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Genes associated with genotype-specific DNA methylation
in squamous cell carcinoma as candidate drug targets

Ryoichi Kinoshita1 Mitsuo Iwadate2,a) Hideaki Umeyama2,b) Y-h. Taguchi1,c)

Abstract:
Background: Aberrant DNA methylation is often associated with cancers. Thus, screening genes with cancer-
associated aberrant DNA methylation is a useful method to identify candidate cancer-causing genes. Aberrant DNA
methylation is also genotype dependent. Thus, the selection of genes with genotype-specific aberrant DNA methy-
lation in cancers is potentially important for tailor-made medicine. The selected genes are important candidate drug
targets.
Results: The recently proposed principal component analysis based selection of genes with aberrant DNA methy-
lation was applied to genotype and DNA methylation patterns in squamous cell carcinoma measured using single
nucleotide polymorphism (SNP) arrays. SNPs that are frequently found in cancers are usually aberrantly methylated,
and the genes that were selected using this method were reported previously to be related to cancers. Thus, genes
with genotype-specific DNA methylation patterns will be good therapeutic candidates. The tertiary structures of the
proteins encoded by the selected genes were successfully inferred using two profile-based protein structure servers,
FAMS and Phyre2. Candidate drugs for three of these proteins, tyrosine kinase receptor (ALK), EGLN3 protein, and
NUAK family SNF1-like kinase 1 (NUAK1), were identified by ChooseLD.
Conclusions: We detected genes with genotype-specific DNA methylation in squamous cell carcinoma that are can-
didate drug targets. Using in silico drug discovery, we successfully identified several candidate drugs for the ALK,
EGLN3 and NUAK1 genes that displayed genotype-specific DNA methylation.

Keywords: genotype, DNA methylation, principal component analysis, protein tertiary structure, cancer, in silico
drug discovery, gene selection

1. Introduction
Promoter methylation is widely recognized as an important

factor that regulates gene expression, especially in cancers[1], [2].
Many genes with tumor-specific methylated promoters have been
identified. For example, the promoters of the PAK3, NISCH,
KIF1A, and OGDHL genes are specifically methylated in sev-
eral cancers, including breast, esophagus, lung, pancreas, colon,
prostate, gastric, cervix, thyroid, kidney, head and neck, ovary,
and bladder cancers [3]. Because genes with methylated promot-
ers are believed to be suppressive, genes with tumor-specific hy-
permethylated promoters were assumed to be tumor suppressors.
Similarly, genes with tumor-specific hypomethylated promoters
were supposed to be oncogenic (i.e., expressed in tumors) and
potential oncogene targets. Identification of promoter methyla-
tion in cancer genes is important in helping to find critical genes
that can cause cancer formation.

Genotype, on the other hand, is another critical factor that can
affect cancer formation [3]. Many genotypes are known to be as-
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sociated with cancers. Currently, there are no established mecha-
nisms that can relate gene mutations to cancer formation. For ex-
ample, a cancer-specific single nucleotide polymorphism (SNP)
is often associated with specific cancers [4], but this SNP is lo-
cated in an intron of the gene. It is still unclear how intronic
SNPs affect gene expression. Typically, cancer-associated geno-
types work solely as biomarkers.

Despite of the known importance of DNA methylation and
genotype on cancer formation, how DNA methylation and geno-
type cooperatively mediate cancer formation has rarely been dis-
cussed. An exception is the recent association study reported by
Scherf et al. [5] who found that genotype-specific promoter DNA
methylation of the oncogene CHRNB4 was related to lung cancer.
Opavsky et al. [6] also found that the P53, E2f2 and Pten genes
in a mouse model of lymphoma were methylated in a genotype-
specific manner. Thus, genotype and DNA methylation may con-
tribute cooperatively to cancer formation in many other cancers.

