
IPSJ SIG Technical Report

Breadth-first Search Approach to Enumeration of
Tree-like Chemical Compounds

Yang Zhao1,a) Morihiro Hayashida1,b) Jira Jindalertudomdee1,c) Hiroshi Nagamochi2,d)

Tatsuya Akutsu1,e)

Abstract: Enumeration of chemical compounds plays a basic role in the design of drugs and the determination of
chemical structures from mass spectrometry. Hence, it has been studied by mathematicians and computer scientists as
well as chemists for quite a long time. In this technical report, we restrict enumerated structures to trees, and propose
efficient algorithms, BfsSimEnum and BfsMulEnum for enumeration of tree-like chemical compounds without and with
multiple bonds, respectively. Unlike many existing approaches, our methods iteratively add each atom to a balanced
tree by breadth-first search order. In order to reduce large search space, we adjust some important concepts such as
left-heavy, center-rooted and normal form to balanced trees. For evaluation of efficiency, we perform experiments for
several instances, and compare our methods with existing methods. The results suggest that our proposed methods are
exact and more efficient.

1. Introduction
Chemical compounds play important roles in living organisms

and metabolic networks. Enumeration of chemical compounds is
an essential tool for analysis of chemical compounds, drug de-
sign [1], molecular classification and structure elucidation using
spectrometric techniques such as mass-spectrum (MS) and nu-
clear magnetic resonance (NMR) [2]. Hence, the enumeration
has been studied by by mathematicians and computer scientists as
well as chemists for more than one century. Molecular enumera-
tion has also been used for data mining and knowledge discovery
from chemical compound data [3], [4], [5].

More researchers have developed computer-aided technology
for enumerating molecules starting with DENDRAL [6]. Many
approaches for enumerating molecules represent a chemical com-
pound as a molecular graph, which is defined as a connected
multi-graph with vertices and multi-edges labeled by the atomic
symbols and chemical bonds, respectively. Here, the degree of
a vertex represents the atomic valence and the multiplicity of a
multi-edge represents the bond order [7]. Given chemical for-
mula together with specific restrictions, desired chemical struc-
tures for biological system are enumerated by constructing all
distinct graph structures. The number of enumerated structures
is estimated to be exponentially increasing with the total number

1 Bioinformatics Center, Institute for Chemical Research, Kyoto Univer-
sity, Gokasho, Uji, Kyoto 611–0011, Japan

2 Department of Applied Mathematics and Physics, Graduate School of In-
formatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606–
8501, Japan

a) tyoyo@kuicr.kyoto-u.ac.jp
b) morihiro@kuicr.kyoto-u.ac.jp
c) jira@kuicr.kyoto-u.ac.jp
d) nag@amp.i.kyoto-u.ac.jp
e) takutsu@kuicr.kyoto-u.ac.jp

of atoms as proved by Dobson [8].
Some algorithms such as MOLGEN [7], [9] and EnuMol [10],

[11], [12], [13] have been developed. MOLGEN is known as
the popular and useful tool, and can enumerate desired chemi-
cal structures by given chemical formula with optional further re-
strictions, e.g. presence or absence of particular substructures.
Although functions for constructive structure generation have
been continually upgraded by Faulon et al. [7], its enumeration
algorithm still requires a vast amount of computational expense.

Recent approaches indicated that it is possible to estimate
trees from feature vectors under constant levels in polynomial
time [14], [15]. These algorithms, however, are not practical or
cannot perform enumeration. One other constructive approach,
EnuMol was recently proposed [10], [11], [12] that enumer-
ates tree-like molecular graphs by depth-first search (DFS) order.
Herein, tree-like compounds have simple structures that can be
represented by molecular tree graphs. To avoid the generation of
the same tree and to reduce the search space, they defined unique
centroid and used the concept of left-heavy. Although they re-
ported their competitive advantage to some existing approaches
(e.g. MOLGEN), the computational consumption during the con-
structive generation step is still needed to be retained.

