
Vol. 49 No. 2 IPSJ Journal Feb. 2008

Regular Paper

Design and Implementation of an Inter-Device Authentication

Framework Guaranteeing Explicit Ownership

Manabu Hirano,
†1

Takeshi Okuda
†2 and Suguru Yamaguchi

†2

Future networks everywhere will be connected to innumerable Internet-ready home appli-
ances. A device accepting connections over a network must be able to verify the identity
of a connecting device in order to prevent device spoofing and other malicious actions. In
this paper, we propose a security mechanism for an inter-device communication. We state
the importance of a distingushing and binding mechanism between a device’s identity and its
ownership information to realize practical inter-device authentication. In many conventional
authentication systems, the relationship between the device’s identity and the ownership infor-
mation is not considered. Therefore, we propose a novel inter-device authentication framework
guaranteeing this relationship. Our prototype implementation employs a smart card to main-
tain the device’s identity, the ownership information and the access control rules securely.
Our framework efficiently achieves secure inter-device authentication based on the device’s
identity, and authorization based on the ownership information related to the device. We
also show how to apply our smart card system for inter-device authentication to the existing
standard security protocols.

1. Introduction

Future ubiquitous networks will be connected
to a large number of non-PC Internet-ready
home appliances. A device accepting connec-
tions over a network must verify the identity of
a connecting device digitally in order to prevent
device-spoofing and other malicious actions. A
digital identity for the device can be utilized
by many kinds of useful access control systems.
For example, a SIM (Subscriber Identity Mod-
ule) is used in a mobile phone to maintain the
subscriber’s data.

From the point of view of model construc-
tion, It is necessary to distinguish between a
device’s identity and an owner’s identity clearly
because most devices have a single ownership
or multiple ownerships. Therefore, we should
consider a novel mechanism to guarantee the
relationship between the device’s identity and
its ownerships. This guarantee is very impor-
tant, because the actual access is caused not by
the device’s identity but by the owner’s iden-
tity. The access control for the device should
be processed based not on the device’s identity
but on the ownership information. This paper
presents a new concept for an inter-device au-
thentication and authorization framework.

Figure 1 shows the concept of the proposed
inter-device authentication framework. Our

†1 Toyota National College of Technology
†2 Nara Institute of Science and Technology

proposal employs a tamper-resistant device, es-
pecially the smart card technology, to main-
tain securely the device’s identity, the owner-
ship information and the access control rule.
Our novel smart card software can also exe-
cute device-specific security functions in a se-
cure manner. A typical home appliance gen-
erally has only a minimum human interface,
unlike a traditional PC with a keyboard and
a display, making it difficult to input complex
authentication and access control data. Our
proposal for a novel smart card software with
special configuration tools will enable manufac-
turers/users to set up the device’s security con-
figurations by separating the functions from the
device itself.

This paper presents a new attempt to bind a
device’s identity and its ownership information
efficiently. Thus, we propose a novel smart card
software to realize inter-device authentication
based on the device’s identity, and authoriza-
tion based on its binding. We also show how to
apply our smart card to the existing standard
security protocols.

The rest of this paper is organized as follows:
Section 2 shows some practical device authenti-
cation mechanisms and their models. Section 3
describes some hardware-based security mech-
anisms with PKI support and explains why we
employ a smart card in our proposal. Section 4
reviews the recent related work on device au-
thentication. In Section 5, we introduce the
inter-device authentication framework and its

808



Vol. 49 No. 2 Design and Implementation of an Inter-Device Authentication Framework 809

Fig. 1 Concept of an inter-device authentication
framework.

applications. In Section 6, we show the design
of our framework. We present the prototype im-
plementation of the novel smart card software
and its configuration tools, and an authentica-
tion middleware system in Section 7. We show
the result of performance measurements in Sec-
tion 8. We discuss technical issues in Section 9.
We conclude with a summary in Section 10.

2. Practical Model for Existing Device
Authentication Mechanisms

We first review device authentication mech-
anisms in some major existing home network
specifications. We then compare these specifi-
cations with a practical model for device au-
thentication.
UPnP Security 1) UPnP (Universal Plug
and Play) Security specification has a sophis-
ticated mechanism to guarantee the personal
ownership of devices. In the UPnP framework,
the owner operates a special terminal device
called “SecurityConsole” to set up security con-
figurations on each device. The security-aware
UPnP device has a public key pair and a pass-
word generated in the device itself. The device
is identified by the SecurityID (hash value of
the device’s public key). The owner can assert
ownership by inputting the password of the de-
vice from the SecurityConsole. The owner can
also set up the ACL based on the SecurityID
in each device by SecurityConsole via a net-
work. After their respective setups, both de-
vices can authenticate each other by a public
key, and execute access control by the ACL and
the SecurityID.
ECHONET 2) ECHONET (Energy Conser-
vation and Homecare Network) is the stan-
dard specification for controlling home appli-
ances proposed by major consumer electron-
ics manufacturers in Japan. One advantage
of the ECHONET is the range of the physical

Fig. 2 Typical device authentication and access
control model.

communication support such as the power line,
the low-powered radio, and so on. ECHONET
supports the ownership acquisition operation
by inputting a serial key printed on the de-
vice. This serial key is generated and stored
during the production phase. In ECHONET,
the owner can set up a pre-shared key for
each ECHONET device. Then, two devices
can authenticate each other by that pre-shared
key. ECHONET defines the original chal-
lenge and the response authentication proto-
col. ECHONET supports only a fixed 4-level
authorization (User, Maker, Service Provider,
Anonymous) with configurable access rules.
Bluetooth 3) Bluetooth is a short-range
wireless communication system for electronic
devices. Bluetooth has a secure simple pair-
ing mechanism to take ownership of the device.
Bluetooth has four association models depend-
ing on the I/O (display, keyboard and so on)
capabilities of each device. To take ownership
of the devices, the owner has to check and input
the shared information (Bluetooth PIN, which
is also called Passkey) displayed on a device.
After the ownership acquisition operation, two
devices generate a shared secret (called a link
key) for future mutual authentication. How-
ever, Bluetooth does not support a device-to-
device or device-to-user access control mecha-
nism.

