (edge) and
reduction of rare patterns (3x3 and 2x4 corner)

(SLSES
=933

+
[SLete
[ete

e We smoothed each configuration values into
quartic function as a regression function by the
method of least squares. At that time, we used

the frequency of the configuration appeared at
each stage as a weight of the corresponding
value.

4 Applying to Df-pn*

Although the idea corresponding to h is already
widely used as an initializing function for (dis)proof
numbers [2] [14] [3] [9], they requires domain-
specific knowledge. (So it is categorized into one of
the enhancements.) Tanaka uses a certain function
without any parameter [17). However, we intended
to decide h automatically from the evaluation func-
tion which is mentioned in Section 3 without any
domain-specific knowledge.
We define cost as
costy(n) = A
costs(n) = 0.

where A is the constant. We tried to decide cost
from the evaluation function and with the combi-
nation of history heuristics. But they resulted in
failure. We were unable to think of any effective
usage for Othello. Instead, fixing cost to a con-
stant was sufficiently effective.

As with h(n), we defined it as the following sig-
moid function.

By

hy(n) = 1+e—Eval(n)/C¢+1 (5)
B

hs(n) = s +1 (6)

1+ e—Eval(ﬂ)/Cg

where B and C are the constants. (Cy < 0, Cj, By,
B;s > 0)

Now we will explain how we decided the values of
B and C. First of all, for each of the stages from 47
to 62 discs, we solved 1000 or 2000 problems by the
original df-pn. The problems are randomly selected
from recordA. When the problem is proved, then by
looking at the solution tree, we record the value of
the threshold of ¢ at the root (i.e., r.thg) which is
sufficient to solve the problem, along with the eval-
uation of that problem (Eval(r)). Similarly, if the
problem is disproved, we record the sufficient value
of r.ths and Eval(r). The values of r.thg(r.ths) and
Eval(r) is used for deciding the values of By and Cy
(B,5 and Cg).

From all these data, we decided B and C by the
method of least squares, regarding sigmoid function
as a regression function. It is done in this way. The
purpose is to minimize

B

— _=)2
E—zi:(1+ei+1 i)

where e = 1+ e_ici’
z; = Eval(r),
y; = r.th.
Since
O0E _ l-y, B,
50 2+ o2)=0
1—y 1
@B—-Z—eiy'/zgi (7)
i i
O0E l-y; B

Equation (7) is substituted into equation (8) to can-
cel out B. Since it is difficult to solve equation (8),
we decided to solve it by binary search.

Optionally, we devised two ideas. The one is to
double the data and the other is to smooth the con-
stants.

o Naively, the data acquired from (dis)proved
problems are used only for deciding By and Cy
(Bs and Cj) by regression. However, since By
is nearly equal to Bs and Cj is nearly equal to
—Cj, we assume the following two equations.

B, = Bs
Cs = —Cj

Then each pair of (Eval(r), r.thg) ac-
quired from proved problems is modified into
(—Eval(r), r.thy) and is joined with the data
acquired from disproved problems. This is
done before the regression to sigmoid function.
By using all these data, Bs and Cs can be ob-
tained.

o Regression to sigmoid function is done for each
of the stages from 47 to 62 discs. (That is,
B and C depends on #disc.) We thought of
smoothing each of the values of B and C into
exponential function (Fe~P%) as an regression
function. The procedure is similar to the re-
gression to the sigmoid function. We get simul-
taneously partial differential equation, substi-
tute one equation to the other, and use binary
search.

5 Experimental Results

All the problems used in this experiment is made up
from the record of Othello games played at Prince-
tonll, the computer Othello tournament on IOS

(Internet Othello Server) held at October 24 and
25, 1998. Remark that they are different from the
games (recordA and recordB) used for construct-
ing evaluation function and parameters of the sig-
miod function. We used 100 problems with 16 va-
cant squares and calculated the average of them.
For each of the 100 problems, we solved the prob-
lem by df-pn* which we are focusing on and df-pn
as the standard. Then we calculated the ratio of
the performance of df-pn* (from the viewpoint of
#nodes visited and memory usage) with each of the
problems, and finally acquired the average of them.
Therefore, the performance of df-pn is always fixed
to 1 in this paper. CPU time is expected to be
in proportion to #nodes visited. Memory usage is
actually #cells used for transposition table when
SiblingGC is in use.

