
IPSJ SIG Technical Report

Environment Matters: How Competition for I/O among
Applications Degrades their Performance
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Abstract: In modern supercomputer architectures, thousands of compute nodes can share a dedicated file I/O server.
Recent research has shown I/O can become the performance bottleneck due to large number of simultaneous I/O
accesses, in particular, file writes. While methods to tackle I/O performance issues for parallel applications have
been extensively studied, not much is known about how co-located I/O-intensive applications interfere each other’s
performance. In this study, we present a novel approach that uses a lightweight profiling tool to capture concurrent
applications’ competing behaviors. By comparing all application I/O performance profiles during their overlapped
runtime, we are able to figure out the underlying reason to unbalanced write throughput when applications of different
sizes run side by side, which is then proved to be useful in building performance models in a concurrent execution
environment.

1. Introduction
The steep ratio between computing capability and storage

bandwidth in modern HPC clusters has caused a great challenge
of achieving satisfactory I/O performance to computational sci-
ence application designers, and this trend has been ever becoming
more severe due to storage resource sharing by rapid-increasing
number of nodes. In response to such challenges, extensive re-
search has been made in characterizing and improving overall I/O
performance of parallel programs [1][2][3][4]. Despite the suc-
cessfulness of these studies, they implicitly ignore possible exter-
nal interferences occured within the same execution environment,
although in fact it is very common to have several parallel ap-
plications co-located in modern supercomputers and sharing the
same file server. In this setting, when two or more applications
generate intensive file read/write traffic simultaneously, they are
competing for the limited I/O bandwidth. Recent research [5][6]
has shown that competition of two concurrent parallel applica-
tions can almost halve the I/O performance in contrast to a stan-
dalone execution, indicating the severity of application interfer-
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ence in file accesses.
Existing tools for analyzing I/O performance either adopt a

tracing approach, or the profiling approach [1]. While the for-
mer allows for a thorough characterization, it usually hinders an
application by introducing perceptible overhead particularly at
extreme scale. On the contrary, the latter approach is able to
capture application performance more silently in that it gener-
ates less data at runtime, while at the same time turns the pos-
sibility of fine-grained analysis aside. In our previous research
[5], we leveraged the advantages from both approaches and de-
veloped a profiling tool called Light Weight Monitoring Module
(LWM2). With a mean overhead of less than 1%, LWM2 logs
predefined performance counters for each globally synchronized
4-second intervals, thus making reconciling time slice profiles
among concurrent-executing applications possible.

This study was done in a small-sized 18-node cluster with an
NFS server acting the I/O node, simulating a popular configura-
tion in industry and numerous research labs. The experiments
are now planned at world leading scale supercomputing facilities
like TSUBAME 2.5 utilizing advanced parallel file server such as
Lustre FS. As for the application, Intel MPI Benchmark for IO
(IMB-IO) [7] is chosen due to its transparent behavior.

We execute a dual of applications with the same I/O write vol-
ume yet possibly different number of processes concurrently. Our
result shows running two IMB-IO at the same time can degrade
write throughput up to 65%. When two unequal-sized applica-
tions are executed side by side, we identified significant imbal-
ance in both runtime and write throughput. Further analysis tar-
geting I/O performance counters during the overlapped execution
time indicates the root cause to be a uniform distribution of I/O
network bandwidth among all processes. Based on the observa-
tions, we present a formula relating standalone runtime to con-
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current runtime considering the number of application processes.
The paper is organized as follows: in the next section we

describe our experiment set-up in more details. In Section 3,
we reproduce the result of downgraded application performance
in concurrent executions. Performance evaluations of two co-
located I/O intensive applications are summarized in Section 4
with an attempt to concurrent runtime modelling, which is then
followed by a review of related research. In Section 6, we draw
the conclusions and make a few points on possible future direc-
tions.

2. Experiment Set-up
2.1 Platform

All experiments were conducted on a small-scale cluster, rac-
coon, in Tokyo Institute of Technology. The computing fa-
cility has 18 compute nodes, each equipped with one Intel(R)
Core(TM) i7-3930K 3.20GHz processor having 6 physical cores
capable of running 12 hardware threads in HyperThreading
mode, and with 16GiB DDR3 memory. The compute nodes are
connected by a combination of DDR/FDR Infiniband in a flat tree
topology. As for the choice of operating systems and MPI imple-
mentations, Scientific Linux 6.1 and OpenMPI 1.6.3 are used.
During the experiment time, the whole system was dedicated for
this study, thus reducing possible interferences from other user or
system activities.