In this technical report, we propose efficient algorithms BfsSi-
mEnum and BfsMulEnum for enumeration of tree-like chemical
compounds by breadth-first search (BFS) order [16]. Unlike algo-
rithms by DFS order [10], [11], [12], our methods enumerate tree
structures by keeping their balance. For further reduction of the
search space, we adjust some important concepts such as center-
rooted, left-heavy and normal form when generating a balanced
tree. It should be noted that target trees are enumerated by BFS
order while family tree is searched by DFS order in this study.
We perform computational experiments, whose results indicate

c⃝ 2013 Information Processing Society of Japan 1

Vol.2013-MPS-96 No.15
Vol.2013-BIO-36 No.15

2013/12/11

IPSJ SIG Technical Report

O

O

O

OH

HO

O

C

C C

C CO

O O O

H H

HH

HH

Fig. 1 Example of transforming 2-oxo-glutarate into a rooted ordered
multi-tree T . This transformed molecular tree has depth(T) = 4,
maxpath(T) = {HOCCCCCOH} and label set {C, O, H}, where
num(C) = 5, num(O) = 5 and num(H) = 6.

that our methods are exact and more efficient than state-of-the-art
ones. Although we focus on enumeration of tree-like chemical
compounds in this technical report, there are substantial possi-
bilities of extensions of the methods to deal with more general
structures. In the conclusion section, we discuss these potential
extensions of our algorithms for the future step.

2. Preliminaries
Chemical structures can be represented as molecular graphs

whose vertices are labeled with the kinds of the corresponding
atoms and edges are labeled with the types of bonds. In this sec-
tion, we provide some elementary definitions that will be used
later in our algorithms.

2.1 Molecular trees
We call connected acyclic molecular graphs without multi-

edges simple trees that represent chemical compounds without
multiple bonds. Conversely, multi-trees are allowed to have
multi-edges.

Let Σ = {l1, l2, . . . , ls} be the set of labels of atomic symbols.
The degrees of vertices in such a molecular graph are restricted
by a valence function val : Σ→ Z+ that links each li (li ∈ Σ) with
a positive integer. It is noted that only double and triple bonds are
taken into account in this study. Herein, we give the label set Σ
an order so as to distinguish atoms with the same valence and to
define a normal form for molecular trees. A rooted tree is defined
as a tree with one vertex chosen as its root. Then, a molecular tree
can be represented as a rooted ordered multi-tree T (V, E), where
V is a nonempty finite set of vertices that correspond to atoms,
E is a nonempty finite set of edges that correspond to bonds (see
Fig. 1). Let num(li) be the number of vertices labeled as li in
T . Let height(T) be the height of T , and maxpath(T) be a set of
the longest paths in T , respectively. Let T (v) denote the subtree
rooted at vertex v in T . Let l(v), depth(v), degree(v) and parent(v)
be the label, depth, degree and the parent vertex of vertex v in T ,
respectively. Let mul(u, v) be the multiplicity of edge (u, v), where
u and v are distinct vertices in T .

We define the tree-like compound enumeration problem as fol-
lows.

Problem 1. Given a set Σ of s labels representing atoms, number
ni of each label li, a valence function val : Σ→ Z+, enumerate all
molecular multi-trees T such that ni = num(li) for all li in Σ and

(a) (b)
C O

C

C

C

C

C O

C

C

C

C

C O

Fig. 2 Illustration of two kinds of center-rooted trees. The thick lines rep-
resent one of the longest paths, and the vertices in dotted circles rep-
resent the center.

degree(v) = val(l(v)) for all vertices v ∈ T .

2.2 Center-rooted
We define a unique center to a rooted tree T as the center of

any path in maxpath(T), where such a center should be a single
vertex (Fig. 2(a)) or an edge (Fig. 2(b)). It is obvious that such
a center in T is unique regardless of the number of elements in
maxpath(T). Thus T is called center-rooted if its root is the cen-
ter or one endpoint of the center.

