IPSJ SIG Technical Report

Vol.2013-ARC-207 No.21
Vol.2013-HPC-142 No.21
2013/12/17

MSD Radix String Sort on GPU:
Longer Keys, Shorter Alphabets
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Abstract: This study proposes a GPU implementation of radix sort, which has so far been most successfully pre-
sented in the Thrust library from Cuda SDK. While Thrust performs sorting starting from least significant digit (LSD)
to benefit from GPU architecture features, it can deal only with fixed-length keys. Our solution features MSD radix
sort or bucket sort which allows for variable length keys, but is recursive and therefore difficult to implement on GPU.
However, we achieved comparable performance by performing the sorting in several stages which use different par-
allelization schemes depending on the size and number of buckets. This solution also benefits from shorter alphabets

and would be particularly efficient for, e.g., genomic data.

1. Introduction

Sorting is one of fundamental and most widely studied algo-
rithmic problems in computer science. Sorting routines are used
standalone for storage and manipulation of data and as a basis for
more complex algorithms in various areas from graph and spatial
data processing to molecular biology.

With data becoming Big Data, efficiency of sorting algorithms
becomes of increasing importance. There are two ways to im-
prove it: optimization of the algorithms themselves and their
adaptation to massively parallel hybrid architectures. An effi-
cient algorithm should combine workload balancing, economic
data transfers and overall computation model that is adequate to
strength and limitations of underlying hardware platform.

In this paper we address the issue of efficient sorting of strings
on GPU which has not received as much attention as sorting of
numeric data.

1.1 Approaches to sorting

The classical comparison-based sorting algorithms such as
merge-[8] or quick-sort[12] have asymptotic complexity estima-
tion as as Nlog N. However this allows us to estimate only the
amount of comparison operations needed to complete the sort
and not the actual performance time. So, for these sorts exe-
cution time depends on the cost of comparison operation, and
that depends on the actual data. For example, lexicographic sort-
ing of strings requires comparison of many symbols, and that
makes the complexity of the sorting dependent on what is called

n

the longest common prefix (LCP) = ﬁ S(LCP(S;, S i+1)) where
i=0

LCP(S;,S+1) is the number of symbols two adjacent strings in
have in common.
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Therefore for sorting of strings it is preferable to use an al-
gorithm that does not depend on comparison, such as one of
distribution-based sorts. These algorithms are less generic, but
can deliver faster performance for certain data types, up to linear
performance in the ideal case. In this paper we focus on radix
sort which is a well-known example of this class of algorithms.

Radix sort comes in two flavors: sort that starts from the most
significant digit (MSD radix sort) or from the least significant
digit (LSD radix sort). The term digit” is used because radix sort
is generally applied to integers; it actually refers to any amount
of bits in the binary representation of the number. However, since
this paper describes application of radix sort to strings, we shall
hereafter use the term ”symbol” rather than “digit”.

LSD radix sort is perhaps the most commonly used one; it per-
forms well on short-length keys such as integer numbers. The
most efficient implementation of this algorithm is now part of
CUDA SDK][15]. However, LSD sort is bound to short keys of
fixed length, which does not cover many types of data.

The reason why LSD radix sort is bound to short keys is that
it starts from the rightmost symbol and proceeds to the previous
one while maintaining stability of the sort, and then the algorithm
is repeated until the first symbol is reached. On relatively long
keys this approach would not be efficient because comparing the
first several symbols should be enough to determine the order of
strings. Moreover, with a long key the number of iterations goes
up, and the performance decreases accordingly.

MSD radix sort does not have this problem in that it starts from
the leftmost symbol and then moves up to the next symbol only
for the strings the order of which is not yet determined. It can
be viewed as bucket sort because this process basically consists
of recursive distribution of strings into buckets: at first all strings
are placed into different buckets depending on their first symbol,
and then the strings inside each bucket are partitioned again by
the next symbol. This process is fairly intuitive, but its recursive
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nature makes it challenging to implement on GPU.

1.2 Related work

Sorting algorithms have been studied extensively, and there
have also been numerous attempts to develop parallel approaches
to sorting. Comparison-based sorts are the most commonly used
and applicable to various kinds of data. The most efficient
algorithms are based on divide-and-conquer approach and are
tricky to parallelize efficiently. We now have parallel versions
of quick sort [17] and merge sort[1], [7] , among others. There is
also bitonic mergesort sort [2] which was developed to be more
paralellization-friendly.

The efficiency of certain algorithms and their implementa-
tion is also relative to the type of data being sorted and un-
derlying hardware architecture. Most of these sorting algo-
rithms are memory-bound, and, for distributed memory systems,
communication-bound.

