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Abstract: Recent years, many efforts have been made to overcome the limitation of storage and
computing capability of wireless sensor networks (WSNs). With the computing paradigm of cloud
computing characterized by massive storage and computing capability, larger market and more
opportunities arise for WSNs. The sensor-cloud combing sensor networks into cloud can provide
excellent data scalability, rapid visualization, and user programmable analysis. Our primary work
in this paper is to allocate sensor data caches on the cloud to minimize the data access and mainte-
nance costs. We present a data cache model and formulate three types of data allocation problems,
called single-type (SDAP), uncapacitated multi-type (UCMDAP), and capacitated multi-type (CM-
DAP), respectively. We propose a Lagrangian relaxation algorithm to solve the SDAP, and analyze
its usability for UCMDAP and CMDAP. We also examine the performance of our algorithm by
numeral experiments.

1. Introduction
In the past few years, wireless sensor networks

(WSNs) have been attracting increasing attention be-
cause of their potential of enabling of novel and at-
tractive solutions in variety areas such as military, in-
dustrial automation, environment monitoring, health-
care, smart home, etc. Many efforts, such as topol-
ogy control, energy efficiency technique, data aggre-
gation, and sensor scheduling, have been made to
overcome the limitation of storage and computing ca-
pabilities of WSNs [1], [2], [3], [4]. However, most
studies focus only on the inside of WSNs. The gate-
way, called sink, connecting to the outside of WSN
is usually assumed to have infinite storage and com-
puting capabilities. Some work such as data analysis,
data accessibility, and data utilization following the
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data collection at sink are left aside or pushed into
other research areas. The uses of data from one spe-
cific WSN is limited to a small group of users due
to the lack of share-ability, efficient maintenance, and
elasticity.

At the same time, cloud computing, acting as one
of the most popular concepts in recent years, has been
attracting much unprecedented attentions from insti-
tutions and individuals. With the computing paradigm
of cloud computing, larger market and more opportu-
nities arise for WSNs. Data collected from WSNs can
be efficiently maintained on cloud and easily shared
by different groups of users. Cloud computing pos-
sessing massive computing and storage capability acts
as a remedy for the limitation of WSNs. On the other
hand, WSNs act as data sources providing various
kinds of data for cloud in a continuous, pervasive, and
real-time manner.

The concept of Sensor-Cloud that combines sen-
sor networks with cloud computing can be found in
recent works like [6], [7], [8], [9], [10], [11]. An
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example of sensor-cloud is shown in Fig.1, different
kinds of WSNs are combined into cloud, the connec-
tion points, such as S 1, S 2, and S 3, play the roles of
sinks in WSNs collecting raw data and the roles of
data centers in cloud processing and assigning data
for users. All of data generated by WSNs can be ac-
cessed via cloud.

WSN!

WSN!

WSN!

S2
!

S3
!

S1 

Fig. 1 data allocation on sensor-cloud

A common technique used to improve data access
performance is caching, i.e., to cache data at some ap-
propriate locations, so that data access requests from
users can be responded efficiently. This benefit be-
comes especially important for the mobile devices
with limited resources. Our work focuses on decid-
ing cache nodes on sensor-cloud with the objective
of minimizing the total system cost. This is a chal-
lenging problem because finding a strategy that min-
imizes costs (e.g., data updating cost, data assigning
cost, data accessing cost, etc) is combinatorial prob-
lem, which includes decisions such as how many du-
plications to make, allocation of data items to cache
nodes, storage capacity, and load balancing. Further-
more, there is significant uncertainty involved in a
wide variety of data items and users.

In this paper, we present a data cache model and
formulate three types of data allocation problems.
The first one is single-type data allocation problem
(SDAP), in which only one WSN combines to cloud.
The next one is uncapacitated multi- type data alloca-
tion problem (UCMDAP), in which multiple WSNs
combine to cloud, and nodes on the cloud are assumed
to have no capacity limitations. The last one is capac-
itated multi-type data allocation problem (CMDAP),

in which multiple WSNs combine to cloud, and nodes
on the cloud have capacity limitation. Then, we pro-
pose a Lagrangian relaxation algorithm to solve the
SDAP, and analyze its usability for UCMDAP and
CMDAP. We also examine the performance of our al-
gorithm by computational experiments.