The working directory of all compute nodes is located on a
separate NFS server connected by Gigabit Ethernet, indicating a
theoretical peak bandwidth around 120MiB/s. The NFS server
employs a RAID 6 hard disk storage capable of 8-way striping.
A simple experiment with the dd command yields an empirical
peak local file-write performance around 1GiB/s. In order to sep-
arate possible influences from the RAID storage, all experiments
are repeated on a tmpfs format ram disk forked on the NFS server.
The ram disk provides 1.5GiB/s write bandwidth. In the follow-
ings, all the experiments mentioned assume hard disk as the write
target, unless otherwise stated.

2.2 Profiling tool
The Light-Weight Monitoring Module (LWM2) [5] is a pro-

filing tool developed at German Research School for Simulation
Sciences. It uses a combination of application sampling and di-
rect instrumentation through interposition wrappers for profiling,
leading to low overhead during measurements. It supports MPI
and CUDA based parallel applications, while multithreading is
handled at the level of POSIX threads, hence covering most of
the OpenMP implementations. MPI I/O and POSIX-I/O are also
captured. Moreover, the user has the option to enable logging
hardware counters via PAPI [8].

Along with creating a complete profile of an application,
LWM2 divides the application execution into fix-sized time-slices
and creates separate profiles for them, as shown in Figure 1. The
time-slice boundaries are aligned with the system clock, result-
ing in synchronized time-slices across applications. This gives
LWM2 the unique ability to allow performance analysis across
applications by comparing the applications’ time-sliced profiles.

In this study, LWM2 is primarily used to collect the number

Fig. 1 The LWM2 profiler is able to log performance counters every 4 sec-
onds for all processes residing on the same cluster.

of bytes written per time slice. When multiple applications are
co-located on the cluster, their interferences in I/O accesses are
therefore reflected to the fluctuations of the throughput, which en-
ables deeper investigation of I/O resource contention behaviors.
Moreover, we found LWM2 helpful in separating the start-up and
ending phases from the whole execution, which have the poten-
tial to take up to several minutes on extreme-scale clusters and in
turn distort the application throughput if its calculation is based
on the total runtime.

2.3 Application
As a starting point of measuring concurrent execution perfor-

mance, IMB-IO, an executable from the Intel MPI Benchmarks
suite release 3.2.4 [7] , is chosen to be our target given its trans-
parent behavior. We fix the file size at 16MiB per application
regardless of the number of processes used. To mitigate run-time
variance, the write operation is repeated 1000 times per run.

The aggregate execution mode, defined by the Intel MPI
Benchmarks as putting assurance of file transfer completion *1

only after all iterations, is chosen in this study. The decision is
made on that most data written by extreme scale application are
not read by the program itself but by post-mortem analysis soft-
ware, and hence file consistency does not need to be frequently
assured [2].

We picked two write benchmarks, P Write Priv and
P Write Indv, with the difference that the former runs in one-file-
per-process mode, and the latter executes in single-shared-file
mode. We limited our study to write operations as they are
proved to be more frequent than reads[9] in computational
science applications.

The one-file-per-process mode (private mode) has its literal
meaning of letting each process operate on its own file. This
approach is straightforward in that little additional process syn-
chronization needs to be managed. However the large amount
of files does not scale well on certain file systems. Moreover, be-
cause the number of files generated highly depends on the number
of processes employed, certain difficulties are introduced to post-
processing. On the other hand, in the single-shared-file mode
(shared mode), all processes manipulate one file with individual
file pointers so that there is no worry about metadata. To ease the

*1 Assurance of file transfer completion is defined as a sequence of
MPI File Synch, MPI Barrier, and MPI File Synch.
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effort of file pointer management, sophisticated parallel I/O APIs
like MPI-IO are developed to provide programmers a high-level
access to the single-shared-file scheme. In the followings, we use
the term parallel file-writing mode to include the two modes.