2.1 Comparison Details
In many existing authentication systems for

the client-server paradigm, a user is simply
authenticated by a server. However, in this
paper, we discuss a security mechanism for
an inter-device communication, for example,
a communication between a home robot and
a home server. We show the typical proce-
dure of an inter-device authentication and an
access control in Fig. 2. At first, an owner
takes ownership of the device (establishing a
secure relationship between the device and the



810 IPSJ Journal Feb. 2008

Table 1 Comparison of device authentication mechanisms.

UPnP ECHONET Bluetooth
Taking ownership Password Serial key Passkey (PIN)
Device-to-device authentication Public key Pre-shared key link key
Device-to-device access control SecurityID and ACL Fixed level and ACL -
Access control based on ownership - - -

person). Next, the device-to-device authen-
tication is executed. This step authenticates
each device’s identity. In the subsequent pro-
cess, the device enforces access control rules
based on the ownership information related to
the peer device’s identity. Table 1 shows the
comparison details of each mechanism. All
the mechanisms described above support own-
ership acquisition and device-to-device authen-
tication. Bluetooth does not support a user-
configurable access control mechanism. UPnP
and ECHONET support ACL-based access con-
trol mechanisms. Both mechanisms guarantee
the relationship between the device and the
owner in the ownership acquisition operation.
Therefore, the device-to-device access control
on both mechanisms also indirectly guarantees
limited access control based on the ownership
information. Both mechanisms work fully un-
der conditions of single ownership of a device.
However, since a device is often owned by multi-
ple users, we should handle the device’s identity
and the ownership information separately.

2.2 Multiple Ownerships Model
Figure 3 shows an inter-device authentica-

tion/authorization model from the perspective
of the relationship between a device and an
owner identities. A device is mostly owned by
someone. Therefore, the device’s behavior is
logically related, not with a device’s identity
but with an owner’s identity (e.g., a human be-
ing or an organization). Thus, an access control
mechanism for an inter-device communication
has to have the ability to handle an owner’s
identity. The rest of this section compares the
single ownership model with the multiple own-
erships model shown in Fig. 3.

At first, (A) in Fig. 3 shows the single own-
ership model. Some existing authentication/
authorization mechanisms described in Sec-
tion 2.1 are a single ownership model. A device
owner usually takes ownership on a device by
inputting the password, the PIN, etc. Although
this operation guarantees the implicit owner-
ship of a device, this model does not handle an
explicit owner’s identity. In the single owner-
ship model, an accessed device can only enable

Fig. 3 Inter-device authentication/authorization
model.

access control based on a peer device’s identity.
Next, (B) in Fig. 3 shows the multiple owner-
ships model we propose. This model supports
multiple ownerships on a device, and it can dis-
tinguish each owner’s identity explicitly. This
model also supports a binding mechanism be-
tween a device’s identity and owner’s identities.
In the multiple ownerships model, an accessed
device can authorize a request based on a peer
owner’s identity.

In the single ownership model, a device can
be owned by a single owner only. The device
can only behave as a single device or a single
owner in interaction with a peer device. If we
adopt the multiple ownerships model, a device
can be owned by multiple owners. The device
can behave as multiple owners in interaction
with a peer device. This means that an accessed
device can authorize a request based not on a
device’s identity but on each owner’s identity.
For example, a TV set at home might be shared
by a father, a mother and a child. The TV set
can operate under each’s ownership, and a peer
device can authorize the TV set’s request based
on each’ss ownership. We show a more practical
example of our proposal in Section 5.3. In this
paper, we propose a novel framework that sup-
ports inter-device access control based on the
explicit ownership. Our framework especially
supports multiple ownerships on a single device,
and it also guarantees the relationship between
a device’s identity and its multiple ownerships.



Vol. 49 No. 2 Design and Implementation of an Inter-Device Authentication Framework 811

3. How to Store the Device and Owner
Identities in a Secure Manner

The device and owner identities need to be
protected from identity theft. Therefore, it is
preferable to store highly confidential data such
as private keys in a hardware-based secure stor-
age. This kind of hardware-based system has
tamper-resistant characteristics, and normally
has an independent processor and a memory
to execute security-purpose software securely,
such as a smart card, a TPM (Trusted Platform
Module), a HSM (Hardware Security Module),
and so on. This section summarizes the major
hardware-based security mechanisms.
PKCS#11 compliant Smart Card 4) RSA
Laboratories have published the PKCS#11
cryptographic token interface standard.
PKCS#11 specifies a platform-independent
API set called Cryptoki. PKCS#11 provides an
authentication mechanism not for a device but
for a single user. PKCS#11 supports the RSA
public key algorithm, the X.509 public key cer-
tificate, symmetric encryption algorithms such
as AES, hash algorithms, and so on. CryptoAPI
also provides the same kind of API as the one
used in the Microsoft Windows environment.
Java Card compliant Smart Card 5) Sun
Microsystems’s Java Card platform technology
enable developers to write original code for a
smart card in Java programming language. The
Java Card virtual machine in a Java Card-
compliant smart card can execute a Java Card
applet. Java Card supports fundamental cryp-
tographic functions like the RSA public key
algorithm, symmetric encryption algorithms,
hash algorithms, and so on. Although the smart
card has a limited memory and a slow speed of
processor, developers can make an original ap-
plet that can execute on the smart card in a
secure manner.
TPM 6) The TPM is defined as a microcon-
troller that stores keys, passwords and digital
certificates. The TPM can store the user’s or
the device’s identity like a private key. The
TPM can also execute the user or the de-
vice authentication by TPM’s digital signature
functions. Moreover, a secure platform attes-
tation mechanism guarantees the platform in-
tegrity by using Platform Configuration Regis-
ters (PCRs). In most cases, the TPM is on a
PC’s motherboard.

