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Abstract: Many associative memory models with synaptic decay such as the forgetting model and the zero-order
decay model have been proposed and studied so far. The previous studies showed the relation between the storage
capacity C and the synaptic decay coefficient α in each synaptic decay model. However, with the exceptions of a
few studies, they did not compare the network retrieval performance between different synaptic decay models. We
formulate the associative memory model with the β-th-order synaptic decay as an extension of the zero-order decay
model. The parameter β denotes the synaptic decay order or the degree of the synaptic decay term, which enables
us to compare the retrieval performance between different synaptic decay models. Using numerical simulations, we
investigate the relation between the synaptic decay coefficient α and the storage capacity C of the network by varying
the synaptic decay order β. The results show that the properties of the synaptic decay model are constant for a large
decay order β. Moreover, we search the minimum β to avoid overloading and the optimal β to maximize the network
retrieval performance. The minimum integer value of β to avoid overloading is −1. The optimal integer value of β to
maximize the network retrieval performance is 1, i.e., the degree of the forgetting model, and the suboptimal integer β
is 0, i.e., that of the zero-order synaptic decay model.

Keywords: auto-associative memory, β-th order synaptic decay, zero-order synaptic decay, forgetting process, synap-
togenesis, storage capacity

1. Introduction

The task of storing information as a memory and recalling it
from the partial or noisy cue is fundamental for the brain. The
Hopfield model [4], the best-known associative memory model,
could reproduce the form of memory in the brain. By chang-
ing the synaptic weights, this model stores memory patterns in
the network. Thereafter, this network retrieves the stored pattern
even if given its noisy one. The properties of associative memory
model have been investigated over several decades (for reviews
see Ref. [14]).

The ordinary Hopfield model, however, has a critical number
of memory patterns that can be stably stored: 0.138N, where N

is the system size [1], [2], [13], [16]. If the number of embed-
ded memory patterns is larger than 0.138N, the network cannot
retrieve any memory pattern due to overloading.

It has been reported that elimination and generation of
synapses (synaptogenesis [17], [18]) continues to take place in
certain regions of the postnatal brain including the hippocampal
regions, which are widely considered to function as associative
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memory. Synaptogenesis, i.e., replacement of old synapses by
new ones, is crucial for the formation of neural networks, and
thus it affects neural network functions especially memory for-
mation. Furthermore, according to the previous neurophysiolog-
ical experiment [18], synapses with smaller weights tend to be
eliminated with higher probability.

In our previous work, we investigated the effect of synapto-
genesis on memories, modeling it mathematically: the associa-
tive memory model with the zero-order synaptic decay [9]. We
demonstrated the possibility that synaptogenesis plays a role in
maintaining recent memories while avoiding overloading. In the
zero-order synaptic decay model, all of the synaptic weights ap-
proach zero by increments at each learning step for embedding
a new pattern. This synaptic decay process is consistent with
the characteristics of the synaptogenesis: the smaller weight the
synapse has, more easily elimination of the synapse occurs, and it
is equivalent to erasing the old memory traces gradually. This en-
ables the network to retrieve recently embedded memory patterns
stably while avoiding overloading.

If the dynamics of synaptic weights in the network have de-
cay [3], [6], [7], [9], [11] or saturation [15], overloading does not
occur. The associative memory model with the forgetting process,
an alternative network model to avoid overloading, was proposed
by Mézard et al. [7]. In the forgetting model, every time the net-
work learns a new pattern, the synaptic weight decreases at a rate
proportional to its value. In this scheme, the old memory traces
are erased exponentially with time. Many synaptic decay mod-
els such as the forgetting model have been proposed and studied
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so far [3], [6], [7], [9], [11]. Some researchers gave a statisti-
cal mechanical analysis of each synaptic decay model using the
spin glass analogy [5], [7], [8], [10], [12]. They showed the re-
lationship between the storage capacity C and the synaptic decay
coefficient α in each synaptic decay model.

From an engineering viewpoint, these models raise a key ques-
tion what is the optimal synaptic decay model to maximize the
network retrieval performance. With the exceptions of a few stud-
ies [10], hitherto the previous studies did not compare the network
retrieval performance between different synaptic decay models.
We explore the optimal synaptic decay model, formulating the
associative memory model with the β-th-order synaptic decay as
an extension of the zero-order decay model. The parameter β de-
notes the synaptic decay order, or the degree of the synaptic decay
term, which enables us to compare the retrieval performance be-
tween different synaptic decay models. When the decay order
β is 1, this synaptic decay model is equivalent to the forgetting
model. Using numerical simulations, we investigate the relation
between the synaptic decay coefficient α and the storage capacity
C of the network by varying the synaptic decay order β. The re-
sults show that the properties of the model are constant for a large
decay order β.