In this paper, we sought to detect genotype-specific DNA
methylation in esophageal squamous cell carcinoma (ESCC).
Many previous studies have reported ESCC-specific genotypes.
For example, Abnet et al. [7] found that genotypic variants at
position 2q33 on the human chromosome were related to risk
of ESCC. Maeng et al. [8] found that phosphoinositide-3-kinase
and BRAF mutations were associated with metastatic ESCC and
Wang et al. [9] found that ESCC was related to polymorphisms
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in ALDH2 and ADH1B in Chinese females. Thus, genotype-
specific DNA methylation is expected to exist widely in ESCC.
In this study, we used two publicly available distinct SNP mi-
croarray data sets to identify genotype-specific DNA methylation
in ESCC.

2. Results
2.1 Estimation of genotype-specific DNA methylation

There is no unique criterion that can estimate genotype-specific
DNA methylation. Aberrant methylation itself can be estimated
by various criteria; for example, using the ratio or the difference
of mean values between normal and tumor tissues or using P-
values obtained by a statistical test such as a t-test. Each of the
criterion may give a different genotype-specific DNA methyla-
tion set of genes. In addition, some genotypes are either heav-
ily demethylated or methylated in tumor tissue compared with
normal tissue. If this genotype is very rare in the tumor tissue,
it is clearly unreasonable to regard this genotype-specific DNA
methylation as being the cause of the tumor. Ideally, to be sure
that a particular genotype-specific DNA methylation could cause
the tumor, the following conditions should be satisfied:
( 1 ) The genotype is specifically demethylated/methylated in the

tumor tissue compared with other genotypes (strength of
aberrant DNA methylation).

( 2 ) The genotype is abundant in the tumor tissue (abundance of
aberrant DNA methylation).

The best balance between these two conditions is not easy to
estimate, because there is no standard understanding about the
kind of gene abnormalities that generally cause tumors. In this
study, we used three kinds of samples, and blood, normal and
tumor tissues. This made the comparisons more difficult than
a comparison between only normal and tumor tissues, because
we are not sure if normal tissue is an expected intermediate be-
tween blood and tumor. To avoid uncertainties that this compli-
cated situations might cause when estimating genotype-specific
DNA methylation, we employed a recently proposed PCA-based
unsupervised feature selection method[10]. This procedure does
not require the user to select the criterion that is used to estimate
genotype-specific DNA methylation. It is necessary simply to se-
lect the suitable PC by which the SNPs with genotype-specific
DNA methylation are selected. Over all design of selecting gene
with genotype specific DNA methylation is shown in Fig. 1.

2.2 Genotype-specific DNA methylation estimated using the
Nsp microarray data

The PCs obtained when PCA was applied to the Nsp microar-
ray measurements of genotype are shown in Fig. 2. Although
the first PC (PC1; Fig. 2a) had the dominant contribution (80%),
no significant differences between blood, and the normal and tu-
mor tissues were seen. On the other hand, the second PC (PC2;
Fig. 2b) clearly distinguished between blood, and normal and
tumor tissues. Therefore, we used PC2 to select probes (SNPs)
that exhibited significant differences between the blood, and nor-
mal and tumor tissues. Because PC3 (not shown here) exhibited
no significant differences between the blood, normal and tumor
samples and had very little contribution, we did not use the third

Fig. 1 Schematic illustration of the gene screening process. The grey
rectangle indicates the processes performed in this study. The red
(blue) boxes indicate the data processing flow for the genotype (DNA
methylation) data. The solid (dotted) lines indicate data processing
flow for the Nsp (Sty) measurements. Sty1 and Sty2 indicate the
two combinations of PCs that were used; PC4 for genotype /PC3 for
DNA methylation, and PC3 for genotype /PC4 for DNA methylation.