2.4 Experiment design
We define an experiment to be a choice of one or more ap-

plications with a specific configuration the application(s) has to
execute. A configuration includes the number of processes, the
parallel file-writing mode, the set of compute nodes for each ap-
plication, hard disk or ram disk used for writing data, and other
possible environment variables. Accordingly, a run is an execu-
tion of a selected experiment. To further prevent performance
fluctuations, each experiment is repeated 5 runs. When the exper-
iments are carried out, we explicitly turn off all system services to
the best of our knowledge, and make sure no other user is access-
ing the system at the same time. Furthermore, we replicated all
experiments on a different day to ensure a reproducible result. Fi-
nally, for those very few suspectible runs that seem to be affected
by unknown jitters, we drop an observation if its throughput bias
is higher than 1.5 times of the standard deviation.

We explicitly choose the number of processes an applica-
tion can have to be 1, 12, 36, and 60. In each run, up to
12 processes can reside in one node. To make comparisons,
we first execute the application in standalone mode, meaning
no other application running at the same time on any compute
node. Then we pick a pair of number of processes (p, q) from
{1, 12, 36, 60} × {1, 12, 36, 60} for two concurrent-executing ap-
plications employing p, q processes, respectively, and launch the
dual simultaneously on disjoint compute nodes side by side. This
yields 16 combinations in total. In order to mitigate potential in-
fluences from operating system noises, the combinations are exe-
cuted in a round-robin fashion.

3. I/O Performance Bottleneck
Before digging into the concurrent execution performance, we

first investigate I/O capability by comparing standalone applica-
tion throughput to theoretical peak bandwidth. A scalability test
is performed in contemplation of the role of the number of pro-
cesses in parallel writes. Our observation on two parallel file-
writing modes yields different conclusions.

3.1 Private (One-File-Per-Process Mode) Mode
In the private mode, write throughput is typically very close to

the theoretical bandwidth of the I/O network, Gigabit Ethernet,
which appears to be the I/O performance bottleneck in our hard-
ware configuration. Best cases mostly have a throughput slightly
above 100MiB/s. Moreover, the I/O performance scales well with
the number of processes in that the 12, 36, 60-process experiment
all produce similar throughputs except the 1-process application,
which is around 80MiB/s. Runs with ram disk serving the tar-
get provides 5% slight higher throughput than with hard disk,
confirming that the Gigabit Ethernet is dominating the I/O band-
width. Table 1 summarizes the average write throughput for each
configuration.

Table 1 Write throughput (in MiB/s) of IMB-IO run in standalone in private
mode with different number of processes.

1 proc 12 proc 36 proc 60proc
Hard disk 82.6 95.5 95.0 93.5
Ram disk 93.7 98.0 100.4 103.3

3.2 Shared (Single-Shared-File) Mode
In contrast to the private mode, relatively poor scalability is

observed in shared mode when writes are made to hard disks.
As shown in Table 2, starting at 80MiB/s with one process, the
throughput gradually drops to 55MiB/s with 60 processes. How-
ever, replicating the same experiments on the ram disk produces a
much more stable throughput around 100MiB/s. Contrasting the
two results, it is clear that the hard disk-based RAID 6 storage is
limiting I/O throughput in a way that is invisible from the hard-
ware setting. We presume the reason to be increased randomize
accesses. Although the root cause requires further investigation,
we can at least conclude an NFS plus hard disk-driven RAID stor-
age is not good at handling parallel writes to single shared file at
scale.

Table 2 Write throughput (in MiB/s) of IMB-IO run in standalone in shared
mode with different number of processes.

1 proc 12 proc 36 proc 60proc
Hard disk 83.8 78.5 73.8 55.4
Ram disk 93.7 93.7 93.6 95.1

4. Concurrent Performance Analysis
4.1 Competition of identical applications

Typical concurrent execution computing environments host
tens to hundreds of applications at a time. In order to ease the
challenge in analyzing cross-interference from all applications,
we begin our experiment by running two identical instances of
IMB-IO side by side.

In the example that each application employs 60 processes
writing in private mode, we observed 45% drop in I/O throughput
for both executables compared to their standalone performances,
which in turn causes the two applications to spend 80% extra time
to finish their executions. When we run the same configuration in
the shared mode, degradation in write throughput becomes more
severe such that the value decreases by more than 65%. As a
result, concurrent execution of two IMB-IO takes 2.8× runtime,
which is even more than twice of standalone runs. Figure 2 illus-
trates the example with a line chart.