2.3 Left-heavy
We introduce two inequalities >s and >m for ordered simple

and multi-trees, which are recursively defined as in Definitions
1 and 2, respectively. We say that T (u) is heavier than T (v) if
T (u) >s T (v) or T (u) >m T (v).

Definition 1 Let (u1, u2, . . . , uh) and (v1, v2, . . . , vk) be the
children of u and v in simple or multi-tree T , respectively. We
define T (u) >s T (v) if
(1) l(u) > l(v), or
(2) l(u) = l(v) ∃ i, ∀ j ≤ i T (u j) =s T (v j), and

(a) i < min{h, k}, T (ui+1) >s T (vi+1), or
(b) i = k < h.
Specially, we define T (u) =s T (v) if l(u) = l(v) and T (u j) =s

T (v j) for all j ≤ h = k.
Definition 2 We define T (u) >m T (v) for multi-tree T if

(1) T (u) >s T (v), or
(2) T (u) =s T (v), and
∃i, (∀ j ≤ i) mul(e j) = mul(e′j) and mul(ei+1) > mul(e′i+1),
where e1, e2, . . . , em (resp., e′1, e

′
2, . . . , e

′
m) be all the edges in

T (u) (resp., T (v)) in the BFS order.
Specially, we define T (u) =m T (v) if T (u) =s T (v) and
mul(e j) = mul(e j) for all j ≤ m.

For reducing the search space in the generation process, we
utilize the definition of left-heavy for rooted trees, where the def-
inition is slightly modified from that by Fujiwara et al. [11] and
Nakano and Uno [17].

Definition 3 A molecular tree T is left-heavy if T (vi) ≥m

T (vi+1) (i = 1, . . . , k − 1) holds for the children (v1, . . . , vk) of
each vertex v in T .

2.4 Normal form
In order to avoid duplications, we utilize a notion of normal

c⃝ 2013 Information Processing Society of Japan 2

Vol.2013-MPS-96 No.15
Vol.2013-BIO-36 No.15

2013/12/11

IPSJ SIG Technical Report

C

Tv(r)Tr(v)

C

C

C
v

r

C C

C
O

O

Fig. 3 Illustration of determining a normal form. Since the definition of
normal form is based on the ideas of left heavy and center-rooted,
the root is one endpoint of the center, further comparison is needed
between subtree Tr(v) and Tv(r), only if r is the root and v is the other
endpoint of the center. The given tree is determined as a normal tree
because Tr(v) >m Tv(r).

form to molecular trees as formalized in Definition 4. The nor-
mal form includes the ideas of center-rooted and left-heavy. We
call a tree in the normal form a normal tree.

Definition 4 Let T be a left-heavy center-rooted ordered tree
rooted at r.
(1) If the center is a single vertex, then T is a normal tree.
(2) If the center is an edge (r, v) and Tr(v) ≥m Tv(r), where Tr(v)

(Tv(r)) denotes the subtree induced by v (r) and its descen-
dants when r (v) is root, then T with root r is a normal tree
(see also Fig. 3).

2.5 Family tree
Our approach searches a special tree structure called family

tree. Let Cn denote a set of left-heavy center-rooted simple trees
with at most n vertices, where n =

∑s
i=1 ni. Suppose that a tree

T ∈ Cn has k vertices (0 < k ≤ n), numbered as (v1, v2, . . . , vk) in
BFS order. Let P(T) be a tree generated from T by removing the
last vertex vk of T . We call P(T) the parent of T . Then, we can
prove the following [16].

Theorem 1 If a given tree T is left-heavy center-rooted, then
its parent P(T) is left-heavy center-rooted as well.