2. Model

We begin by formulating the β-th-order synaptic decay process,
which includes synaptic reset (i.e., elimination and generation of
synapses) in the associative memory model. As shown in Fig. 1,
we consider a recurrent network model with N formal neurons
and N(N − 1) synaptic connections.

The associative memory model consists of the memory storage
process and memory retrieval process. The synaptic decay and
synaptic reset are included in the storage process. For the pur-
pose of mathematical tractability and simplicity, we assume that
the time-scale of synapse dynamics in the storage process is far
different from that of network dynamics in the retrieval process.
Under such an assumption of time-scale separation, the storage
process and retrieval process can be separated from one another.

Fig. 1 Schematic diagram of a recurrent network functioning as an auto-
associative memory. Neurons are numbered i = 1, 2, · · · ,N and
are characterized their respective activities, s1, s2, · · · , sN , which take
±1, respectively. Presynaptic neuron j is connected to postsynaptic
neuron i through a synapse with efficacy (weight) wi j.

Set out below is the outline of auto-associative memory func-
tions that are implemented in our model. In the memory storage
process, M patterns ξ1, ξ2, · · · , ξM are embedded in the network
one by one, modifying synaptic weights in accordance with the
Hebbian learning rule. Every time the network learns a new pat-
tern, for example, all the synaptic weights decay at a constant
speed (zero-order synaptic decay [9]) or decay exponentially (for-
getting process [7]). In the zero-order synaptic decay model, the
synapse whose weight is sufficiently small disappears, and then
the new synaptic connection is created. Note that the synaptic
weights are fixed during the memory retrieval process. The net-
work with the fixed synaptic weights retrieves the recent memory
patterns even if given the noisy ones.

2.1 Synapse Dynamics in the Storage Process
The index μ (= 1, 2, · · · ,M) of memory pattern ξμ is the learn-

ing step, which represents the time when the pattern was stored.
Note that μ = M represents the most recently stored pattern,
and that the smaller μ is, the older ξμ is. Each element ξμi
(i = 1, 2, · · · ,N) of the μ-th memory pattern ξμ takes ±1, and
is generated independently with the probability,

Prob[ξμi = ±1] =
1
2
. (1)

We now consider the following synaptic dynamics with the
synaptic decay:

wi j(μ) = wi j(μ − 1) + Δwi j, (2)

Δwi j = −αsgn
(
wi j(μ − 1)

)∣∣∣wi j(μ − 1)
∣∣∣β + ξμi ξ

μ
j , (3)

where sgn(x) is the sign function

sgn(x) =

⎧⎪⎪⎨⎪⎪⎩
1, x ≥ 0,
−1, otherwise.

(4)

wi j denotes the weight of synaptic connection from unit j to i, and
it is symmetrical, i.e., wi j = w ji. The network is assumed to have
no self-interaction, wii = 0. Δwi j denotes the amount of synaptic
modification at each learning step.

The second term of the right-side Eq. (3) represents the corre-
lation (generalized Hebbian) learning rule. This rule is local in
that the change to synaptic weight between units i and j for em-
bedding a new pattern depends only on the activities of these two
units and not on those of other units.

On the other hand, the first term of the right-side Eq. (3) rep-
resents the synaptic decay process. The parameter β denotes the
synaptic decay order, or the degree of the synaptic decay term.
When β = 0, the parameter α denotes the synaptic decay speed.
Every time the network learns a new pattern according to the Heb-
bian rule, |wi j| decreases by a constant value α. This is called the
zero-order synaptic decay process [9]. Figure 2 (I) illustrates the
zero-order synaptic decay dynamics: Δwi j = −αsgn

(
wi j(μ − 1)

)
.