Table 2 shows a comparison of the hardware-
based security mechanisms described above.

Table 2 Comparison of hardware-based security
mechanisms.

PKI Platform Programmable
auth. attestation

PKCS#11 YES NO NO
Smart Card
Java Card YES NO YES

Smart Card
TPM YES YES NO

The Java Card is a convenient choice to write
the code and perform the prototyping for a se-
cure protected execution environment. Thus
we employ the Java Card platform technology
to develop a novel smart card software which
realizes our novel inter-device authentication
framework, described in Section 2.2. Although
the TPM’s platform attestation is an essential
component in every modern device’s security,
the platform attestation is outside the scope of
this paper.

4. Related Work

Related research on device authentication/
authorization is available. Mayrhofer 7) shows
a device authentication system specialized in
context-based authentication using sensor data.
His project provides an open source toolkit
on Java with J2ME (Java 2 Micro Edition)
to develop context-based device authentication
software. Nguyen 8) proposes inter-device au-
thentication using Identity-Based Cryptogra-
phy (IBC). A typical authentication system
based on a pre-shared key employs one com-
mon shared key for all the devices in the same
domain. IBC-based authentication provides a
method to share different keys for every two de-
vices to improve security rather than one shared
key for all devices. Fuji Xerox 9) announced
the PKI-based device certificate service for their
product, the multi-functional device ApeosPort
in 2005. The device certificate profile proposed
by Fuji Xerox has a product name, a serial num-
ber, and so on. They use their product as the
starting point in the new challenge of device au-
thentication/authorization services. Nicholson,
et al. 10) describe a transient authentication for
mobile devices. In transient authentication, a
user has a wearable wireless token. A device
detects the token and keeps an authenticated
state while the user is close to the device. This
mechanism guarantees the ownership acquisi-
tion operation by the wireless wearable token.

These studies deal with all the interesting as-
pects of device authentication. Our main con-
tribution is the explicitly distinguishing and



812 IPSJ Journal Feb. 2008

binding mechanism between the device’s iden-
tity and the ownership information for an inter-
device authentication, based on the PKI tech-
nology.

5. Overview of an Inter-Device Au-
thentication Framework Guaran-
teeing Explicit Ownership

This section is a brief summary of a proposed
inter-device authentication framework. In our
proposal, a production-level device’s identity
is guaranteed by a X.509 Public Key Certifi-
cate 11),12) generated by a manufacturer. The
device’s personal ownership is guaranteed by
Attribute Certificates 13). An Attribute Certifi-
cate can isolate attribute data for access con-
trol from identity data in the Public Key Cer-
tificate. The Attribute Certificate is associated
with the Public Key Certificate using a subject
Distinguished Name (subject DN) field. In this
paper, we employ Attribute Certificate as the
key technology to distinguish and bind the de-
vice’s identity and the ownership information
securely. Hereafter, we abbreviate the X.509
Public Key Certificate as PKC, and the At-
tribute Certificate as AC.

Figure 4 shows the use case diagram for
the proposal. During the production phase of
a device, our framework enables manufactur-
ers to register a production-level identity into
a device’s PKC. The production-level identity
consists of the product’s serial number and the
manufacturer’s information, which will never be
changed. The manufacturer installs the PKC
onto the device’s secure protected area. Af-
ter purchasing the product, our framework en-
ables an owner to register the owner-level at-
tribute (e.g., a distinguishable unique nickname
assigned by the product owner) into a device’s
AC. An owner installs the AC and the Access
Control List (ACL) of the device onto the de-
vice’s protected area. The AC and the ACL
can be changed by the device owner at any
time using the personalization tool. Although
a single device can register a single PKC (i.e.,
a single device’s identity), it also can register
multiple ACs (i.e., multiple ownerships). Con-
sequently, an accessed device can authenticate
peer devices by the production-level identity.
Furthermore, an accessed device can also re-
strict a request from other devices based on the
connecting device’s owner-level attribute (own-
ership information) and its ACL. Although we
should employ a fixed tamper-resistant chip em-

Fig. 4 Use case diagram for the proposed system.

Fig. 5 Sequence diagram for the proposed system.

bedded in a target device instead of a remov-
able smart card, in our prototype implementa-
tion, all authentication and authorization infor-
mation are stored onto the smart card. There-
fore, for our prototype we guarantee the pairing
between the smart card and the device by the
smart card’s PIN (owner’s PIN) code.

Figure 5 shows the sequence diagram for the
proposed system. In the production phase, the
manufacturer generates the device’s RSA key
pairs in a smart card, registers a production-
level identity in the PKC, installs the PKC
and the trust anchor CA’s PKC onto the smart
card. These operations are processed by our
proposed initialization tool. The initialization
tool also has a Certificate Authority (CA) func-
tion to issue a PKC from a public key. Our pro-
posal assumes that the product is shipped with
this initialized smart card. After purchasing the
product, in the ownership acquisition phase, an
owner registers his or her owner-level attribute
(unique nickname for ownership information) in
an AC, edits the ACL, and installs the AC, the
ACL and the trust anchor AA’s PKC on the
smart card. These operations are processed by
our proposed personalization tool. The person-
alization tool also has an Attribute Authority
(AA) function to issue the AC from the PKC
and an owner-level attribute. Finally, in the op-



Vol. 49 No. 2 Design and Implementation of an Inter-Device Authentication Framework 813

Fig. 6 Production-level identity authentication using
PKC.

erational phase, the owner attaches the smart
card to the purchased appliance. Our proposal
employs a PIN (an owner’s PIN) code to en-
sure a coupling between the appliance and the
smart card at this time. As a result, all ap-
pliances can utilize strong PKI authentication
and authorization by means of both production-
level identities and personal ownerships in each
peer-to-peer connection. In the following sec-
tions, we describe the details of the operational
phase.