SIMD architectures are putting even more limitations on what
can be implemented but, like the recently popular GPUs, pro-
vide totally different performance tradeoffs. Distribution sorts
which are inherently efficient for certain type of data have been
especially successfully implemented on GPU. Radix sort which
utilizes thread parallelizm and hight memory throughput was re-
ported to be highly efficient on GPU [18]. They have also pre-
sented a quicksort implementation for GPU with inferior perfor-
mance. To the best of our knowledge, the the most efficient GPUu
radix sort is currently the one from Thrust library presented by
Merril and Grimshaw [15].

Comparison-based sorts were also implemented on GPU. Pur-
cell et al. [16] presented bitonic merge sort on GPUs based on
the work by Kapasi et al. [13]. Gref} et al. [11] used the sorting
technique presented in the Bilardi et al. paper [5] to implement
GPU adaptive bitonic sort. Another GPU sort based on bitonic
was implemented by Govindaraju et al. [10]. Later they pre-
sented a hybrid CPU and GPU solution using bitonic-radix sort
in Tera-Sort challange[9]. An approach that combines several
algorithms was presented by Sintorn et al. [19]; their solution
splits the data with a bucket sort and then uses merge sort on the
resulting blocks. Finally, there were more successful attempts to
implement quick sort on GPU [6]. There are ongoing efforts to
optimize comparison-based algorithms for new architectures, i.e.
by using vector instructions of modern processors [20] However,
all the above-mentioned radix sorts perform better on numerical
data, since they are LSD radix sorts and can not work with long
keys.

None of comparison-based sorts are efficient for string data.
The one algorithm that is known for high performance on strings
is MSD radix sort [14]. There is also 3-way radix quicksort pre-
sented by Bentley and Sedgewick [3], [4], which is even more ef-
ficient due to more optimal use of caching. However, at present,
to the best of our knowledge, there are no parallel implementa-
tions of radix sort that could handle long string keys. This pa-
per addresses this gap. Our solution is based on MSD radix sort
which is less complex and more GPU-friendly, and equally effi-
cient on the initial stages of the algorithm (while the bucket are
relatively big). On the later stages, as buckets get smaller, we are
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switching to the 3-way radix quicksort.

This paper proceeds as follows. Section 2 describes our ap-
proach to parallelization of MSD radix sort. Section 3 presents
performance analyses for different architectures. Section 4 dis-
cusses the results and outlines directions for future work.

2. Parallelizing MSD Radix Sort

The naive approach to parallelization of a recursive algorithm
would be to use task parallelism for every recursion branch. Thus
we will be doubling the number of parallel threads on every level
of recursion, but in the beginning the number of threads is low,
which significantly limits the performance of the algorithm. First
of all, the amount of workload is the biggest for the initial it-
erations. Secondly, this approach is even less efficient for GPU
than the the classical multi-core architecture, since one thread on
a GPU is relatively slower and high performance is achieved only
when we have thousands of threads running concurrently.

Another approach would be to parallelize every iteration of the
algorithm. To build each bucket we are basically counting sym-
bols and then filling array of pointers according to the counters.
Counting can be efliciently parallelized in data-parallel fashion
when the workload is split between parallel threads processing
their parts independently. The next step is reduction of results.

The problem with this approach is that it performs well in the
beginning of the recursive execution when the buckets are rela-
tively big, but as they get smaller the parallel execution with small
amounts of data becomes a waste of resources. However, by this
time we already have enough buckets to make use of the model in
which one thread or a small group of threads are processing one
bucket.

Combining the two approaches would allow us to keep the
GPU busy the entire time of execution. We suggest starting with
partitioning strings into buckets and then, when buckets are small
enough, continuing to process each bucket independently in par-
allel. And on the third stage of sorting we have only small un-
sorted buckets at different data points which could be more effi-
ciently dealt with on CPU rather than on GPU.

The following section describes an actual implementation of
this approach on GPU and discusses different aspects our model
that also influence performance, such as data transmission costs,
workload balance, and divergent branching in sorting code.

3. Implementation

We chose GPU because of its unprecedented performance
achieved through high parallelism, which is why it is widely
used in world top supercomputers. Our solution is implemented
in CUDA, NVIDIA’s programming platform for general-purpose
computing on GPUs which is the current industry standard. Fig-
ure 1 shows the outlined of the algorithm.