The remainder of this paper is organized as follows.
In the next section, we list some related works and
compare them with our work. In section 3, we de-
scribe our system model and give some prerequisites.
The formal formulation, solution and computational
experiment for SDAP are presented in section 4. And
the UCMDAP and CMDAP are discussed in section
5. Finally, we conclude this paper and give our future
work in section 6.

2. Related work
A series of studies, [6], [7], [8], [9], [10], [11], have

recently been done on the sensor-cloud. Most of these
studies primally focuses on the system architecture of
sensor-cloud. Hassan et al. Alamri et al. [11] give a
survey on sensor-cloud in aspects of architecture, ap-
plications, and approaches. Differing from above re-
searches, our work focus on data allocation problems
with the goal of minimizing data access and mainte-
nance costs. Contrast to the conceptual descriptions in
previous work, mathematical formulation and numer-
ical algorithm are explicitly presented in our work.

Data cache strategy are studied in some work such
as [12], [13], [14]. The number and location of repli-
cas of distinct data items in cloud have a strong im-
pact on systems performance. Tan et al. [12] ad-
dress the problem of content placement in peer-to-
peer systems, with the objective of maximizing the
utilization of peers uplink bandwidth resources. Data
items are divided into three different classes, named
Hot, Warm, and Cold, according to their popularity
ranking. Hot items are cached at all nodes, Warm
items are cached at a fraction of nodes, and Cold items
are node cached at all. Similarly, Bjorkqvist et al.
[13] also partition items into three classes: Gold, Sil-
ver, and Bronze. With the objective of minimizing
retrieval latency, gold items are always stored at the
edge node, whereas bronze items as never stored, sil-
ver items are managed locally either by a collabora-
tive LRU scheme or by a random discarding scheme.
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In above work, data popularity plays a key role in de-
termining the cache allocation, the bandwidth utiliza-
tion or latency are used as the performance metrics.
In our work, all costs of data process are converted
into monetary cost and the objective is to minimize
the total cost.

We consider the data assigning cost to transfer
sensed data from each sink of WSN to cache nodes
in cloud, data placing cost to place data at cache
nodes, and data accessing cost to respond requests.
Generally, as the number of caches of a data item
increases, the corresponding assigning cost and plac-
ing cost will increase, and the accessing cost will de-
crease. The data allocation problem has some similar-
ities on a facility location problem (FLP) [15], [16],
[17]. In the conventional facility location problem, a
set of facilities with facility-opening costs and a set
of clients with demands are given, the objective is
to open facilities and assign clients to open facilities
so as to minimize facility-opening costs and client-
assignment costs. In our problem, data caches rep-
resent the facilities, the data placing cost and data
accessing cost model the facility-opening cost and
client-assignment cost, respectively. Despite the sim-
ilarity with FLP, factors like continuous data assign-
ment from sinks and cache-capacity constraints make
it difficult to apply the standard method for FLP.

3. Data Allocation Model
In our data allocation model, data items collected

from different kinds of WSNs are stored and main-
tained on cloud, various kinds of users can access
sensor data items via cloud conveniently. Nodes con-
necting WSNs and cloud, named source nodes are re-
sponsible of collecting raw data from WSNs and as-
signing data to other nodes on cloud. Some of other
nodes, named cache nodes, are selected to store du-
plications of data to control data transition cost. And
those nodes directly response to users are called de-
mand nodes. Source nodes collect data from WSNs
and send the latest data to cache nodes periodically,
demand nodes can access data from cache node or
source nodes directly. In our data transfer model,
three types of cost are considered: the assigning cost
generated as source nodes assign the latest data to
cache nodes periodically, the placing cost generated

as cache nodes erase old data and write new data, and
the accessing cost generated as demand nodes access
data from cache nodes (or source node). Our work
focuses on deciding cache nodes for data items on
sensor-cloud with the objective of minimizing the to-
tal system cost.