In Section 4, we mentioned two optional ideas
(doubling and smoothing) during the regression to
sigmoid function. Therefore, there are four possible
variants for h. Figure 2 shows the ratio of #nodes
visited with each of the variants and the case (shown
as “only cost”) which uses only cost and not h.
costy is fixed to —1. Figure 2 indicates the im-
portance of using h especially with large problems,
since it is effective to use h when #disc is few. Al-
though it is not so clear in Figure 2, Figure 3 which
shows the ratio of memory usage with the five cases
indicates the necessity of doubling and/or smooth-
ing instead of naive regression.

Nade Visits of the Four Variants of Sigmoid Function

none
09 F smoothing -
doubling -x
| smoothing+doubling @

.

(1%
no h.only cost - - e

x

07

06
05 F .-

04 F

ratio of #nodes visited

03tz

0.2 3

(L3 4

48 50 52 54 56 58 60 62
number of discs

Figure 2: Effect of Function h from the viewpoint

of #nodes visited

Figure 4 shows the ratio of #nodes visited with
the five cases. #disc is fixed to 48. When cost
is equal to 0, it is equivalent to the case without
using cost. Although it is only slightly effective to

Memary Usage of the Four Variants of Sigmoid Function

none

09 smoaothing ceeeee
doubling el

0.8 } smoothing+doubling e ————-
no h. only cost .- .

ratio of memory usage

48 50 52 54 56 S8 o) 62
number of discs

Figure 3: Effect of Function h from the viewpoint

of memory usage

use cost when h is used, the case using only cost
shows that it is effective to use cost. It is hard
to see from the figure, but the performance of the
cases using h is getting extremely slightly better
when cost is fixed to a lower constant. cost must
be decided carefully when using only cost.

Node Visits the value of cost function

1 T T
\ none _—
09 F N smaoothing e
Y \ doubling SR S
o8 b K smoothing+doubling ©
: LS no h, only cost ---e--
3 07
S 06
2 oSt LS g
s) .4
T 04} .
£ -
g2 03t
0.2
v e
0.1
0 L L L " .
-0 -5 -4 -3 22 -1 0

cost

Figure 4: Effect of Function cost from the view-
point of #nodes visited

Figure 5 shows the ratio of #nodes visited with
the cases using h and/or cost. When both of them
are not used, df-pn* is equal to df-pn which shows
the performance of 1. Both doubling and smoothing
are used during the regression to sigmoid function.
Although the case using both cost and h is slightly
better than the case using only h, we can easily see
that it is the most effective to use both of them
when problem size is large enough.

Figure 2 shows that df-pn* is very effective to
solve large problems when h is a sigmoid function

Nude Visits when Considering h and/or cost Function

cost —_— _‘,.-"
09F h e =y
cost+h —-u o

ratio of #nodes visited

48 5.() 5".’ 5‘4 5‘6 5‘8 6.() 62
number of discs

Figure 5: Effect of Both Function cost and h from

the viewpoint of #nodes visited

with both doubling and smoothing in use and when
cost is fixed to —1. On average, compared with
df-pn, #nodes visited is less than half when #disc
is 54, less than % when #disc is 52, and nearly %
when #disc is 48. We can expect that the efficiency
will become still better when the problem size is
larger. Therefore, CPU time is expected to reduce
in proportion to #nodes visited.

Othello has a unique feature that most of the
terminal nodes locates at a certain depth and that
the branching factor gets smaller near the terminal
nodes. As a result, there is a tendency for search
algorithm to become effective when it search deep
to some degree whenever a move decision is made.
Df-pn™ is effective since cost and h was decided to
satisfy this feature.

6 Conclusion

A new search algorithm df-pn™ is proposed by ex-
tending df-pn. For function h, we adopted sigmoid
function as regression function and decided the pa-
rameter by the method of least squares. For func-
tion h, we used a constant (—1 is sufficiently effec-
tive). Df-pn* constructed in this way is very effi-
cient especially when the problem size is large. Ex-
perimental results on Othello endgames show that
#nodes visited is reduced by a factor % on average
compared with the original df-pn when #disc is 48.