This implies that for any T ∈ Cn, its parent tree P(T) belongs
to Cn. Similarly, we can generate P(P(T)) by removing the ver-
tex vk−1, the deepest rightmost leaf of P(T), from P(T). Thus, a
unique sequence T , P(T), P(P(T)), P(P(P(T))), . . . , ϕ of trees
in Cn can be generated by repeatedly removing the deepest right-
most leaf for each T in Cn. A family tree of Cn, denoted by Fn, is
defined by merging all these sequences. Obviously, each vertex
in such Fn represents a tree in Cn.

Furthermore, a family tree for molecular multi-trees can be
similarly defined. Let Sm denote a set of left-heavy center-rooted
multi-trees with at most m multi-edges. Suppose that a tree T be-
longs to Sm with h multi-edges (0 < h ≤ m), and (e1, e2, . . . , eh)
is a sequence of multi-edges of T in BFS order. A family tree of
Sm, denoted by F M

m , is similarly defined. Obviously, each vertex
in F M

m represents a tree in Sm and root of such F M
m is a simple

tree. It should be noted that both Fm and F M
m are searched by

DFS order.

v
1

v
3

v
2

v
4

v
k

v
l

(a)

v
1

v
3

v
2

v
4

v
k

v
l

(b)

Fig. 4 Illustration for determining the possible positions (within the dotted
curves) where a new leaf should be added to a current tree. (a) If
the deepest leftmost vertex vl and the deepest rightmost vertex vk are
in the same subtree, a new leaf can be added to only vertices from
parent(vk) to vl−1. (b) If vl and vk are included in distinct subtrees, a
new leaf can be added to vertices from parent(vk) to vk .

3. Methods
In this section, we propose BfsSimEnum and BfsMulEnum

for enumerating molecular simple and multi-trees by breadth-first
search order. As Ishida et al. [10] and Shimizu et al. [12] pointed
out, the number of enumerated solutions exponentially increases
with the increasing number of atoms. To reduce the large search
space, concepts of center-rooted, left-heavy and normal form are
taken in use as restrictions for avoiding duplicates.

3.1 BfsSimEnum for simple tree enumeration
Given a molecular formula with valence function, while try-

ing to enumerate all possible simple trees, BfsSimEnum searches
a family tree that: each vertex is a left-heavy and center-rooted
simple tree, and specially, each leaf is in normal form. Notice
that each vertex in such a family tree represents a tree with at
most n′ vertices, where n′ is the total number of atoms whose va-
lences are greater than 1, since atoms with valence one such as
hydrogen atoms can be easily added as leaves at last.

This algorithm tries to search a family tree that starts with an
empty tree, and grows up by repeatedly adding a new vertex to
a current tree T in BFS order at every turn until all n′ vertices
are added. Fig. 5 shows a pseudo code of BfsSimEnum (see also
Fig. 7).

Firstly, BfsSimEnum constructs a tree T with one single ver-
tex whose valence is greater than 1. As an addition step, this
algorithm repeatedly adds a new vertex to possible positions of T
according to left-heavy and center-rooted to construct a new tree.
BfsSimEnum outputs a generated tree if and only if n′ vertices
are added and it is in normal form.

The point of this algorithm is how to keep a new constructed
tree left-heavy and center-rooted at an addition step. Let vk and vl
be the deepest rightmost and leftmost vertices in T , respectively.
To keep a new tree center-rooted, the candidate positions to be
added are determined by confirming whether or not vertices vl
and vk are in a subtree: (i) if they are in a subtree, a vertex can be
added to only the positions ranging from parent(vk) to vl−1 (see
Fig. 4(a)); (ii) otherwise, a vertex can be added to the positions
ranging from parent(vk) to vk (see also Fig. 4(b)). To keep a new
tree left-heavy, candidate labels for a new added vertex vk+1 are
determined by confirming subtrees including vk+1. Since the label

c⃝ 2013 Information Processing Society of Japan 3

Vol.2013-MPS-96 No.15
Vol.2013-BIO-36 No.15

2013/12/11

IPSJ SIG Technical Report

Input An ordered set of labels Σ = {l1, . . . , ls}, where l1 > l2 . . . > ls,
number n j of each label l j, a valence function val : Σ→ Z+