Formally, let N = {i | i = 1, 2, ...,N}, S = {S k |

k = 1, 2, ...,M}, M = {k | k = 1, 2, ...,M} represent
respectively the sets of nodes excluding source nodes
on sensor cloud, source nodes connecting M different
WSNs and cloud, and data items generated from M
different WSNs. And N ′ = S

⋃
N is the set of all

nodes on cloud. The data transfer model in this paper
is illustrated in Fig.2. Source node S k collects data
k from the kth WSN and sends the latest data to its
cache node(s) j, demand node(s) i access data from
cache node j or source node S k. As data-collection
in WSN is usually executed within a certain period of
time, denoted by T0, so the data transmission between
source node and cache node is also considered to be
periodically executed. On the other hand, data trans-
mission between cache node j (or source node i) and
demand node i is often assumed to be a Poisson pro-
cess. The number of requests for data k from demand
node i during the period T0 can be known, denoted
by hk

i . The cost to place a data duplication on node j
is f j, and the costs to transfer unit data per distance
from source node to cache node and from the cache
node (or source node) to the demand node are α and
β, respectively. As the transmission between source
node and cache nodes can be scheduled to execute
during system idle time, we can set α ≤ β. Data is
routed along the shortest path, d js, di j, and dis are re-
spectively the shortest distance between source node
s and cache node j, the shortest distance between
cache node j and demand node i, and the shortest
distance between source node sk and demand node i.
We also define two decision variables xk

j( j ∈ N) and
yk

i j(i ∈ N , j ∈ N ′). The allocation decision variable xk
j

is 1 if node j is selected as a cache node for data item
k, and 0 otherwise. The access decision variable yk

i j

is 1 if demand node i accesses data item k from cache
node j, 0 otherwise. Primal symbols used to define
problems are listed in table 1.
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Fig. 2 data transfer model

Table 1 Symbols used in problem formulation

N the set of nodes on cloud (excluding sink nodes)
N = {i | i = 1, 2, ...,N}.

M the set of data items generated by M WSNs
M = {k | k = 1, 2, ...,M}.

S the set of nodes connecting WSNs and Cloud
S = {S k | k = 1, 2, ...,M}.

N ′ the set of nodes including the sink of WSN
N ′ = S

⋃
N .

hk
i the number of requests for item k from demand

node i during a certain period T0.
f j fixed cost to create a data duplication at node j.

di j distance from node i to node j.
α cost to transfer unit item per unit distance from

source node s to cache node j.
β cost to transfer unit item per unit distance from

cache node j to demand node i.
xk

j data allocation decision variable

xk
j =

 1, node j caches node for data item k
0, otherwise.

yk
i j data access decision variable

yk
i j =

 1, node i accesses item k from node j
0, otherwise.

4. Single-type data allocation prob-
lem

4.1 Mathematical Formulation of SDAP
First of all, we consider the simple scenario that

only one WSN connects to the cloud. For the sake of
simplicity, we just use s to denote the single source

node in single-type data allocation problem, and sym-
bols like hk

i defined in section 3 is simplified as hi

here. With the notation above all, we can formulate
the single-type data allocation problem as follows.

(S DAP)

minα
∑
j∈N

ds jx j +
∑
j∈N

f jx j + β
∑

i

∑
j∈N ′

hidi jyi j (1)

s.t. ∑
j∈N ′

yi j = 1,∀i ∈ N (2)

x j ≥ yi j,∀i, j ∈ N (3)

x j ∈ {0, 1},∀ j ∈ N (4)

yi j ∈ {0, 1},∀i ∈ N , j ∈ N ′ (5)

The objective function (1) minimizes the total cost
which is the sum of the assigning cost, the sum of
placing cost, and the sum of accessing cost. Con-
straint (2) stipulates that each demand node i gets data
from exactly one node (the source node or a cache
node). Constraint (3) means that requests from de-
mand node i cannot be responded by node j unless
data is cached at node j. Constraints (4) and (5) de-
fine the nature of the decision variables. In the single-
type data allocation problem, it is assumed that node
capacity is large enough to store the data generated
from one WSN during period T0. So node capac-
ity constraints are not considered in the formulation.
From the mathematical formulation, if we ignore the
assigning costs described by the first part of expres-
sion (1), our problem during a period T0 is presented
as an uncapacity fixed charge facility location prob-
lem[15], [16], [17].