7 Acknowledgements

I would like to thank Eiji Tsuchida for having a
fruitful discussion with him and providing some im-
portant information for me.

References

(1]

2

—

3]

(4

[laa)

(5]

(6]

(7

8

[9

—

[10]

(11]

(12]

Louis V. Allis, Maarten van der Meulen, and H.
Jaap van den Herik. Proof-Number Search. Re-
port CS 91-01, University of Limburg, Maastricht,
Netherlands, 1991. Also available at Artificial In-
telligence, Vol.66, pp. 91-124, 1994.

Louis V. Allis. Searching for Solutions in Games
and Artificial Intelligence. Ph.D. Thesis, Depart-
ment of Computer Science, University of Limburg,
Netherlands, 1994.

Dennis M. Breuker, Louis V. Allis, and H. Jaap van
den Herik. How to Mate: Applying Proof-Number
Search. Advances in Computer Chess, Vol. 7, pp.
251-272, 1994.

Mark Brockington. KEYANO Unplugged — The Con-
struction of an Othello Program. Technical Re-
port 97-05, Department of Computing Science, Uni-
versity of Alberta. Available at http://www.cs.
ualberta.ca/"games/keyano/.

Michael Buro. An Evaluation Function for Othello
Based on Statistics. NECI Technical Report #31,
1997.

Michael Buro. Experiments with Multi-ProbCut
and a New High-Quality Evaluation Function for
Othello. Workshop on game-tree search, NECI, Au-
gust 1997. Also available as NECI Technical Re-
port #96, 1997 at http://www.neci.nj.nec.com/
homepages/mic/publications.html.

Michael Buro. From Simple Features to So-
phisticated Evaluation Functions. The First In-
ternational Conference on Computers and Games
(CG’98), Tsukuba, Japan. To be published in a
forthcoming LNCS, Springer-Verlag.

Charles Elkan. Conspiracy Numbers and Caching
for Searching And/Or Trees and Theorem-Proving.
Proceedings IJCAI-89, pp. 341-346, 1989.

Jacco Gnodde. Aida, New Search Techniques Ap-
plied to Othello. M.Sc. Thesis, University of Leiden,
Netherlands, 1993.

Ayumu Nagai. A new Depth-First-Search Algorithm
for AND/OR Trees. M.Sc. Thesis, Department of
Information Science, University of Tokyo, Japan,
1999.

Ayumu Nagai. Proof for the Equivalence Between
Some Best-First Algorithms and Depth-First Al-
gorithms for AND/OR Trees. KOREA-JAPAN
Joint Workshop on Algorithms and Computation,
pp. 163-170, 1999.

Nils J. Nilson. Principles of Artificial Intelligence.
Tioga Publishing Company, Palo Alto, CA, 1980.

(13]

(14]

(15]

(16]

(17]

A

Aske Plaat, Jonathan Schaeffer, Wim Pijls, and
Arie de Bruin. A new Paradigm for Minimaz
Search. Technical Report TR 94-18, Department of
Computing Science, University of Alberta, Canada,
1994.

Martin Schijf. Proof-Number Search and Transpo-
sitions. M.Sc. Thesis, University of Leiden, Nether-
lands, 1993.

Masahiro Seo. The C* Algorithm for AND/OR Tree
Search and its Application to a Tsume-Shogi Pro-
gram. M.Sc. Thesis, Department of Information Sci-
ence, University of Tokyo, Japan, 1995.

George C. Stockman. A Minimax Algorithm Better
than Alpha-Beta? Artificial Intelligence, Vol. 12,
pp. 179-196, 1979.

Seiichi Tanaka, Hiroyuki Iida, and Yoshiyuki
Kotani. An Approach to Tsume-Shogi: Applying
Proof-Number Search with Estimation Function of
Mating. (In Japanese) Game Programming Work-
shop in Japan ’95, pp. 138-147, 1995.

Program List of Df-pn

The program list of df-pn is carried below. As ¢ and
§ at each node are dual to each other, an algorithm
corresponding to negamax algorithm in the context of
minimax-tree search can be constructed.