The experiment is repeated by replacing the number of pro-
cesses to be 1, 12, and 36 instead. The runtime and throughput
values are summarized in Figure 3 and Figure 4 . We observed
analogous results with different application sizes. Moreover, it is
worth mentioning that an application in a concurrent run provides
comparable throughputs to its sibling, i.e. no sign of imbalance
is detected.

Our results confirm the findings in [5][6], with an addition that
the degree of performance drop is also tightly related to the paral-
lel file-writing mode. Specifically, with our file server configura-
tion, I/O performance drops more than 50% in the shared mode,
which makes parallel execution of several applications employing
such writing mode an uneconomic choice.
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Fig. 2 Comparison of write throughput of an 60-process IMB-IO run in standalone against a pair of
concurrent-executing IMB-IOs each employing 60 processes. This diagram shows that in shared-
mode, running two I/O-intensive parallel programs can lead to more than 200% run time dilation.

Fig. 3 Comparison of write throughput and runtime of standalone run
against concurrent run when the private mode is chosen.

Fig. 4 Comparison of write throughput and runtime of standalone run
against concurrent run when the shared mode is chosen.

4.2 Competition of two size-varying applications
In the followings, the size of an application is defined to be

the number of processes used while other factors stay constant.
In section 3, we already showed the number of processes has
only slight impact on write throughput when an application is
run in standalone in private mode. However, this information is
not sufficient to claim the size of application plays no role in I/O
performance when an application is executed in an environment
with other applications’ presence. To simulate such environment
while maintaining in-depth analysis feasible, we intentionally ex-

ecute two size-varying applications simultaneously. Be noted that
the file size is fixed for all applications, meaning a process in a
small application has to write more bytes, and vice versa.

The unequal competitions end up with acknowledging that the
large application is capable of taking higher Eithernet bandwidth,
and hence consumes significantly shorter runtime. We also found
the throughput fluctuates more during the overlapped duration. A
time slice trace of the throughput is visualized in Figure 5 where
the large application is executed in the middle of the small appli-
cation’s total runtime.

Take an example from an experiment where a 12-process appli-
cation runs concurrently with a 60-process application in private
mode, we observed 78.8MiB/s and 50.4MiB/s write throughput,
respectively. We found this trend holds for almost all experiments
only with a few exceptions run in the shared mode, where the
application employing only one process has a high possibility
to produce larger throughput compared to its large-sized neigh-
borhood. Moreover, there is an about 50% possibility to get al-
most equal throughput for two IMB-IOs employing (36, 60) pro-
cessess. Actually, such phenomenon can be explained with our
earlier scalability test in shared mode that larger applications tend
to suffer more from increased randomized accesses.

Although the few abnormal behaviors in shared mode are clar-
ified, it is still difficult to find the mathematical relationship be-
tween application throughput and the number of processes just
by examining the difference in throughput and runtime, even for
the private mode runs. To break the black box of I/O resource
sharing in a concurrent executing environment, we took a closer
look into the number of bytes written per time slice captured by
LWM2. Mapping this data of two applications onto one plane,
we found the small application has its runtime divided into two
phases, namely the overlapped and the standalone phase, with
largely increased bytes written per time slice in the latter one,
which indicates the throughput we get for the small application is
weighted-averaged, therefore showing a need to find out the real
throughput in the overlapped execution period.

With the help of LWM2 , we were able to sum up the bytes writ-
ten of the small application during the large application’s runtime.
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Fig. 5 Write throughput of overlapped execution of one IMB-IO with 12 processes and another one with
60 processes. Note that the performance fluctuates more in the overlapped runtime.

To make such comparison more compact, we further exclude a
few ending time slices of the large application in which at least
one process has finished writing. In a more precise way, we only
calculate the throughput in the active overlapping region, defined
as the longest continuous duration when all processes of the two
applications write more than zero bytes. The recalculation yields
much lower throughput for the small application, as shown in Ta-
ble 3 together with the overall throughput. In the aforementioned
example, we get 83.1MiB/s and 19.0MiB/s for the 60-process and
12-process application, respectively.

Investigating this further, we found that in the private mode,
runs where the number of processes of each application is greater
than or equal to 12 tend to have the ratio of recalculated through-
puts close to the ratio of the number of processes. To explain such
findings, we presume each process is given a fair share of I/O
network bandwidth. However, as for the cases containing a se-
quential executing instance, the one-process application tends to
be able to take the bandwidth that a 12-process application would
get, implying a possibility that the fairness policy is addressed to
compute nodes instead, which requires further investigation.