5.1 Production-level Identity Authen-
tication Using PKC

Figure 6 shows the inter-device authentica-
tion process. In an authentication protocol, the
connecting device sends its PKC from the smart
card to a peer accepting device. The received
PKC is verified by the accepting device’s trust
anchor CA’s PKC. If the verification is suc-
cessful, then the accepting device sends a chal-
lenge to the peer connecting device. On the
peer connecting device, the smart card gener-
ates a digital signature from the challenge and
the private key, and returns it to the peer. The
accepting device tries to verify the digital sig-
nature. If the verification is successful, then the
authentication process is finished. For mutual
authentication, the same process is required in
the reverse direction. In Section 6.3, we show
the design of the device authentication middle-
ware system.

5.2 Owner-level Attribute Authoriza-
tion Using AC

Figure 7 shows an authorization process
based on the ownership information related to
the device. This process must be performed af-
ter the authentication process. When the con-
necting device requests another device’s oper-
ation, an application on the connecting device
sends an AC from the smart card, which repre-

Fig. 7 Owner-level attribute authorization using AC.

sents its ownership. An application on the ac-
cepting device verifies the received AC by the
trust anchor AA’s PKC, and checks the relation
between the peer device’s AC and the PKC re-
ceived at the previous authentication step. Fi-
nally, the access control function in the smart
card examines the authorization by the opera-
tion type, the AC’s attribute and the ACL, and
returns the authorization result to the applica-
tion. For multiple ownerships on a single de-
vice, we propose that the AC (ownership) which
is sent from the connecting device be automat-
ically selected by a program based on a pre-
configured rule. The rule maintains the map-
ping between each operation type and its own-
ership.

5.3 Example Usage
Figure 8 shows an example usage of our pro-

posal. In this example, a security company
operates a network-based security camera for
an apartment building. The security camera
is shared by the company and a resident of the
apartment. The security camera is the connect-
ing device in Fig. 7. The security company’s
video server and the resident’s TV set are the
accepting devices in Fig. 7. We consider the fol-
lowing two situations: First, the camera period-
ically sends pictures to the security company’s
video server to record pictures. Next, when
the camera detects any unusual circumstances,
the camera automatically interrupts the cur-
rent TV program on the resident’s TV screen
and shows real-time camera pictures. Both ac-
tions are permitted by showing each ownership.
Before they operate the system, the company
and the resident each have to take ownership of
the security camera by installing the AC. Each
ownership (AC) is registered with the security
camera, and it is bound to the camera’s device
identity (PKC).

Figure 9 shows ACL examples in the pro-



814 IPSJ Journal Feb. 2008

Fig. 8 Example usage.

Syntax:
Deny/Allow <Operation> from <AC’s attribute> on <PKC’s subject DN>;

ACL#1:
Deny from all;
Allow "record pictures" from "companyX" on "camera_SN00001";

ACL#2:
Deny from all;
Allow "interrupt and show real-time pictures" from "resident01" on "camera_SN00001";

Fig. 9 Example usage of the ACL syntax.

posal. The ACL#1 shows ACL entries on
the security company’s video server. When
the camera sends pictures to the company’s
server for recording, the camera and the com-
pany’s server authenticate each other using the
other device’s identity (camera SN00001 and
videoServer SN00001 ), then the camera sends
the AC for the companyX ’s ownership related
to the camera’s identity (camera SN00001 ).
The company’s server verifies the relationship
between the PKC received at this authentica-
tion step and the AC, and examines the autho-
rization of the camera’s request based on the
operation type (record pictures), the AC’s at-
tribute (companyX ) and the ACL. The ACL#2
also shows ACL entries on the resident’s TV set
at home.

6. Design of an Inter-Device Authen-
tication Framework Guaranteeing
Explicit Ownership

Our framework described in the Section 5
consists of a novel smart card software for the
devices’ security, some configuration tools and
an authentication middleware system for the
smart card. In this section, we show the de-
sign of each component.

6.1 Novel Smart Card Software for
Devices’ Security

We employ a smart card with tamper-
resistant characteristics to execute secure au-
thentication and access control functions. Fig-
ure 10 shows the design of our proposed novel
smart card software. The smart card soft-
ware consists of three modules. The authen-
tication module provides a production-level de-
vice’s identity authentication API using the de-
vice’s private key and the PKC. The authoriza-
tion module provides an owner-level access con-
trol API using the device’s AC (ownership in-
formation) and the ACL. The proposed smart
card software supports storage of multiple ACs
because our framework supports multiple own-
erships on a device. The security policy mod-
ule is used to set up our authentication middle-
ware system properly. The three modules are
executed securely on the smart card. The de-
vice’s private key is never leaked from the smart
card because it is protected by a strong tamper-
resistant storage. All API requests to the smart
card are processed based on the ISO/IEC 7816-
4 14) standard interface via a smart card reader.

Table 3 shows the authentication module
API defined in the proposed smart card soft-
ware. Table 4 shows the authorization mod-



Vol. 49 No. 2 Design and Implementation of an Inter-Device Authentication Framework 815

Fig. 10 Design of novel smart card software for
device security.

Table 3 Authentication module API provided by our
smart card software.

API Description
geneateKeyPair generate public key pair
retrievePublicKey retrieve public key
storeDeviceCert store device’s PKC
retrieveDeviceCert retrieve device’s PKC
storeTrustAnchorCA store trust anchor CA’s
Cert PKC
retrieveTrustAnchor retrieve trust anchor CA’s
CACert PKC
getSignature generate signature

ule API, and Table 5 shows the security pol-
icy module API. We define two PIN types in
our smart card software. The initialization tool
executes generateKeyPair, retrievePublicKey,
storeDeviceCert, storeTrustAnchorCACert in
Table 3. These special APIs need an admin-
istrator PIN for the smart card. Other APIs
can be executed with a smart card’s owner PIN.
Only the manufacturer knows the administra-
tor PIN, and a device owner knows the owner
PIN. The owner PIN is initialized by a man-
ufacturer, and then the manufacturer discloses
it to the purchaser. For example, to install an
AC onto the smart card, the device owner has
to input the owner PIN into the personalization
tool. We assume that the owner PIN is shared
by the device owners, therefore, the owner PIN
can restrict unauthorized access to the smart
card.