4.2 A Lagrangian Relaxation Algorithm for
SDAP

Firstly, we use Lagrangian Relaxation method to
get an approximate optimal solution for the single-
type data allocation problem, and use this solution
to benchmark heuristic approach proposed later. We
consider relaxing constraint (2),

∑
j∈N ′

yi j = 1, to obtain

the following problem:

(LR − S DAP)

max
λ

min
x,y

α
∑
j∈N

ds jx j +
∑
j∈N

f jx j + β
∑

i

∑
j∈N ′

hidi jyi j
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+
∑

i

λi[1 −
∑
j∈N ′

yi j]

=
∑
j∈N

(αds j + f j)x j +
∑
i∈N

∑
j∈N ′

(βhidi j − λi)yi j

+
∑

i

λi (6)

s.t.

yi j ≤ x j,∀i, j ∈ N (3)

x j ∈ {0, 1},∀ j ∈ N (4)

yi j ∈ {0, 1},∀i ∈ N , j ∈ N ′ (5)

λi ∈ <,∀i (7)

For fixed values of the Lagrange multipliers λi, we
want to minimize expression (6). Consider first the
problem involving the access decision variables, yi j.
If βhidi j − λi ≥ 0, we can set yi j = 0, and if
βhidi j − λi < 0, we would like to set yi j = 1. On
the other hand, as shown in expression (3), yi j is con-
strained to be no more than x j. Thus, for each j, we
compute V j = αds j + f j +

∑
i

min{0, βhidi j − λi}, if

we set x j = 1, the objective function expression (6)
will change by the V j. If V j < 0, it is advantageous
to set x j = 1; otherwise, set x j = 0. We note that for
j = s, ds j and f j are set to be 0. The objective value of
expression (6) is a lower bound, denoted byLB(λ), on
the primal objective function expression (1). On the
other hand, as the constraint (2) is relaxed in the La-
grangian Relaxation Approach, the obtained solution
is likely to violate the constraint, i.e., some demand
nodes may not get any data and others may get the
same data from multiple nodes. Suppose that we set
all those nodes x j = 1 to be cache nodes, and then
route all demand nodes to access the nearest cache
node. By this way, we can get a feasible solution to
the primal problem, this solution is an upper bound,
denoted by UB(λ), on the objective function expres-
sion (1).

To derive bounds using Lagrange relaxation, a se-
quence of Lagrange multipliers can be revised using
a standard subgradient oprimiztion procedure as fol-
lows:

λn+1
i = max{0, λn

i − tn(
∑

j

yn
i j − 1)}, (8)

where tn is the nth iteration of the Lagragian proce-
dure, named stepsize, and

tn =
γn(UB(λn) − LB(λn))∑

i

(
∑

j

yn
i j − 1)2

. (9)

yn
i j is the optimal value of the access decision variable

on the nth iteration. γn is a constant on the nth iter-
ation, started with γ1 = 2 and cut by half every time
LB(λ) fails to increase after a certain number of iter-
ations. UB(λn) and LB(λn) are respectivly the upper
and lower bound on the objective function. Further-
more, the initial multipliers are given by

λ1
i = min

(i, j),(i,i)
βhidi j. (10)

Note that Lagrangian Relaxation doesn’t always
converge to the optimal solution. We can stop the
procedure when the difference between the bounds is
less than a tolerance error ε0 (e.g. 1) or after a certain
number of iterations (e.g. 1000). In order to evaluate
the performance of a solution, We define an evalua-
tion metric called optimal gap according to the lower
bound (LB) and objective value (OV) calculated by
the solution as follows.

optimal gap =
OV − LB

LB
. (11)

The optimal gap indicates how close the solution we
obtained to the theoretical lower bound. The lower
optimal gap is, the better the solution. The Lagrangian
Relaxation Approach is detailed in algorithm 1.

4.3 Numerical Experiments for SDAP
To illustrate the procedure of Algorithm 1, we con-

sider a simple network with 8 nodes shown in Figure
3. Node 0 is the only source node in the network. Our
work is determining some cache nodes to bake up data
for node 0, so that the total costs can be minimized.
All demands (hi) for the data from node i , and all
fixed cost f j for creating a duplication at each node
are set equal to 1, while the unit transfer costs α (from
source node to cache node) and β (from cache node to
demand node) are set to 0.6 and 0.8, respectively. Dis-
tance between node i and j is the length of the shortest
path between them times a constant dis(= 10). Begin-
ning with all Lagrange multipliers set equal to the ini-
tial values of min

(i, j),(i,i)
βhidi j according to equation (10),

the Lagrangian procedure converges in 12 iterations
to a solution with a total cost of 59.0. Key values at
iterations are listed in table 2. Three duplications are
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Algorithm 1 A Lagrangian Relaxation Algorithm for
SDAP

1: n = 0,UB(λn) = ∞, LB(λn) = 0
2: while UB(λn) − LB(λn) ≥ ε0 do
3: n=n+1
4: Set Lagrange multipliers λn

i according to (8) or
(10).

