
IPSJ Transactions on Programming Vol.6 No.4 79 (Dec. 2013)

Abstract

Aspect Interfaces: Towards Separate
Type-checking of Aspect-oriented Programs with

Inter-type Declarations

Manabu Toyama1,a) Tomoyuki Aotani2,b) Eric Bodden3,c)

HidehikoMasuhara2,d) Éric Tanter4,e)

Presented: June 3, 2013

This presentation discusses about separate type-checking of aspect-oriented programs with inter-type declarations.
Inter-type declarations is one of the mechanisms that achieve aspect-oriented programming and supported by AspectJ.
It enables aspects to introduce methods and fields to classes and interfaces. Separate type-checking is a method that,
given a set of modules and their interfaces, ensures the program consists of the modules is type safe if each module is
type safe with respect to the interfaces. Although inter-type declarations is useful, it makes aspects and classes hard to
be type-checked separately. In other words, if a class depends on the introduced methods and/or fields (e.g., invoking
or accessing them), its type safety cannot be assured without aspects because the signatures of the introduced methods
or fields are absent. In this presentation, we propose to achieve separate type-checking of classes and aspects with
inter-type declarations using Aspect Interfaces, which are contracts between aspects and classes. Aspect interfaces
describe the signatures of the introduced methods. Introduced classes, which are the target classes of the inter-type
declarations, specifies aspect interfaces so that the classes provide the signatures of introduced methods along with the
methods within the classes. Then each calls to the introduced methods can be then type checked normally. Introducing
aspects, which provide the bodies of the introduced methods, specifies aspect interfaces that contains the signatures of
the introduced methods so that it is easy to check every introduced method in the aspect interfaces is actually provided
by the introducing aspect. When composing aspects and classes (i.e., weaving aspects), it is enough to ensure type
safety to check whether or not at least one introducing aspect exists for each aspect interface along with the usual
linking-time type-checking.

1 The University of Tokyo, Meguro, Tokyo 153–8902, Japan
2 Tokyo Institute of Technology, Meguro, Tokyo 152–8552, Japan
3 EC SPRIDE, Technische Universität Darmstadt, Darmstadt, Germany
4 Universidad de Chile, Santiago, Chile
a) touyama@graco.c.u-tokyo.ac.jp
b) aotani@is.titech.ac.jp
c) bodden@acm.org
d) masuhara@acm.org
e) etanter@dcc.uchile.cl

c© 2013 Information Processing Society of Japan 79