6.2 Configuration Tools for the Smart
Card

We propose two configuration tools for the
smart card described in Section 5.
Initialization Tool An initialization tool is
used by the product manufacturer to register

Table 4 Authorization module API provided by our
smart card software.

API Description
storeOwnershipCert store AC
retrieveOwnershipCert retrieve AC
storeTrustAnchor AA store trust anchor AA’s
Cert PKC
retrieveTrustAnchor retrieve trust anchor
AACert AA’s PKC
storeDeviceACL store device’s ACL
getAuthorizationResult get authorization result

based on operation,
peer AC’s attribute,
peer device’s identity
and ACL

Table 5 Security policy module API provided by our
smart card software.

API Description
storeSecurityPolicy store security policy
retrieveSecurityPolicy retrieve security policy
storeMWConfig store middleware config
retrieveMWConfig retrieve middleware config

production-level identity in the device’s smart
card. The Initialization tool allows the storage
of the device’s PKC and the trust anchor CA’s
PKC onto a smart card. The manufacturer in-
puts the product serial number as a Common
Name (CN), and the manufacturer information
as other attributes of the subject Distinguished
Name (subject DN) in X.509 PKC. The DN
consists of a CN, a country code (C), an orga-
nization (O), an organization unit (OU), and
so on. The initialization tool must also have
a CA functional capability to issue the X.509
PKC from the device’s public key; communi-
cation functions based on ISO/IEC 7816-4 to
read/write the public key and the PKC.
Personalization Tool A personalization tool
enables the device owner to set up owner-
level attributes (ownership information) onto
the smart card. An owner can restrict the ac-
cess from other devices by setting up the de-
vice’s AC and ACL. The personalization tool
must have AA functional capability to issue
AC. The owner inputs a unique nickname as
an attribute string in the AC to take his or her
ownership of the device. A personalization tool
reads the device’s PKC from the smart card,
and generates the AC related to the PKC’s sub-
ject DN and his/her attribute. The owner also
inputs the ACL to restrict the access based on
the AC’s attribute name. The personalization
tool exchanges messages with the smart card on
the ISO/IEC 7816 communication channel.



816 IPSJ Journal Feb. 2008

6.3 Inter-Device Authentication Mid-
dleware System

We propose an inter-device authentication
middleware system using the original smart
card software. In the current prototype sys-
tem, our authentication middleware is executed
on a Linux box (e.g., a micro server). We as-
sume that the Linux box is attached to an in-
formation appliance by, for example, RS-232,
USB or Ethernet, digital I/O. The Linux box
with the smart card controls the information
appliances. The pairing between the Linux box
and the smart card is guaranteed by the smart
card’s PIN (owner PIN) authentication.

The two devices which are trying to connect
to each other make it possible to execute a
strong PKI authentication using the proposed
middleware and the smart card. We employ the
proven IKEv1 (Internet Key Exchange, version
1) 15) protocol to execute a mutual authentica-
tion between the two devices. The IKEv1 is
used as an automatic key exchange to estab-
lish an IPsec 16) secure connection. We also em-
ploy the IPsec protocol to protect the commu-
nication channel between the two devices. Our
proposed middleware (Customized IKEv1 pro-
gram) invokes the authentication module API
of the smart card. Consequently, the Linux box
can authenticate the peer device’s production-
level identity described in Section 5.1.

Figure 11 shows the design of the proposed
inter-device authentication middleware system.
During the Linux box start-up, the IPsec policy
management program calls the security policy
module from the smart card. ((C) in Fig. 10 and
Fig. 11) The smart card sends to the Linux box
a security policy and some configurations for
IPsec and IKE. The IPsec policy management
program sets up the IP security policy onto the
SPD (Security Policy Database) 17) in the Linux
kernel. The preparation of the IP security pol-
icy is required to run the IPsec software and the
IKE software.

When the device is trying to connect to an-
other device, the IKEv1 program automatically
begins to negotiate a new Security Association
(SA) with another peer IKEv1 program. The
SA consists of the required parameters such as a
cryptographic session key, an expiration period
of the session key, and an encryption algorithm
to establish a secure communication channel.
IKEv1 has two phases to establish an IPsec con-
nection. The purpose of phase 1 is the mutual
authentication and the establishment of the SA

Fig. 11 Design of the inter-device authentication
middleware system.

Fig. 12 Main mode with signature authentication on
IKEv1 protocol.

for IKE itself. The SA of this first phase is
called the IKE-SA. In phase 2, the IKEv1 pro-
gram negotiates with the SA for IPsec. The
SA of this second phase is called IPsec-SA. We
modify only the authentication process of phase
1.

During the negotiation in phase 1, the IKEv1
program calls the authentication module from
the smart card ((A) in Fig. 10 and Fig. 11). We
employ “main mode” as IKEv1’s phase 1 ex-
change 15). Figure 12 shows the main mode
with signature authentication on the IKEv1
protocol. In the main mode, the authentica-
tion module in the smart card generates a sig-
nature (SIG I for the initiator, SIG R for the re-
sponder) from the device’s private key. Further-
more, the authentication module sends the de-
vice’s PKC (CERT I for the initiator, CERT R
for the responder) from the smart card to the
IKEv1 program. Thus, the IKEv1 program can
send them to the peer IKEv1 program. Conse-
quently, the devices can authenticate each other
based on the production-level identity in the
smart card, and establish the IKE-SA. After
establishing the IKE-SA, the IKEv1 program
establishes the IPsec-SA by executing the con-
ventional exchange in phase 2. The IKEv1 pro-



Vol. 49 No. 2 Design and Implementation of an Inter-Device Authentication Framework 817

gram stores the IPsec-SA parameters onto the
SAD (Security Association Database) 17) in the
Linux kernel. Finally, the communication chan-
nel between the two devices will be protected by
IPsec.