S is the array of strings and S[i][;] denotes j,, symbol of i-
th string and S,,, is auxiliary array. Though we use double-
buffering technique, S and S,,, are storing only pointers to
strings, so the increase in memory consumption is not significant.
C is the array of counters for each letter of the alphabet and O
is the array of pointers to the beginning of each bucket. N is the
number of strings being sorted and o is alphabet size. d denotes
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procedure SORT(S,[,r,d)

for i € (0..N) do > counting
CIS[id] « CISEIld] +1

end for

for i € (0..0) do > offsets
Ofi] « 5" Cli)

end for

for i € (0..N) do > moving
Sauz[O[S[][d]]] = S[i)
O[S[4][d]] + O[S[i][d]] + 1

end forS = Sy

for i € (0..0) do > recursion

Sort(S,0[o] — Clo],O[o],d + 1)
end for
end procedure

Fig. 1: Sort Algorithm

sorting depth, i.e. the position of symbol we use for partitioning
strings into buckets.

The execution model on GPU is very different from that of tra-
ditional multi-core systems. While GPUs provide a much higher
level of parallelism (new cards boast as many as 512 SM cores
per die), programs are executed in the so-called Single Instruc-
tion Multiple Threads (SIMT) paradigm. This means that threads
on the same multiprocessor are performing the same instructions
at the same time, and this does not allow us to run independent
tasks on different cores (although it is possible to launch several
parallel kernels (part of a program running on GPU) at the same
time).

Recursive algorithms are challenging to implement on GPUs
because, as of now, only the newest Kepler architecture currently
support recursion, and that support is rather limited. Recursive
launch of kernels is used to bring control of their execution en-
tirely to GPU, but it is not meant to be used in highly recursive
algorithms. Another hardware characteristic to be considered is
that programs on GPU can address only on-board GPU memory
which has relatively high bandwidth, but the data has to be trans-
ferred from host memory and back, which is relatively slow.

As described in Section 2, our algorithm is executed in three
stages:

(1) processing the first (biggest) buckets in thread-parallel fash-
ion; (2) processing the resulting (smaller) buckets in combination
of thread-parallel and task-parallel paradigms; (3) sorting the re-
maining small buckets with CPU threads.

To implement the first the stage of the algorithm we made
heavy use of atomic operations which allowed us to avoid reduc-
tion and to thus decrease memory usage (which would be signifi-
cant with many counters per thread). This approach does not slow
down our performance due to highly efficient implementation of
atomic operations in the newest GPU architectures.

Another resource that we could use to increase the efficiency
of radix sort is sorting groups of symbols instead of one symbol
at a time. With the use of atomic operations, the amount of sym-
bols that could be processed simultaneously is only limited by
the available memory and the length of the alphabet. Generally
speaking, the amount of buckets in radix sort with N symbols in
the alphabet is equal to: S™ where S is the alphabet size and M
is the length of the group. Assuming that we use 64-bit integers
as counters it is easy to estimate how much memory the program
will require for storing buckets: 8 * S™ bytes.

It is obvious that shorter alphabets with the same amount of
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memory will allow for processing of more symbols per iteration.
A good example of an area that uses such data is genomics, where
the alphabet consists of four nucleotides coded A, C, G, and T
(some databases also use N for inconclusive read results). In such
a case sorting six symbols at a time would require only 4% 8
bytes which would take up only 15 Kb, which is insignificant
compared to the gigabyte-sized strings to be sorted. Moreover,
this amount of buckets is already sufficient to start the parallel
sorting by buckets on the next stage.

The second stage of the algorithm repeats the same logic, but
with smaller groups of threads independently processing differ-
ent buckets. This is more efficient, since the buckets get smaller
at this stage. On the other hand, since the groups of threads now
have their own counters this limits the amount of groups that can
be executed in parallel. We balance these parameters to keep GPU
cores saturated.

At the point when the distribution of buckets exhibits high
workload balance which we cannot cope with on GPU, and the
sort is continued on CPU. There we can use 3-way radix quick-
sort which is a more advanced version of the same algorithm that
cannot be performed on GPU due to architecture limitations.

4. Performance Analysis and Optimization

We used the following hardware configuration for performance
benchmarks.

e Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz, 6 cores with

hyper-threading

e OS: Scientific Linux release 6.1 (Carbon)

e Memory: 126 Gb

o GPU: Tesla K20c

e GPU compute capability: 3.5

e GPU memory: 4.6 GB

First of all we evaluated overall performance of the implemen-
tation in terms of sorting throughput. Figure 2 shows sorting
throughput on different number of keys for small and for big al-
phabets. We a observed that on longer alphabets it takes some
time to saturate the performance. The reason is that counters for
all possible combinations of symbols of a given length are allo-
cated even if not all of them are used and this time is constant for
any workload size.