PC (PC3) to select SNPs.
The PCs obtained when PCA was applied to the Nsp microar-

ray measurements of DNA methylation are shown in Fig. 3. PC2
(Fig. 3b) was again the PC that clearly distinguished between
blood, and normal and tumor tissues. PC2 was, therefore, used to
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Fig. 2 PCs for genotypes measured by Nsp microarray. (a) PC1 (81%). (b) PC2 (3%). Black circle,
blood; red triangle, normal tissue; green cross, tumor tissue. The horizontal axes indicate the sub-
jects and their samples. The order of the 30 subjects in the 1―30, 31―60, and 61―90 sections
are the same; i.e., 1, 31, and 61 are samples from the same patient.

select the SNPs that exhibited significant differences between the
three samples.

The two dimensional (PC1 and PC2) embedding of SNPs
(probes) for DNA methylation and genotype are shown in Fig. 4.
Because PC2 showed significant differences between the blood,
and normal tissues and tumor tissues, we selected the 300 topmost
outliers along the PC2 axis for both DNA methylation and geno-
type. To see if genotype-specific methylated SNPs were selected
correctly, we filtered the selected SNPs based on the following
criteria:
( 1 ) Intersection between top N outliers between DNA methyla-

tion and genotype.
( 2 ) All three associated P-values adjusted by the BH criterion

are less than 0.05, when three pairwise one-sided t-tests (tu-
mor tissue vs normal tissue, normal tissue vs blood, tumor
tissue vs blood) are applied.

A total of 68 SNPs were selected in common from the top 300
outliers between genotype and DNA methylation after applying
the first criterion. Because there were more than 250,000 SNPs
on the Nsp microarray, the P-value for 68 SNPs being selected
in common from 300 is less than 1 × 10−16 . After applying the
P-value filtering (the second criterion) 59 SNPs were filtered as
SNPs with genotype specific DNA methylation.

2.3 Genotype-specific DNA methylation estimated using the
Sty microarray data

After repeating similar procedures to Sty microarray, using the
third and fourth PCs, we identified two sets of SNPs with geno-
type specific DNA methylation, having 81 and 50 genes, respec-
tively (the first criterion, not shown here). Then applying p-value
based screening (the second criterion), finally 22 and 37 SNPs
were filtered as those with genotype specific DNA methylation
(not shown here).

3. Discussion
3.1 Properties of the selected SNPs

Almost all selected SNPs were located outside protein cording
regions of the genes excluding four exceptions. Thus, the major-
ity of the SNPs are presumably related to the regulation of gene
expression. The SNPs that were not located in protein coding re-
gions were located in the promoters, and also in introns and in
the downstream regions of genes. Thus, the effect of genotype-
specific DNA methylation on gene expression is not straightfor-
ward.

In addition, some of the selected SNPs have not been reported
in Chinese populations, although all patients in the microarray
data sets that we used in this study were Chinese. This finding
indicates that we have correctly selected mutation that may cause
cancer formation.

3.2 Screening of cancer-related genes
To determine if the selected SNPs are biologically related to

cancers, the genes containing the SNPs were annotated using
Gendoo[11], [12]. The RefSeq mRNA IDs of the genes were
extracted from GEO and mapped to gene symbols. The gene
symbols were uploaded to the Gendoo server and the diseases
that were reported to be associated with each of the gene sym-
bols were listed. We found that 86 of the 155 genes associated
with selected SNPs were also associated with at least one cancer-
related disease. In addition, we performed a literature search to
find papers that reported the relationship between any of the 86
selected genes and cancers, because the Gendoo server annota-
tion is based on automated text-mining and may include some
misinterpretations. We found that most of 86 genes were men-
tioned in at least one published paper that described their rela-
tionship with cancer. Thus, we confirmed that more than half
(86) the 155 genes screened by our method were cancer-related
genes. In particular, twelve genes (CCND1, CCNL1, CKAP4,
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Fig. 3 PCs for DNA methylation measured by Nsp microarray. (a) PC1 (80%). (b) PC2 (3%). Other
notations are the same as those in Fig. 2.