0 N OO D WN -

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// Iterative deepening at the root
procedure Nega-df-pn-search(r) {
r.g= oo; r.6= o0;
MID(r);

// Explore node n
procedure MID(n) {
// 1. Look up the transposition table
LookUpTransTable(n, ¢, §);
if (16 < ¢l|n.d < 6) {
ng=¢; nd=34;

return,;

// 2. Generate all the legal moves
if (nis a terminal node) {
if ((n is an AND node &&
Eval(n) == true) ||
(n is an OR node &&
Eval(n) == false)) {
n.g =o00; n.b=0;
}else {n.¢ =0; n.d=o0; }
PutInTransTable(n, n.¢, n.6);
return;
}
GenerateLegalMoves();
// 3. Avoid cycles by using transp. table

27 PutInTransTable(n, n.¢, n.d); 83 sum = sum + ¢;

28 // 4. Multiple iterative deepening 84 }
29 while (1) { 85 return sum;
30 // Terminate if either ¢ or § 86 }
31 // is at least its threshold
32 if (n.¢ < AMin(n) || n.6 < $Sum(n)) { . +
33 n.¢ = AMin(n); n.d = ®Sum(n); B Program List of Df'pn
34 PutInTransT. .9, n.0);
35 reuturxl.n‘ans able(n, n.¢, n.9); Df-pnt is acgired by modifying the program in Ap-
36 } ’ pendix A as follows.
37 o = ¢ . .
_ . 44 // Selection among the children

38 n. = SelectChild(n, ¢, I, d2); ’
39 N = n.8 + pe — #Sum(n); 2: prt}ceduri JStelectChxld(n, &dc, &bc, &62) {
40 ne.0 = min(n.¢, 63+1); a7 n‘:'z?;‘l"d_;of’ ming = oo;
41 MID ; R -
42 } (ne) 48 for (each child nchia) {
43 } 49 LookUpTransTable(nchila, ¢, 9);
44 // Selection among the children 50 if g{iﬁ @, 5 — costy(n, nenna)):
45 procedure SelectChild(n, &@., &, &52) { 51 i (6_+ cost¢’(nb°:zn:-ld)c< r:z:), {Ch"d ’
46 Obound = Oc; — ’ o
47 ‘Sc = 00, 52 = 00; 52 ;bz,?: ___T::;:ld’
48 for (each child neniig) { minz——é + c’os b () Tia);
49 LookUpTransTable(nchia, ¢, 0); 53 5, _; L e 3’ T 6chid 6’

M —_ . = Yey c =) c — Y
2(1) :i g? f ;)o)){& = max (4, doound); 54 Jelse if (6 + costy(n, nehila) < ming) {
59 Mbest = Mehild; d2 = §; ming = § + costy(n, Nenid);
53 02 =0 ¢c=¢; 6c.=46; p _ .
54 Jelse if (6 < &) 6, = 6; :2 y if (¢ == o0) return npes;
55 if (¢ == 00) return npest; 57 return .
56 } o eturn Npest;

t .
2; } TELUrn Mbest; 59 // Look up trans. table for the entry of n

59 // Look up trans. table for the entry of n 60 procedure LookUpTransTable(n, &¢, &) {

60 procedure LookUpTransTable(n, &, &§) {

61 if (n is recorded) { 22) }else {¢ = hy(n); & = hs(n); }
= .b; = T; .0;
g; }el;be { d’)l‘ iblle.[n] ?: 16 } able[n}.5; 69 // Calculate minimum ¢ among n’s children
64) ! ! 70 procedure AMin(n) {
65 // Record into transposition table L .)
66 procedure PutInTransTable(n, ¢, §) { 74 min = min(min, § + costy(n, nehid));
67 Table[n].¢ = ¢; Table[n].d = J;
68 } 77)
69 // Calculate minimum § among n’s children _7,8 /1 Czlculatt;tshe sum of ¢ of n'’s children
70 procedure AMin(n) { 9 procedure $Sum(n) {
71 min = 00; B .
72 for (each child ncnia) { 83 sum = sum + ¢ + costg(n, nchila);
73 LookUpTransTable(nchiid, ¢, 9);
74 min = min(min, 6); 86 }
75 }
76 return min;
77

}
78 // Calculate the sum of ¢ of n’s children
79 procedure ®Sum(n) {
80 sum = 0;
81 for (each child nchug) {
82 LookUpTransTable(nchia, ¢, 9);