Figure 4 shows exact time spent in each phase of the algorithm.
“copy” if moving string from host to device, “count” is counting
the number of occurrences for each prefix, offsets” is prefix sum
of the counters and “move _keys” denotes scanning strings for sec-
ond time and placing corresponding pointers according to offsets.

Though the focus of this work was the GPU implementation of
MSD radix sort algorithms we tried to run the same algorithm on
traditional CPU. We tried to keep the code as similar as possible,
but as CPU architecture does not provide equivalently efficient
atomic operations as GPU we had to perform additional step for
reduction. Figure also 2 shows performance of sorting from stan-
dard C library, performance of sequential version of 3-way radix
quick sort on CPU and multi-core version of MSD radix quick-
sort. For CPU implementation we also measured time spent for
different phases and how it changes with the when increase of the
number of threads. Figure 6 shows this dynamics.
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Fig. 3: Correlation of performance and key length

For the GPU implementation analysis of hardware counters
done with Compute Visual profiler shows that sort kernel is mem-
ory bound and uses only few percent of available memory bus
bandwidth. Organizing memory access patterns in a way that
writes and loads are or at least localized is a one of the fun-
damental optimizations for CUDA kernels. In our algorithms
though, we examining i;, symbol of every variable-length string
and strings are occupying continuous span in global memory. It is
very difficult to organize efficient memory access in this context.
Few things we can to do are two disable L2 cache with compiler
options and prioritize L1 cache size over available shared mem-
ory with CUDA API call. Then instead of loading consequent
symbols one by one for reading the prefix of the string we do one
32 bytes memory load into local buffer and then iterate over its.
This gave us 15-20 performance improvement.

If we continue recursive sorting past the level when buckets
are getting small enough - high branch divergence starts causing
performance degradation. We found that optimal cut off level is
about 6-8 symbols for small alphabets (like 4 symbols of genomic
data) and 3-5 symbols for longer alphabets.

But the definite bottleneck is moving data to and from the de-
vice -it takes considerable share of time and it grows proportion-
ally to the length of the key. Figure 3 shows maximal perfor-
mance we can get depending on the size of the key. Top green
shows maximal troughput if we only have to copy data to GPU.
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Line labeled copy_kernel accounts for moving sorted pointers
back and also one kernel launch. Kernel launch overhead is about
20 microseconds even if it does not perform any work and we
obviously need to launch at least one kernel. So this is the best
possible performance for such an implementation.

CPU implementation, on the other hand has fixed performance
irrelevant to the length of the keys - only to the overall number
and statistical properties like the size of the alphabet.

To overcome this impediment we used the following technique.



IPSJ SIG Technical Report

0.45 - -
I redistribute
0.40| gl copy
035 H count
] I offsets
c
¢ 0.30(HEE move_keys
8 =3 move_results
go.zs 3 cpu_sort
s
e 0.20
2
5
2015
Q
X
Wo.10
0.05

0'08.5 2.5 . 6.5 8.5 10.5 125 145 16.5 18.5
Keys, (milloins)

Fig. 7: Execution time distribution for second implementation

We chopped of first symbols of every string and repartitioned
them into new memory block along with the pointers to origi-
nal location. Then we transferred only this part to GPU and per-
formed MSD radix sort there. Though the keys are seemingly
fixed-length now, at leas for the GPU part - we can not use LSD
radix sort, as its every iteration is oblivious of previous iterations
and those information about partitioning is not preserved. After
N iterations of MSD radix sort on the other hand we have strings
sorted by N first symbols and also start and end position of every
bucket as a by-product of an algorithm.

This re-partitioning of string of course is bringing additional
overhead, but it is justified by overall performance improve-
ment except for extremely short keys. We also parallelized re-
partitioning process on CPU using OpenMP, although this pro-
cess is memory-bound and does not scale much. New distribution
of execution time is shown on Figure 7.

5. Conclusion

We have presented a hybrid MSD radix sort algorithm for GPU
and showed that GPUs can cope with the problem of sorting string
data. While MSD Radix Sort is less efficient for short/fixed sizes
keys, it is suitable for variable-size and long keys. Our solution
achieved 60 million strings per second sorting throughput. It is
twice as fast as the same algorithm run on 12-core CPU and 20
times faster than string sorting done with standard sorting routine.

We shows that the same parallelization technique is applica-
ble to traditional multicore processors too and yields high sorting
throughput. It seem interesting to try the same approach on Intel
MIC systems, this possibility will be investigated in future work.
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