Output A set of all possible simple trees R which are normal trees
BfsSimEnum(Σ, val, {ni})
R := ∅
for each l j ∈ Σ such that val(l j) > 1 do

T := a tree consisted of a root with l j
AddNode(Σ, val, {n j}, T , R)

return R
end
AddNode(Σ, val, {n j}, T , R)

n′ := the number of given atoms whose valences are greater than 1
if |T | = n′ and T holds normal form then
R := R ∪ {T }

else
vk , vl := the deepest rightmost and leftmost vertices in T , resp.
if vk and vl are included in the same proper subtree then
ve := vl−1

else ve := vk
for each vi from parent(vk) to ve in BFS order do

if degree(vi) < val(l(vi)) then
lg := the largest possible label for vk+1
for each l j ∈ Σ such that l j ≤ lg and val(l j) > 1

and num(l j) < n j do
T ′ := T
add a new vertex with l j as the last child of vi in T ′

AddNode(Σ, val, {n j}, T ′, R)
end
Fig. 5 Pseudo code of BfsSimEnum for simple tree enumeration.

set Σ is ordered as l1 > l2 > . . . > ls, our algorithm aims to seek
the largest possible label for vk+1 such that all smaller ones are
candidate labels for vk+1.

3.2 BfsMulEnum for multi-tree enumeration
We propose BfsMulEnum for multi-tree enumeration, which

starts with an output of BfsSimEnum and repeatedly changes a
single edge to a multi-edge in BFS order at every turn until all
possible multi-edges are added. As mentioned before, only edges
with multiplicity 2 or 3 are taken into account as multiple bonds.

LetM2 andM3 denote the number of double bonds and triple
bonds, respectively.M2 andM3 are computed so that they satisfy
the following equation:

2M2 + 4M3 =

h∑
i=1

ni · val(li) − 2
h∑

i=1

ni −
s∑

j=h+1

n j + 2, (1)

where two sets of labels {l1, . . . , lh} and {lh+1, . . . , ls} represent
atoms whose valences are greater than 1 and whose valences are
1, respectively. In the example in Fig. 7, as the molecular for-
mula is given as C2O2H2, feasible multiple bonds forM2 andM3

should satisfy that 2M2+4M3 = 2 ·4+2 ·2−2 ·(2+2)−2+2 = 4,
which means that target molecular trees of this example should
have two double bonds or one triple bond such that (M2,M3) =
(2, 0), (0, 1).

From the output of BfsSimEnum together with M2 and M3

determined as above, BfsMulEnum aims to construct a set of tar-
get multi-trees RM by BFS order, see also the details in Fig. 6.
BfsMulEnum recursively sets a multi-edge to feasible positions
of T according to normal form to construct a new tree. Only if
all feasible multiple bonds are set, BfsMulEnum outputs such a
new tree. Different from BfsSimEnum, at a setting step, BfsMu-
lEnum needs to confirm whether or not a new tree is in normal

InputM2,M3 and output R of BfsSimEnum
Output a set of all possible multi-trees Rm
BfsMulEnum (M2,M3,R)
Rm := ∅
while |R| , 0 do

T := a tree of R
remove T from R
AddMultiedge (T , root of T ,M2,M3, Rm)

return Rm
end
AddMultiedge (T , vi,M2,M3, Rm)

ifM2 = 0 andM3 = 0 and T is a normal tree then
Rm := Rm ∪ {T }

else
AddMultiedge(T , vi+1,M2,M3, Rm)
miss(vi) := val(l(vi)) − degree(vi)
miss(parent(vi)) := val(l(parent(vi))) − degree(parent(vi))
if miss(vi) ≥ 1 and miss(parent(vi)) ≥ 1 andM2 > 0 then

T2 := T
set double bond to (parent(vi), vi) in T2
AddMultiedge(T2, vi+1,M2 − 1,M3, Rm)

if miss(vi) ≥ 2 and miss(parent(vi)) ≥ 2 andM3 > 0 then
T3 := T
set triple bond to (parent(vi), vi) in T3
AddMultiedge(T3, vi+1,M2,M3 − 1, Rm)

end
Fig. 6 Pseudo code of BfsMulEnum for multi-tree enumeration.

form by comparing the edge multiplicity together with confirm-
ing the feasibility of setting other multi-edges when generation
for such a new tree is still continued.