5: Solve the relaxed problem for values of the La-
grange multipliers got from step 4.
5.1 for each candidate node j, compute V j .

5.2 Set x j =

 1, if V j < 0,
0, if not

5.3 Set

yi j =

 1, if x j = 1 and βhidi j − λi < 0,
0, if not

5.4 Calculate the lower bound LB(λn)
6: Convert the relaxed solution into a primal fea-

sible solution and get the upper bound UB(λn)
7: end while

cached at node 1, 2, and 4.

0 

1 

3 

2 

4 5 

6 7 

Fig. 3 An example of network used to illustrate algorithm 1
for SDAP.

As shown in table 2, the lower bound and upper
bound obtained from the Lagrangian procedure in this
example are exactly equal to each other. We get the
optimal gap equals 0 for the objective value of 59.0
at 12th iteration, the solution we obtained is optimal.
From the distribution of cache data in the network, we
can see that caches tend to locate close to the source
node because the assigning costs used to assign the
latest sensed data to each cache node are also consid-
ered in our model.

5. Multi-type Data Allocation Prob-
lem

5.1 Uncapacitated Multi-type Data Allocation
Problem

We consider two versions, uncapacitated and ca-
pacitated, of multi-type data allocation problem. For
the uncapacitated Multi-type Data Allocation Prob-
lem, the allocation of arbitrary data item k will not
affect the allocation of another data item k′ at all. The
M types data items are completely independent with
each other as nodes have no capacity constrains. In
other words, the Multi-type Data Allocation Problem
with no capacity constrains is exactly an M-single-
type data allocation problem. It can be described as:

(UMDAP)

minα
∑
k∈M

(
∑
j∈N

ds jxk
j +
∑
j∈N

f jxk
j + β

∑
i∈N

∑
j∈N ′

dk
i jh

k
i y

k
i j) (12)

= minα
∑
j∈N

ds jx1
j +
∑
j∈N

f jx1
j + β

∑
i∈N

∑
j∈N ′

d1
i jh

1
i y

1
i j

+ minα
∑
j∈N

ds jx2
j +
∑
j∈N

f jx2
j + β

∑
i∈N

∑
j∈N ′

d2
i jh

2
i y

2
i j

...

+ minα
∑
j∈N

ds jxM
j +
∑
j∈N

f jxM
j + β

∑
i∈N

∑
j∈N ′

dM
i j hM

i y
M
i j (13)

s.t. ∑
j∈N ′

yk
i j = 1,∀i ∈ N , k ∈ M (14)

xk
j ≥ y

k
i j,∀i, j ∈ N , k ∈ M (15)

xk
j ∈ {0, 1},∀ j ∈ N , k ∈ M (16)

yk
i j ∈ {0, 1},∀i ∈ N , j ∈ N ′, k ∈ M (17)

This problem can be solved by executing M times La-
grangian Relaxation Algorithm for Single-type Data
Allocation proposed in section 4.2.

5.2 Capacitated Multi-type Data Allocation
Problem

The capacitated version of multi-type data alloca-
tion problem has the same objective function(12) with
the uncapacitated one. However, the total number
of items stored at node j is bound by its capacity
Q j. Thus, the corresponding mathematical formula-
tion can be written as:

(CMDAP)
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Table 2 Iterations of Algorithm 1 for the Network of Figure 3
(α = 0.6, β = 0.8, ε = 1.0E − 5)