In the zero-order decay model, all the synapses decay at a con-
stant speed α. The smaller |wi j| is, the earlier it reaches zero. If
the sign of the synaptic weight inverts as a result of the synaptic
decay process, the synaptic weight is reset (wi j = 0) and then a
new pattern is stored:

wi j(μ) = ξ
μ
i ξ
μ
j , if |wi j(μ − 1)| < α|wi j(μ − 1)|β. (5)
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Fig. 2 Synaptic decay dynamics (i.e., the first term of the right-side Eq. (3)).
(I) The zero-order decay model [9], Δwi j = −αsgn(wi j(μ − 1)); (II)
the forgetting model [7], Δwi j = −αwi j(μ − 1). α = 0.1. Abscissa
represents the time step τ and ordinate does the synaptic weight
wi j(τ). The two panels plot examples of synaptic decay dynamics
with three different initial synaptic weights: wi j(0) = 4, 1,−2. The
synaptic weight of the zero-order synaptic decay model reaches zero
in finite time whereas that of the forgetting model does not. When
wi j(τ) becomes zero, elimination of the synapse occurs. (III) The
β-th-order synaptic decay dynamics when β ≥ 0 and wi j(0) = 1:
Δwi j = −αsgn(wi j(μ−1))|wi j(μ−1)|β. The larger β is, the more slowly
|wi j(τ)| decays. The synaptic decay dynamics when wi j(0) > 1 and
β ≥ 0 have the same characteristics as the case in which wi j(0) = 1
and β ≥ 0. (IV) wi j(0) = 1, β ≤ 0. The larger |β| is, the faster |wi j(τ)|
converges to zero. (V) wi j(0) = 2, β ≤ 0. As |β| increases, |wi j(τ)|
hardly decays at all.

This procedure simply represents elimination of the sufficiently
small synapse and birth of a new synaptic connection. We here as-
sume that if the elimination of synaptic connection between units
j and i occurs, the new synapse rebuilds the connection wi j.

When β = 1 in Eq. (3), the parameter α denotes the synaptic
decay rate. Every time the network learns a new pattern, |wi j|
decays exponentially. This is called the forgetting process [7] or
the first-order synaptic decay process. Figure 2 (II) illustrates the
dynamics of forgetting process: Δwi j = −αwi j(μ − 1). In the
forgetting model, the synaptic weight decreases at a rate propor-
tional to itself. Thus, the synaptic weight does not converge to
zero in finite time. Unlike the zero-order synaptic decay model,
the elimination and generation of synapses do not occur in the
forgetting model.

Next, we consider the higher order of synaptic decay (β > 1).
Figure 2 (III) illustrates the β-th-order synaptic decay dynamics
Δwi j = −αsgn

(
wi j(μ − 1)

)∣∣∣wi j(μ − 1)
∣∣∣β when β is more than or

equal to 0. When β ≥ 1, the synaptic weight does not converge
to zero in finite time as shown in this figure. Thus, the elimina-
tion and generation of synapses do not occur in the model with
the higher synaptic decay order than 0. Furthermore, the larger β
is, the more slowly the synaptic weight decays. Thus, the higher-
order decay model (β > 1) tends to store the older memory traces
than the zero-order decay model and the forgetting model.

We also consider the case when the decay order is negative
(β < 0). Figures 2(IV)-(V) illustrate the β-th-order synaptic de-
cay dynamics Δwi j = −αsgn

(
wi j(μ−1)

)
|wi j(μ−1)|β when β is less

than or equal to 0. When β ≤ 0, the synaptic weight converge
to zero in finite time. Thus, the elimination and generation of
synapses also occurs in the model with the lower synaptic decay
order than 0. The synaptic reset procedure described by Eq. (5)
is applied to the network model with the negative decay order.
Moreover, as shown in Fig. 2 (IV), the larger |β| is, the faster the
synaptic weights converge to zero when wi j ≤ 1. However, the
synaptic decay dynamics with the negative decay order (β < 0)
is more complicated than those with the positive one (β > 0). As
shown in Fig. 2 (V), as the absolute value |β| increases, the synap-
tic weights hardly decay at al.

In the next section, we investigate the effect of synaptic decay
order on the properties of the associative memory model using
numerical simulations. In the storage process, all of the initial
synaptic weights are set to zero wi j(0) = 0, (i, j = 1, 2, · · · ,N),
and Eqs. (2), (3) are repeated M times in order to determine the
synaptic weights.

2.2 Network Dynamics in the Retrieval Process
In the retrieval process, the network restore pattern vectors to

the original stored state using the synaptic weights after learn-
ing, wi j(M). Note that the synaptic weights are fixed during the
retrieval process (wi j = wi j(M)).