7. Implementation

In this section, we show the prototype imple-
mentation of our proposal.

7.1 Novel Smart Card Software for
Device Security

We have implemented the smart card soft-
ware described in Section 6.1 running on an
Axalto Cyberflex Access e-gate 32 k smart card
and an Axalto e-gate token connector as a
smart card reader. Our software employs the
Java Card API 2.1.1. In this paper, we utilize
the smart card as a small USB device, as shown
in Fig. 13. We have implemented the follow-
ing functions as a Java applet running on the
smart card: an authentication module based on
the device’s identity, an authorization module
based on the ownership information related to
the device, and a security policy module to con-
figure the middleware system.

7.2 Configuration Tools for the Smart
Card

We have implemented the initialization tool
and the personalization tool as a Java pro-
gram running on a Linux operating system.
Figure 14 shows the initialization tool’s GUI.
Firstly, the manufacturer inserts a smart card
with an initial state into a reader, and inputs
an administrator PIN. The initialization pro-
gram generates an RSA key pair in the smart
card, and reads the public key from the smart
card. The manufacturer can input the device
serial number and the manufacturer’s informa-
tion using the GUI. The expiration date for the
smart card can be enabled as the X.509 PKC’s
expiration date. Lastly, the manufacturer can
store the device’s X.509 PKC and the trust an-
chor CA’s PKC onto the smart card.

Figure 15 shows the personalization tool’s
GUI. The personalization tool allows the stor-
age of the device’s AC, the ACL and a trust
anchor AA’s PKC. A user that purchases
the product first inserts the smart card into
a reader, and executes the personalization tool
with an owner PIN on the PC. The user can
then input his or her own attribute (nickname
for ownership information), and can store the
attribute as an AC. The user can also input
ACL entries in text format by using a GUI. Fi-

Fig. 13 Smart card as a USB device.

Fig. 14 Initialization tool for the smart card.

Fig. 15 Personalization tool for the smart card.

nally, the AC, the ACL and the trust anchor
AA’s PKC can be stored onto the smart card.
This step is the ownership acquisition operation
for the device.

7.3 Inter-Device Authentication Mid-
dleware System Using IKEv1 and
IPsec

Table 6 shows the software used with the
middleware implementation described in Sec-
tion 6.3. USAGI 18) is for the implementation
of an IPv6 protocol stack with an IPsec function
on the Linux platform. Our implementation
employs the USAGI ’s IPsec to secure the com-
munication between the devices. Racoon 19)



818 IPSJ Journal Feb. 2008

Table 6 Software used with the middleware
implementation.

Platform Linux (kernel 2.6.11)
IPv6/IPsec stack USAGI
IKEv1 program Racoon (ipsec-tools 0.5.1)
IPsec policy setkey (ipsec-tools 0.5.1)
management program
PC/SC library PCSC-Lite 1.2.9 beta 7

is the proven and major implementation of
the IKEv1 protocol. We currently employ the
IKEv1 protocol. To employ the new IKEv2
protocol 20), we have to modify an IKEv2 pro-
gram to call the authentication module from
the smart card. However, the modification of
the IKEv2 program is simple, because it just re-
quires replacing the digital signature functions
with the smart card functions. Our implemen-
tation employs the 1,024-bit RSA-SHA1 sig-
nature/verification algorithm supported by the
smart card. We utilize setkey 19) program as an
IPsec policy management program to add, up-
date, dump, or flush the SAD and the SPD en-
tries in the Linux kernel. Our implementation
extends the functions of the setkey program to
load the IP security policy from the smart card.
This process is only executed during the Linux
box start-up. We employ the PCSC-Lite li-
brary 21) to utilize the smart card reader on the
PC platform.

8. Performance Measurement

In this section, we show the results of the
performance measurement of the authentica-
tion middleware system shown in Section 7.3.
We prepared two Linux boxes with a config-
ured smart card and deployed the middleware.
Table 7 shows the hardware specification of
the Linux boxes. Table 8 shows the respec-
tive processing times of the basic smart card
functions used by the modified IKEv1 program.
First, loading the device’s X.509 PKC from the
smart card corresponds to loading the device’s
PKC from the smart card by the connecting
device in Fig. 6. Next, creating a signature for
the payload in phase 1 of the IKE in the smart
card corresponds to generating the digital sig-
nature by the device’s private key in Fig. 6. In
the measurement, we employ a 1024-bit RSA-
SHA1 signature algorithm. Table 9 shows a
comparison between the proposed system and
the conventional system in total time of mutual
device authentication. This result expresses the
total processing time to establish a connection
in phase 1 of the IKE while using the main

Table 7 Hardware specification of the Linux boxes.

CPU Pentium M Processor 1.6GHz
RAM 512MB
Network 100Base-TX

Table 8 Processing time of the basic smart card
functions.

time [sec]
Load the device’s X.509 PKC 8.477
(942 byte) from the smart card
Create signature for IKE phase 1 5.977
payload in the smart card

Table 9 Comparison of the processing time of IKE
phase 1 exchange.

time [sec]
Conventional IKEv1 program 0.673
Proposed IKEv1 program 12.132

mode with signature authentication as shown in
Fig. 12. The total processing time to establish
the connection during phase 1 of the proposed
IKEv1 program is 12.132 sec. The processing
time includes the creation of a signature (SIG I,
SIG R in Fig. 12) on the smart card (5.977 sec)
twice for a mutual authentication. Our imple-
mentation supports the caching mechanism for
the device’s X.509 PKC (CERT I, CERT R in
Fig. 12) at the IKE program initiation. There-
fore, the result of the proposed IKEv1 program
does not include the loading time of the device’s
PKC.