Table 3 Write throughput (in MiB/s) of selected runs where two IMB-IO
namely (P, Q) executed concurrently with number of processes (p,
q).

Overall Overlap
Mode (p, q) P Q Ratio P Q Ratio

Private

(1, 12) 47.3 51.8 1:1.1 45.0 52.5 1:1.2
(1, 36) 46.8 74.8 1:1.6 23.6 77.0 1:3.3
(1, 60) 46.8 82.0 1:1.8 16.6 87.1 1:5.3
(12, 36) 48.3 69.2 1:1.4 24.7 71.6 1:2.9
(12, 60) 50.4 78.8 1:1.6 19.0 83.1 1:4.4
(36, 60) 51.5 59.9 1:1.5 41.4 64.9 1:1.6

Shared

(1, 12) 49.1 45.1 1:0.9 49.6 43.1 1:0.9
(1, 36) 43.3 51.5 1:1.2 33.8 54.7 1:1.6
(1, 60) 37.9 45.6 1:1.2 25.5 50.6 1:2.0
(12, 36) 38.3 50.8 1:1.3 24.0 54.4 1:2.3
(12, 60) 35.3 47.8 1:1.4 16.1 53.7 1:3.3
(36, 60) 23.9 23.7 1:1.0 24.4 33.3 1:1.4

To further confirm our hypothesis that all active processes em-
ployed by multiprocessing applications are equal in I/O network,
we calculate the average bytes written during the active overlap-
ping region for each process. The result turns out to be a uniform

distribution with very small relative standard deviation, defined as
standard deviation divided by mean, of only 5.8% in private mode
and 20.1% in shared mode. The observation is consistent to [10]
in that the biggest application can monopolize the I/O while for
the rest the I/O resource is allocated proportionally to the number
of processes.

It is worth mentioning that in the shared mode, the through-
put does not correlate so tightly to the number of process as in
the private mode. Relative large standard deviation among bytes
written per process is recognized. Nevertheless, the tendency that
the larger applications relation can take more I/O network band-
width does not change so much.

4.3 Runtime Modeling of Concurrent Application Execu-
tions

In the followings, we demonstrate a case where LWM2 can be
useful in modeling application runtime in an I/O resource-sharing
environment where network between compute and storage nodes
is the major I/O performance bottleneck. We continue the settings
in the last section where we found each process gets a fair share
relative to the peak I/O bandwidth.

Given two possibly different-sized I/O-dominated applications
L and S where each application produces the same amount of I/O
write volume in total, and assume their number of processes to
be npL, npS with npL ≥ npS , standalone runtime to be tst

L , tst
S ,

respectively. If L and S are executed simultaneously with 100%
time overlapping, then the concurrent runtime of L and S, namely
tco
L , tco

S , can be derived by the followings.

tco
L =

total bytes writtenL

bandwidth allocatedL

=
bandwidth × tst

L

bandwidth × npL
npS +npL

= tst
L ×

npL + npS

npL
(1)

tco
S = tco

L +
total bytes writtenS − bytes already writtenS

bandwidth
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= tco
L +

total bytes writtenS −
npS

npL+npS
× bandwidth × tco

L

bandwidth

=
total bytes writtenS

bandwidth
+ tco

S × (1 −
npS

npL + npS
)

= tst
S + tst

L ×
npL + npS

npL
×

npL

npL + npS

= tst
S + tst

L (2)

Conversely, we can also predict the standalone runtime from the
concurrent runtime.

tst
L = tco

L ×
npL

npL + npS
(3)

tst
S = tco

S − tco
L ×

npL

npL + npS
(4)

The model is tested against all runs and proved capable of
making runtime prediction with a relative error (RE), defined as
value predicted−value observed

value observed × 100%, less than 12% in private mode
with the exception of runs comprising of sequential applica-
tion(s). The model exhibits worse predicability to executions in
shared mode due to the additional influences from the hard disk,
despite the bias in certain configurations is still low. We visual-
ize the model’s predicability along with the observed values in
Figure 6 and Figure 7. Overall speaking, it can be referred from
the model that when the bandwidth of I/O interconnect is below
the bandwidth of the storage device itself, the largest application
has a high chance of monopolizing the I/O subsystem and hence
substantially delaying other co-existing small applications.

Fig. 6 Predicted and observed concurrent runtime of a pair of IMB-IO (S,
L) run in private mode employing (npS , npL) processes.