We assume that all the units work synchronously at discrete
time t (= 1, 2, · · ·). The network dynamics can be determined by

si(t + 1) = sgn(hi(t)), (6)

hi(t) =
N∑

j=1(�i)

wi j s j(t), (7)
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where si(t) is the state of unit i at time t. hi(t) is the local field of
unit i at time t, whose sign determines whether the next state of
unit i is firing (si(t + 1) = 1) or not (si(t + 1) = −1).

Equation (8) defines the time evolution of the system state. For
any symmetric connection matrix wi j: wi j = w ji, the network sys-
tem has finite possible states. Starting from any arbitrary initial
state, the system state of the ordinary associative memory model
always reaches an equilibrium or a periodic solution, and the pe-
riod is known to be no more than 2. According to Eqs. (8), (9),
the system state is updated until it converges.

3. Simulation Results

For simplicity, we assumed that neither the total number of
units N nor that of synapses N(N − 1) does change over time
in the following numerical simulations. The network consist-
ing of 1,000 units learned M patterns, ξ1, ξ2, · · · , ξM , one by
one. The number of patterns to be stored was set to 1,000 (i.e.,
M = N), which was much larger than the critical value of the
ordinary Hopfield model: 0.138N. In the storage process, all of
the initial synaptic weights were set to zero, {wi j(0)} = 0. Every
time the network learned a memory pattern, the absolute value
of synaptic weight |wi j| decays in proportional to the exponenti-
ation |wi j|β. Note that the synaptic weights are then fixed during
the retrieval process. In the retrieval process, each stored pattern
ξμ (μ = 1, 2, · · · ,M) was given as an initial state s(0). This is
because it has been reported that the storage capacity of the as-
sociative memory network when a stored pattern corrupted with
a small noise was given as s(0) is almost the same as that when
the originally stored pattern was given [1], [12]. Considering the
periodical solution of the network dynamics, the system is forced
to stop when the present state s(t) equals the second to last one
s(t − 2). Simulations were carried out on a computer by varying
the decay coefficient α.

First, we investigate how many and how old patterns are re-
trievable in the network with the β-th-order synaptic decay. Be-
cause the synaptic decay and synaptic elimination processes im-
plies erasing old memory gradually, a limit exists on the number
of retrievable patterns. As the criterion of successful recall, we
used the overlap between the μ-th memory pattern ξμ and the
stationary system state sμ when the initial system state is set to
s(0) = ξμ,

mμ =
1
N

N∑

i=1

ξ
μ
i sμi . (8)

In calculation of the overlap, we used s(t) which first fulfilled the
stop condition of retrieval dynamics (s(t) = s(t − 2)) as a station-
ary state sμ. If an initial state s(0) is equal to or close to an origi-
nally stored pattern ξμ and the stored pattern has not been erased
in the network with synaptic decay, the memory retrieval state is
stable: mμ ≈ 1. Otherwise mμ ≈ 0. If mμ ≥ 0.8, we regarded ξμ

as the retrievable pattern, and we counted it. The storage capacity
C is defined as the total number of the retrievable patterns.

Figure 3 plots the overlap mμ as a function of the learning
step μ for several values of the decay coefficients α in the four
β-th-order synaptic decay models other than the zero-order decay
model and the forgetting model (β � 0, 1). As shown in the fig-

Fig. 3 Overlap mμ as a function of the learning step μ in the β-th-order
synaptic decay model other than the zero-order synaptic decay model
and the forgetting model (i.e., β � 0, 1). Note that μ = M represents
the most recently stored pattern, and that the smaller μ is, the older
ξμ is. N = M = 1,000. 1 sample. Horizontal dashed curve is the
threshold for successful recalling mμ = 0.8. (I) β = 2, (II) β = 3, (III)
β = −1, (IV) β = −2. The synaptic decay models stably retrieve the
recent memories except for the case (IV). When β = −2, the network
cannot retrieve any stored patterns.

ures (I)-(IV), only the recent memories (μ > 980) can be stably
retrieved (mμ ≈ 1) in the synaptic decay model except for β = −2.
Figure 3 predicts a phase transition phenomenon depending on
the learning step μ. As μ decreases, the memory retrieval state
(mμ ≈ 1) becomes unstable, and the so-called spin-glass state
(mμ ≈ 0) appears. On the other hand, when β = −2, the network
cannot recall any stored patterns due to overloading.