9. Discussion

We discuss three points: how to speed up the
performance of the prototype implementation;
the analysis and improvements on this study;
and some PKI operational issues.

9.1 Performance Improvement
The current implementation of the proposed

middleware is not fast (12.132 sec), because
most smart cards have only a slow processor
and a small memory to allow for secure tamper-
resistant characteristics. Especially, the cre-
ation of a signature usually takes a long time.
To improve the performance of the current im-
plementation, we propose that the life time of
the IKE-SA (i.e., the life time of the phase 1)
extend as long as possible for periods not in-
secure, for example, about three days or one
week. Our framework modifies only the authen-
tication function in the phase 1 of the IKE ne-
gotiation; the subsequent phase 2 of the IKE is
not modified and is fast enough. The authenti-



Vol. 49 No. 2 Design and Implementation of an Inter-Device Authentication Framework 819

cation process of the IKE is only needed for an
initial contact between the two devices. More-
over, typical appliances on a home network such
as a TV and a PVR keep the same network
topology for a long time. Therefore, extending
the life time of the IKE-SA will help our imple-
mentation speed up the normal communication
in each of the devices. This solution will pro-
vide enough security and performance for prac-
tical use. Furthermore, the processing speed
of the smart card hardware may improve in the
near future, and thus the processing time of our
newly developed software will also decrease.

9.2 Analysis and Improvements
In many conventional authentication sys-

tems, the relationship between the device’s
identity and the owner’s identity is not con-
sidered. Some authentication mechanisms de-
scribed in Section 2 guarantee only the sin-
gle ownership of a device. Our contribution in
this paper is that our proposed framework can
distinguish clearly between the device’s iden-
tity and its ownership information by using the
PKI technology. In our proposal, the ownership
information (AC) is strongly associated with
device’s identity (PKC) based on PKI crypto-
graphic techniques using trusted authorities of
each certificate and their authorized digital sig-
natures. Therefore, the authentication and au-
thorization processes can be achieved efficiently.
Thus, we have proposed a framework that en-
ables the verification of the ownerships of a de-
vice. We have shown a prototype implemen-
tation for an inter-device authentication mid-
dleware system using devices’ identities. We
have also described an access control framework
based on the ownership information related to
the device.

In this paper, we employ a smart card to
achieve original device security functions based
on the PKI technology. To employ the PKI
technology, our proposal is somewhat complex,
so we have developed some configuration tools
to reduce the user’s burden in managing the
smart card. An owner has to be able to oper-
ate the technology in spite of the complexity in
the PKI. Further improvements are needed to
enhance both the ease-of-use and the security.

From the perspective of the practical oper-
ation, the current initialization tool poses the
problem that it requires substantial manual in-
puts from the manufacturer. We hope to ad-
dress this issue in future work with a view to
integrating automated registration procedures

Fig. 16 Multiple owner’s AA.

for high-volume manufacturing. In addition,
the current personalization tool can execute on
a local machine only. To make our proposal
more convenient, we also have to consider sup-
porting a remote update mechanism for a de-
vice’s ACL on a smart card. In future work, we
will develop the remote update mechanism on
our personalization tool.

9.3 PKI Operational Issues
Having proposed a PKI-based inter-device

authentication framework, we will have to solve
certain PKI operational issues like the following
in our future work.
Multiple Manufacturer’s CA Our proposal
guarantees the device’s production-level iden-
tity by using a PKC that is issued by the manu-
facturer’s CA. If multiple manufacturers deploy
our framework, then we must consider either of
the following solutions: (1) Each manufacturer
has a common root CA. The device stores the
root CA’s PKC in the smart card. (2) Each
device stores all compatible CA’s PKCs in the
smart card. Solution (1) would require neu-
tral organizations to guarantee the reliability
of each manufacturer’s CA. These are oper-
ational issues. For example, VeriSign already
provides a device certificate service that sup-
ports a mechanism such as a chain of trust man-
agement 22). We also have to consider an effi-
cient mechanism (1) to update an expired PKC
via a network without the physical smart card’s
recovery, and (2) to check the revocation status
of the PKC, i.e., a mechanism like the CRL
(Certificate Revocation List).
Multiple Owner’s AA Our proposal guar-
antees the device’s owner-level attributes (own-
ership information) by using the AC issued by
the device owner’s AA. If one owner’s device
tries to connect to another owner’s device, then,
without exchanging the AA’s PKC, the device
can not verify the second owner’s AC and its
attributes. If an owner brought the device to
a different unknown domain of AA, this would
cause a problem. Figure 16 shows this prob-



820 IPSJ Journal Feb. 2008

lem. Possible solutions could be: (1) Each
owner who will connect to another owner’s de-
vices has a root AA’s PKC shared with friends,
colleagues or members in another domain. (2)
Each owner who will connect to another owner’s
devices stores all compatible AA’s PKCs in the
smart card. These are also operational issues,
which we will consider in future work.

10. Conclusion

In this paper, we have analyzed the exist-
ing device authentication mechanisms. A sin-
gle device has its device identity and is nor-
mally bound to a single owners’ identity or to
multiple owners’ identities. We have therefore
emphasized the importance of a distinguishing
and binding mechanism between a device and
its ownership information to realize practical
inter-device authentication and authorization.
In conventional systems, it is not possible to
handle a device’s identity and its ownership in-
formation separately, especially with multiple
ownerships.

In this paper, we have shown an authentica-
tion and authorization framework for an inter-
device communication which supports distin-
guishing between, and binding, a device’s iden-
tity and its ownership information. Our pro-
posal provides a production-level device’s iden-
tity authentication using the PKC, and an ac-
cess control mechanism based on the owner-
ship information using the AC. The owner-
ship information (AC) is strongly associated
with device identity (PKC). This mechanism
is based on PKI cryptographic techniques us-
ing trusted authorities of each certificate and
their authorized digital signatures. Thus, the
proposed framework enables the secure verifica-
tion of the relationship between the ownership
information and the device’s identity. To real-
ize our proposal, for the prototype implementa-
tion we have developed a novel smart card soft-
ware to store securely highly confidential data
such as a device’s private key, and to execute a
digital signature function and other functions.
This paper has also presented the authentica-
tion middleware system using the proven IKEv1
protocol together with the proposed smart card.
The configuration tools’ purpose is to reduce
the user’s PKI operation.