(a) (b)

Fig. 4 Two dimensional embedding of SNPs with PC1 and PC2 for the Nsp microarray measurements
(a) Genotype (Fig. 2). (b) DNA methylation (Fig. 3). The top 300 outliers are shown in red.

CRABP1, FGF3, GRHL2, MYEOV, PKP4, RAP2B, RPL14,
SMAD3, ZNF639) were associated with “Carcinoma, Squamous
Cell” and eleven genes (CCND1, CKAP4, CRABP1, EVI1,
FGF3, MYEOV, PKP4, RPL14, SMAD3,TMEM16A,ZNf639)
were associated with “Esophageal Neoplasms”. Among them,
nine genes are associated with both. Because this study used
data sets for ESCC (esophageal squamous cell carcinoma), this
association is reasonable and demonstrates the reliability of our
method.

3.3 Genes with genotype-specific DNA methylation are less
methylated than expected

We compared the microarray measurements between genotype
and DNA methylation of the probes selected in common and
found that the microarray DNA methylation measurements were
always less than the genotype measurements. This observation is
interesting, because a less methylated promoter usually indicates
a more expressive genes, although not all the selected SNPs with

DNA methylation were in the promoter region of the genes. To
check that the demethylation was not because of inaccurate mi-
croarray measurement normalization, we randomly sampled the
same number of SNPs as those in Tables 1, 2, and 3 1,000 times,
and computed P-values adjusted by the BH criterion[13]. We
found that typically less than 1 % of the trials had adjusted P-
vales < 0.05. Thus, we determined that there were no normaliza-
tion biases in the data sets and the low observed P-values shown
in Table 6 were not obtained because of fluctuations.

3.4 Structure prediction of the proteins associated with se-
lected genes

Although we selected genes with genotype-specific DNA
methylation, for therapeutic purposes, we need to design drugs
for the proteins that are encoded by these genes. To identify can-
didate drugs computationally, the tertiary structures of the target
proteins are required as templates. However, the structures of
many of the encoded proteins have not been reported.
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Fig. 5 Schematic illustration of the drug discovery process. For the proteins encoded by the selected
genes (ALK, EGLN3 and NUAK1), about 1,000 compounds, selected based on the Tanimoto
index from DrugBank, were tested by ChooseLD using template protein structures from PDB.
The templates are specified by their PDB IDs. The ligands are specified by the PDB ID, ligand
name and a sequential number. For example, 3I7C BK2 n1 indicates ligand BK2 (1-tert-butyl-3-
naphthalen-2-yl-1H-pyrazolo[3,4-d]pyrimidin-4-amine) included in PDB entry 3I7C [PDB: 3I7C],
and n1 means no.1. The drug discovery process for EGLN3 was performed twice, with and with-
out Fe as a ligand. When Fe was excluded as a ligand, it was regarded as a mediator. That is,
Fe bounds to the protein during docking simulation, but was excluded from the Tanimoto index
computation.

To obtain the tertiary structure of these proteins, we used
two protein structure prediction servers FAMS[14], [15] and
phyre2[16], [17] to predict the structure using only the amino acid
sequence of the protein.

Some protein structures were already in the protein data bank
(PDB)[18], if not, they were modeled using the structure of a
suitable reference protein. These structures were then used as
templates to predict drug candidates in silico.

For the proteins that were not in the PDB, for the reference
proteins that were used for the structure prediction, we sought
cancer-related papers that cited the reference proteins. Most
of reference proteins used for structure prediction were cancer-
related. This finding also suggests that our gene selection process
and protein structure prediction are plausible.

3.5 In silico drug discovery
We tried to design drugs that could bind to some of the

protein templates using an in silico drug discovery method in
which chemical compounds that potentially bind to proteins and
suppress protein functions were sought computationally. For
this purpose, we selected the three proteins encoded by ALK,
EGLN3, and NUAK1 as drug targets, based upon a literature

search and the gene annotations that indicated that these genes
were expressed in cancer and had potentially functional binding
pockets (e.g., protein kinase) for ligands. The drug discovery pro-
cess that we used is illustrated in Fig. 5.