Although it consumes a little more computational expense for
enumerating multi-tree structures than that for enumerating sim-
ple ones in this study, computation of BfsMulEnum is not com-
plicated since it only deals with edges without any structural
changes. Fig. 7 illustrates the process of both BfsSimEnum and
BfsMulEnum.

4. Results
Computational experiments were performed on BfsSimEnum

and BfsMulEnum using a PC with Xeon CPU 3.47GHz and
24GB memory.

4.1 Comparison with existing methods
We assessed the computational performance by comparison

with two state-of-the-art methods, MOLGEN (Version 3.5) and
EnuMol, under the same computational environment. The results
are shown in Table 1 and Table 2. Unlike existing approaches
whose molecular structures are generated by DFS order, the re-
sults successfully show that generating a solution by BFS order
also performs well or even better for tree-like molecular enumer-
ation, since all of these solutions are proceeded by keeping bal-
ance.

From Table 1, we can see that BfsSimEnum was faster than
the other ones, which also implies that the employed and mod-
ified concepts of center rooted, left heavy and normal form are
very useful for reducing the search space.

From the computational time shown in Table 2, we can see that
BfsMulEnum is slightly less advantageous than EnuMol when
M2 + 2M3 < 6, which means that the number of double bonds is
bounded by 5. As the number of multiple bonds increases (spe-
cially when M2 + 2M3 ≥ 6), BfsMulEnum outperforms Enu-

c⃝ 2013 Information Processing Society of Japan 4

Vol.2013-MPS-96 No.15
Vol.2013-BIO-36 No.15

2013/12/11

IPSJ SIG Technical Report

Fig. 7 Illustration of BfsSimEnum and BfsMulEnum. BfsSimEnum is pro-
cessed above the dot line; BfsMulEnum is processed below the dot
line. Graphs in gray color are considered as invalid by the algorithms
and thus are not stored or proceeded any more. It should be noted that
hydrogen atoms are added as leaves at last.

Mol. The reason why BfsMulEnum is sometimes slower than
EnuMol is its dependence on BfsSimEnum. Due to this reason,
there might be a large amount of simple trees computed by Bf-
sSimEnum that cannot be expanded to multi-trees. On the other
hand, our multi-tree enumeration method is significantly faster
than MOLGEN.

5. Conclusion
In this technical report, we proposed BfsSimEnum and BfsMu-

lEnum for enumerating tree-like compounds by firstly utilizing
the breadth-first search order. Owing to the utilization of BFS or-
der, both BfsSimEnum and BfsMulEnum only produce balanced
intermediate trees during their search of a family tree without
proceeding or storing any unbalanced ones, which can efficiently
avoid duplicates. Together with the employed and modified con-
cepts such as center-rooted, left-heavy and normal form, our pro-
posed methods are successfully showed to be useful for reducing
the large search space.

The results of computational experiments indicate that our al-
gorithms are exact and faster than state-of-the-art ones for simple
tree enumeration. For multi-trees enumeration, however, BfsMu-
lEnum is often outperformed by EnuMol only whenM2 + 2M3

is bounded to 5. Although it is efficient for molecules which in-
clude large number of multiple bonds (M2 + 2M3 ≥ 6), Bfs-
MulEnum is possible to get a further extension to make it inde-

pendent from BfsSimEnum. For this purpose, not only possible
vertices but also possible multi-edges should be both taken into
account when constructing intermediate trees. Such an extension
can significantly reduce search space because we can decrease
the possibility to expand simple trees which no longer can be re-
placed with multi-trees.