In future work, we will apply our framework,
especially the authorization mechanism in the
proposal, to real home appliances. We also have
to consider operational issues such as an expi-

ration period for each PKC and AC, a cross-
domain authentication and authorization, and
a certificate revocation mechanism for our pro-
posal. This is the first step towards the uti-
lization of our framework. It is a fundamental
mechanism for inter-device authentication and
authorization which will contribute to the de-
velopment of secure Internet-ready home appli-
ances and their middleware systems.

Acknowledgments This work is partially
supported by Exploratory Software Project,
IPA, Japan.

References

1) Ellison, C.: UPnP Security Ceremonies Design
Document For UPnP Device Architecture 1.0
(2003).

2) ECHONET Consortium: The ECHONET
Specification, Version 3.2.1 (2005).

3) Bluetooth SIG: Specification of the Bluetooth
System Version 2.0 + EDR (2004).

4) RSA Laboratories: PKCS11 Cryptographic
Token Interface Standard, Version 2.20 (2004).

5) Sun Microsystems: Java Card 2.1.1 Specifica-
tions (2000).

6) Trusted Computing Group: Trusted Platform
Modules Strengthen User and Platform Au-
thenticity (2005).

7) Mayrhofer, R.: Towards an Open Source
Toolkit for Ubiquitous Device Authentication,
Proc. PerSec 2007: 4th IEEE International
Workshop on Pervasive Computing and Com-
munication Security (2007).

8) V. Nguyen, K.: Simplifying Peer-to-Peer
Device Authentication Using Identity-Based
Cryptography, ICNS ’06: Proc. International
Conference on Networking and Services, IEEE
Computer Society, p.43 (2006).

9) Fuji Xerox: Introduction on PKI Technology
and Device Certificate, Fuji Xerox Technical
Report, No.15 (2005).

10) Nicholson, A.J., Corner, M.D. and Noble,
B.D.: Mobile Device Security Using Transient
Authentication, IEEE Trans. Mobile Comput-
ing, Vol.5, No.11, pp.1489–1502 (2006).

11) Housley, R., Polk, W., Ford, W. and Solo, D.:
Internet X.509 Public Key Infrastructure Cer-
tificate and Certificate Revocation List (CRL)
Profile, RFC3280 (2002).

12) ITU-T Recommendation X.509 (1997E): In-
formation Technology — Open Systems In-
terconnection. The Directory: Authentication
Framework (1997).

13) Farrell, S. and Housley, R.: An Internet At-
tribute Certificate Profile for Authorization,
RFC3281 (2002).



Vol. 49 No. 2 Design and Implementation of an Inter-Device Authentication Framework 821

14) International Organization for Standardiza-
tion: ISO/IEC 7816-4 Identification cards —
Integrated circuit cards — Part 4: Organiza-
tion, security and commands for interchange
(2005).

15) Harkins, D. and Carrel, D.: The Internet Key
Exchange (IKE), RFC2409 (1998).

16) Kent, S. and Seo, K.: Security Architecture
for the Internet Protocol, RFC4301 (2005).

17) McDonald, D., Metz, C. and Phan, B.:
PF KEY Key Management API, Version 2,
RFC2367 (1998).

18) Kanda, M., Miyazawa, K. and Esaki, H.:
USAGI IPv6 IPsec Development for Linux,
Proc. 2004 Symposium on Applications and
the Internet-Workshops (SAINT 2004 Work-
shops), IEEE Computer Society, p.159 (2004).

19) IPsec-Tools:
http://ipsec-tools.sourceforge.net/

20) C. Kaufman, Ed.: Internet Key Exchange
(IKEv2) Protocol, RFC4306 (2005).

21) PCSC-Lite: http://pcsclite.alioth.debian.org/
22) VeriSign Device Certificate Service:

http://www.verisign.com/products-services/
security-services/pki/device-certificate-service/
index.html

(Received May 18, 2007)
(Accepted November 6, 2007)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.4, pp.114–127.)

Manabu Hirano was born
in Hokkaido, Japan. He re-
ceived the M.E. degree in com-
puter science from Nara Insti-
tute of Science and Technology
(NAIST) in 2002. He worked
for TOSHIBA Corporation since

2002 and worked on a mobile Internet-related
business venture. Since 2004 he has worked for
Toyota National College of Technology as a re-
search associate. He is also now a Ph.D. can-
didate in NAIST. He also worked on the IPA’s
Exploratory Software Project in 2005 and 2007.
His research interests include all aspects of ID
management and its real-world applications.

Takeshi Okuda received the
M.E. degree in information sci-
ence from Osaka University in
1998. He is currently an as-
sistant professor in the Gradu-
ate School of Information Sci-
ence, Nara Institute of Science

and Technology, Japan. His research interests
include network security, mobile agent technol-
ogy and multimedia application. He is a mem-
ber of the IEEE.

Suguru Yamaguchi received
the M.E. and D.E. degrees in
computer science from Osaka
University, Japan, in 1988 and
1991, respectively. From 1990
to 1992, he was an Assistant
Professor in Education Center

for Information Processing, Osaka University.
From 1992 to 1993, he was with Information
Technology Center, Nara Institute of Science
and Technology (NAIST), Japan, as an As-
sociate Professor. Since 1993, he has been
with Graduate School of Information Science,
NAIST, where he is now a Professor. Since
April 2004, he has been an Advisor on Informa-
tion Security, at Cabinet Secretariat, Govern-
ment of Japan. His research interests include
technologies for information sharing, multime-
dia communication over high speed communi-
cation channels, network security and network
management for the Internet.