Fig. 7 Predicted and observed concurrent runtime of a pair of IMB-IO (S,
L) run in shared mode employing (npS , npL) processes.

5. Related Work
Skinner et al. [11] attributed parallel program performance jit-

ter to five causes: (1) Resource contention within compute nodes;
(2) MPI synchronization overhead caused by inter-process com-
munication; (3) Kernel process scheduling due to operating sys-
tem activities; (4) Cross-application contention; (5) System ac-
tivity outside the node. In particular, using a statistical approach,
I/O performance variability is proved to be highly correlated with
I/O performance based on the trace of two extreme-scale scien-
tific applications [12]. Furthermore, measurable I/O variability
is classified as internal interference and external interference [6],
which differ in that the former happens within an application and
the latter occurs among applications, which are not restricted to
petascale simulation codes but also include analysis or visualiza-
tion programs.

I/O resource contention can appear in both physical storage and
I/O network. Lofstead et. al. [6] reported halved throughput due
to external interference in an environment that two applications
run concurrently, which we also confirmed in our previous study
[5]. A more detailed observation on Intrepid concluded an appli-
cation’s I/O performance to scale with the the process count [10].
Xie et. al [13] carried out a study about I/O resource competing in
a different way to reveal how burst-size, write-sharing, stripped-
wirte, and the number of storage nodes relate to the I/O band-
width allocated to an application executing in an I/O resource-
sharing environment. In terms of network, evidence shows that
the presence of contention can increase message latencies sig-
nicantly with increasing number of hops messages travel [14].
Lastly, in contrast to all aforementioned studies targeting spcial-
ized parallel I/O storage architectures, some work exist to monitor
and characterize NFS server workloads in the industry [15][16],
although the usage pattern in an enterprise environment differs
from HPC clusters in that enterprise programs are usually not
massively-parallelized and have lower read/write volume.

On the perspective of parallel application I/O charactertiza-
tion and measurement tools, several have been provided by the
HPC community. General-purpose modules include VAMPIR
[17], TAU [18], Scalasca [19], IPM [20], Perfsuite [21]. How-
ever, they mostly lack the ability to generate synchronized time
slice profiles, or introduce too much overhead to the application.
For I/O operations in particular, LANL-Trace [22], IOT [23], and
Darshan [1] exist to help developers tackle I/O performance is-
sues. Among them, Darshan is capable of generating profiles with
negligible overhead, and had been deployed on Intrepid for two
months [24], which produced several important findings about
I/O access characteristics in an HPC setting. However, Darshan
cannot log cross-process correlation and temporal information,
and thus is still not suitable for capturing application I/O interfer-
ences.

6. Conclusions and Future Work
In this study, we presented an approach using the LWM2 pro-

filer to understand competition for I/O among applications. In
our experiment environment where an NFS server connected by
Gigabit Ethernet acts as the storage node, we confirmed an up

c© 2013 Information Processing Society of Japan 6

Vol.2013-ARC-207 No.11
Vol.2013-HPC-142 No.11

2013/12/16



IPSJ SIG Technical Report

to 65% drop in write throughput in a setting that two IMB-IO
instances execute concurrently.

When applications of different sizes are executed at the same
time, we found the I/O bandwidth allocated to an application
is approximately proportional to the number of processes, sug-
gesting the larger the application is, the higher the throughput is.
However, at the same time, we also observed that in shared mode,
such trend can sometimes be reversed because a large number of
processes can hinder write throughput possibly due to increased
random access to hard disks.

Throughout our analysis, we demonstrated LWM2 ’s useful-
ness in recording process time slice profiles. This feature not
only enables investigating process load balance over execution
time, but also makes comparing application performances in their
overlapped runtime possible, which allows for opening the black
box of a typical concurrent execution, resource-sharing comput-
ing environment that the HPC community has not known much
about. At the time of writing this paper, LWM2 is likely the only
tool capable of doing this job with low runtime overhead and little
extra human effort.

To extend our result to more practical applications, we are cur-
rently planning larger experiments on extreme scale clusters such
as TSUBAME 2.5, JUQUEEN, which employ Lustre I/O as their
storage system. I/O benchmarks which simulate real application
behaviors such as IOR, NAS-BTIO will be used in addition to
IMB-IO in order to understand real world application interfer-
ences.
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