Ite. Key Values
λi V j X j UB LB

1 0.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 0.0 -1.0 -1.0 5.0 5.0 5.0 11.0 11.0 1 1 1 0 0 0 0 0 70.0 54.0
2 0.52 8.0 8.0 8.52 8.52 8.52 8.52 8.52 -0.52 -2.55 -2.55 3.45 2.94 3.45 8.42 8.42 1 1 1 0 0 0 0 0 70.0 53.48387
3 0.0 8.0 8.0 8.52 7.92 8.52 9.12 9.12 0 -1.52 -1.52 3.37 2.85 3.37 8.25 8.25 1 1 1 0 0 0 0 0 70.0 56.14897
4 0.46 8.0 8.0 8.52 8.38 8.52 9.58 9.58 -0.46 -2.36 -2.36 2.44 1.00 2.44 6.49 6.49 1 1 1 0 0 0 0 0 70.0 55.85618
5 0 8.0 8.0 8.52 7.86 8.52 10.09 10.09 0.06 -1.52 -1.52 2.39 0.95 2.39 6.30 6.30 1 1 1 0 0 0 0 0 70.0 58.04839
6 0.40 8.0 8.0 8.52 8.26 8.52 10.49 10.49 -0.40 -2.18 -2.18 1.59 -0.64 1.59 4.84 4.84 1 1 1 0 1 0 0 0 59.0 57.28222
7 0.20 8.0 8.0 8.52 8.13 8.52 10.49 10.49 -0.20 -1.84 -1.84 1.80 -0.31 1.80 5.18 5.18 1 1 1 0 1 0 0 0 59.0 58.15795
8 0.10 8.0 8.0 8.52 8.06 8.51 10.49 10.49 -0.10 -1.67 -1.67 1.90 -0.14 1.90 5.34 5.34 1 1 1 0 1 0 0 0 59.0 58.58723
9 0.05 8.0 8.0 8.52 8.03 8.51 10.49 10.49 -0.05 -1.59 -1.59 1.94 -0.06 1.94 5.42 5.42 1 1 1 0 1 0 0 0 59.0 58.79766

10 0.02 8.0 8.0 8.52 8.01 8.52 10.49 10.49 -0.02 -1.55 -1.55 1.96 -0.02 1.97 5.46 5.46 1 1 1 0 1 0 0 0 59.0 58.90081
11 0.01 8.0 8.0 8.52 8.00 8.52 10.49 10.49 -0.01 -1.53 -1.53 1.98 4.07 1.98 5.48 5.48 1 1 1 0 0 0 0 0 70.0 58.95133
12 0.0 8.0 8.0 8.52 7.60 8.52 10.89 10.89 -0.01 -1.52 -1.52 1.59 -0.39 1.59 4.70 4.70 1 1 1 0 1 0 0 0 59.0 59.0

minα
∑
k∈M

∑
j∈N

ds jxk
j +
∑
k∈M

∑
j∈N

f jxk
j

+β
∑
k∈M

∑
i∈N

∑
j∈N ′

dk
i jh

k
i y

k
i j (12)

s.t.

(14), (15), (16), (17),∑
k∈M

xk
j ≤ Q j,∀ j ∈ N . (18)

Constraint(18) means that the amount of data items
cached in node j can not exceed the capacity of j.

Relax capacity constraint(18), we have

max
µ

min
x,y

∑
j∈N

∑
k∈M

(αds j + f j − µ j)xk
j

+
∑
i∈N

∑
j∈N ′

∑
k∈M

βhk
i di jy

k
i j +
∑
j∈N

µ jQ j (19)

s.t. µ j ≥ 0,∀ j ∈ N ′ (20)

substituting f̂ j = (αds j + f j −µ j) and Q̂ =
∑

j

µ jQ j,

we obtain the following objective function for the
fixed values of µ j:

(LR −CMDAP)

max
µ

min
x,y

∑
j∈N

∑
k∈M

f̂ jxk
j +
∑
i∈N

∑
j∈N ′

∑
k∈M

βhk
i di jy

k
i j + Q̂ j (21)

s.t.

(14), (15), (16), (17)

This problem is exactly the structure of uncapaci-
tated problem (UMDAP) (12) presented in 5.1. For

fixed values of f̂ j, Q̂ j, and µ, the optimal solution of
the problem LR-CMDAP can be seen as the lower
bound of problem CMDAP. On the other hand, the
obtained solution is likely to violate the capacity con-
straints. As noted in sectione 4.2, Lagrangian Relax-
ation doesn’t always coverage to the optimal solution.
So it is not easy to obtain the lower bound of CMDAP.
Developing an efficient and acurate algorithm for the
UMDAP becomes our future work.

6. Conclusions and future work
This paper formulates tree types of data allocation

problems, SDAP, UCMDAP, and CMDAP, based on
a novel data cache model considering data assign-
ing cost, data placing cost, and data accessing cost in
sensor-cloud. A Lagrangian Relaxation algorithm is
proposed to solve the SDAP, and a computational ex-
periment is executed to illustrate the procedure of al-
gorithm. This algorithm can be also used in the UCM-
DAP to get an approximate solution. Furthermore, it
is also important for our future work developing an
efficient and acurate algorithm for the UMDAP.
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