After the FPAScores that represent binding affinities of com-
pounds to proteins were estimated, to check if three independent
trials were feasible, we tested coincidence between three trials
in two ways. First, we computed the correlation coefficients be-
tween three independent trials. For all pairwise computations
for ALK, EGLN3, and NUAK1, the correlation coefficients were
greater than 0.9. This suggests that the FRAScores computed by
ChooseLD were highly reproducible. However, the correlation
coefficients represent the overall reproducibilities of FPAScores
for the candidate drug compounds. It is more important that the
compounds with higher FPAScores, i.e., those regarded as being
highly reliable, were reproducible. Therefore, we checked how
often the highly ranked compounds were selected between the
three trials and found that the selection of the highly ranked com-
pounds was also highly reproducible.

Among the 10 top-ranked compounds for ALK (Table 1), eight
compounds targeted cancer genes, and two out of the eight tar-
geted ALK. Among the 10 top-ranked compounds for ELGN3
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Table 1 The 10 top-ranked compounds as drug targets for ALK. The compounds were ranked based on
FPAScores averaged over three independent trials and their representative target cancer genes.

DrugBank ID Compound name Representative target cancer genes
ALK

DB01933 7-Hydroxystaurosporine PDK1
DB08700 3-[(1R)-1-(2,6-dichloro-3-fluorophenyl)ethoxy] ALK, c-MET, LCK,

-5-(1-piperidin-4-yl-1H-pyrazol-4-yl)pyridin-2-amine TRKA, TRKB, TIE2, ABL
DB04651 BIOTINOL-5-AMP —
DB02491 4-[4-(1-Amino-1-Methylethyl)Phenyl]-5-Chloro-N FGFR2

-[4-(2-Morpholin-4-Ylethyl)Phenyl]Pyrimidin-2-Amine
DB07006 9-HYDROXY-6-(3-HYDROXYPROPYL)-4 WEE1

-(2-METHOXYPHENYL)PYRROLO[3,4-C]
CARBAZOLE-1,3(2H,6H)-DIONE

DB02010 Staurosporine ITK, SYK, MAPKAPK2, GSK3,
CSK, CDK, PIK3CG, ZAP-70

DB02654 6-Hydroxy-Flavin-Adenine Dinucleotide —
DB07460 2-({5-CHLORO-2-[(2-METHOXY-4-MORPHOLIN ALK, PTK2

-4-YLPHENYL)AMINO]PYRIMIDIN-4
-YL}AMINO)-N-METHYLBENZAMIDE

DB07186 4-(4-METHYLPIPERAZIN-1-YL)-N-[5 AURKA, PLK1
-(2-THIENYLACETYL)-1,5-DIHYDROPYRROLO
[3,4-C]PYRAZOL-3-YL]BENZAMIDE

DB03247 Riboflavin Monophosphate RPS6KA4, POR(P450), SGK1,
NOS1, DPYD, DHODH

(not shown here), including Fe as a ligand, eight compounds tar-
geted cancer genes and two out of the eight targeted EGLN1,
which is paralog of EGLN3. Among the 10 top-ranked com-
pounds for ELGN3 (not shown here), without including Fe as
a ligand but as a mediator, six were in common with the top-
ranked compounds for EGLN3 when Fe was included as a ligand.
Among the other four compounds, one targeted EGLN1. Of the
10 of the top-ranked compounds for NUAK1 (not shown here),
most target more than 100 other genes and thus lack specificity.
All of these findings suggested that the top-ranked compounds
for each of the proteins were feasible candidate drugs.

Note
Full paper version has been accepted to be published in the

supplement of BMC Sys. Biol. as the APBC2014 proceedings at
Jan. 2014 after this presentation was submitted to SIGBIO36.
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