Figure 3 also shows the number of retrievable patterns depends
on the decay coefficient α in every synaptic decay model. Fig-
ure 4 illustrates the storage capacity C of each synaptic decay
model as a function of α for each degree of the synaptic decay
term β. As shown in Fig. 4 (I), the zero-order decay model (β = 0)
and the forgetting model (β = 1) have a remarkable memory
retrieval performance compared with the other β-th-order decay
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Fig. 4 Storage capacity C as a function of the decay coefficient α at
each β-th-order synaptic decay model. (I) β = 0, 1, · · · , 9. (II)
β = −2,−1.5,−1,−0.5. Each curve shows the average of 10 sam-
ples. N = M = 1,000. A point at the intersection of the abscissa
with each curve corresponds to the minimum α to avoid overloading
(C = 0). A peak of each curve corresponds to the maximal storage
capacity Cmax of the synaptic decay model at each decay order β.

models. An increase in the decay order β degrades the network re-
trieval performance. When β > 6, there is little difference in the
memory properties between the synaptic decay models. More-
over, when the decay order is negative (β < 0), the increase in the
absolute value |β| causes a dramatic drop in the network retrieval
performance as shown in Fig. 4 (II). When β ≤ −1.5, the storage
capacity C becomes zero for any decay coefficient α. In other
words, the network which has the synaptic decay order less than
or equal to −1.5 cannot avoid overloading.

Finally, we show the optimal synaptic decay order to maximize
the network retrieval performance. We here define the maximal
storage capacity of the β-th-order synaptic decay model, Cmax, as
the maximal value of C at each β. Figure 5 (I) illustrates the max-
imal storage capacity Cmax as a function of the decay order β. The
optimal decay order to maximize Cmax is β = 0.8. When β is an
integer, the forgetting model, whose decay order is β = 1, has the
largest Cmax. The zero-order decay model (β = 0) has the second
largest Cmax. As the absolute value |β| increases, Cmax decreases.
When β ≤ −1.5, the maximal storage capacity becomes zero, i,e.,
the network cannot avoid overloading (Cmax = 0). When β ≥ 6,
on the other hand, the maximal storage capacity is maintained sp-
proximately constant : Cmax ≈ 3. Figure 5 (II) shows the relation
between α at Cmax and β. When β > 0.8, the optimal synaptic de-

Fig. 5 (I) Maximal storage capacity Cmax as a function of the synaptic decay
order β. The curve plots the average of 50 samples. N = M = 1,000.
Dots represents Cmax when β is an integer value. (II) The relation be-
tween the synaptic decay coefficient α at Cmax and the decay order β.

cay coefficient α to maximize the storage capacity is almost 0.01.
The α at Cmax approaches 1 as β decreases. Note that α = 1 rep-
resents erasing a whole memory pattern at each learning step for
embedding the new pattern.

4. Conclusion

We investigated the properties of the associative memory
model with the β-th-order synaptic decay. We demonstrated
the relationship between the storage capacity C and the synap-
tic decay coefficient α at each decay order β. In the cases of
β = 0, 1, the obtained results are completely equal to those of the
zero-order decay model [9] and the forgetting model [7], respec-
tively. Numerical simulations revealed that the synaptic decay
order model can stably retrieve the recently stored patterns while
avoiding overloading when β > −1.5. When β ≥ 6, the properties
of the associative memory models become almost the same.

Furthermore, we searched the optimal decay model that has
the best performance of memory retrieval by varying the decay
order β. We evaluate the network retrieval performance using the
maximal storage capacity Cmax. The optimal decay order to max-
imize Cmax is β = 0.8. When β is an integer, the forgetting model
(β = 1) has the largest Cmax, and the zero-order synaptic decay
model (β = 0) has the second largest Cmax. We also carried out
computer simulations for N = 2,000, and got the same results as
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those for N = 1,000.
We here investigate only the maximal retrieval performance of

the β-th-order synaptic decay model when an originally stored
pattern was given as the initial retrieval state. In other words, we
just study how many and how old patterns are unforgotten in the
network with synaptic decay. In the associative memory model,
starting with an initial state close to a stored pattern, the retrieval
state monotonically approaches the stored one. However, starting
with an initial state which is not so close to a memorized one, the
state once approaches it but then goes away from it. This suggests
that there is the basin of the attractor of a stored pattern [1], [12].
We will derive this critical initial distance which guarantees the
success of recalling at each β-th-order decay model.
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