Another extension to our methods is to deal with more complex
ring structures such as naphthalenes. Our proposed methods are
fast and fundamental for molecular enumeration that has many
useful applications. Extensions toward enumerating general com-
pounds and combination with biological properties should be in-
teresting future work.

Acknowledgments
This work was partially supported by Grants-in-Aid

#22240009, #24500361, and #25-2920 from MEXT, Japan.

Appendix
References
[1] Faulon, J. L. and Bender, A.: Handbook of Chemoinformatics Algo-

rithms, CRC Press (2010).
[2] Pretsch, E., Bühlmann, P. and Badertscher, M.: Structure Determi-

nation of Organic Compounds, Springer-Verlag Berlin Heidelberg
(2009).

[3] Deshpande, M., Kuramochi, M., Wale, N. and Karypis, G.: Frequent
substructure-based approaches for classifying chemical compounds,
IEEE Trans. Knowledge and Data Engineering, Vol. 17, pp. 1036–
1050 (2005).

[4] Horváth, T. and Ramon, J.: Efficient frequent connected subgraph
mining in graphs of bounded tree-width, Theoretical Computer Sci-
ence, Vol. 411, pp. 2784–2797 (2010).

[5] Jiang, C., Coenen, F. and Zito, M.: A survey of frequent subgraph
mining algorithms, The Knowledge Enginering Review, Vol. 28, pp.
75–105 (2013).

[6] Rouvray, D. H.: The pioneering contributions of Cayley and Sylvester
to the mathematical description of chemical structure, Journal of
Molecular Structure, Vol. 1, p. 54 (1989).

[7] Faulon, J. L., D. P. Visco, J. and Rose, D.: Enumerating molecules,
Reviews in Computational Chemistry, Vol. 21, pp. 209–286 (2005).

[8] Dobson, C. M.: Chemical space and biology, Nature, Vol. 432, pp.
824–828 (2004).

[9] Gugisch, R., Kerber, A., Kohnert, A., Laue, R., Meringer, M., Rucker,
C. and Wassermann, A.: Molgen 5.0, a Molecular Structure Genera-
tor, Bentham Science Publishers Ltd. (2012).

[10] Ishida, Y., Kato, Y., Zhao, L., Nagamochi, H. and Akutsu, T.: Branch-
and-bound algorithms for enumerating treelike chemical graphs with
given path frequency using detachment-cut, Journal of Chemical In-
formation and Modeling, Vol. 50, No. 5, pp. 934–946 (2010).

[11] Fujiwara, H., Wang, J., Zhao, L., Nagamochi, H. and Akutsu, T.: Enu-
merating treelike chemical graphs with given path frequency, Journal
of Chemical Information and Modeling, Vol. 48, No. 7, pp. 1345–1357
(2008).

[12] Shimizu, M., Nagamochi, H. and Akutsu, T.: Enumerating tree-like
chemical graphs with given upper and lower bounds on path frequen-
cies, BMC Bioinformatics, Vol. 12, No. Suppl 14, pp. 1–9 (2011).

[13] Akutsu, T. and Nagamochi, H.: Comparison and enumeration of
chemical graphs, Computational and Structural Biotechnology Jour-
nal, Vol. 5, No. 6, p. e201302004 (2013).

[14] Imada, T., Ota, S., Nagamochi, H. and Akutsu, T.: Efficient enu-
meration of stereoisomers of outerplanar chemical graphs using dy-
namic programming, Journal of Chemical Information and Modeling,
Vol. 51, pp. 2788–2807 (2011).

[15] Akutsu, T., Fukagawa, D., Jansson, J. and Sadakane, K.: Inferring a
graph from path frequency, Discrete Applied Mathematics, Vol. 160,
pp. 1416–1428 (2012).

[16] Zhao, Y., Hayashida, M., Jindalertudomdee, J., Nagamochi, H. and
Akutsu, T.: Breadth-first search approach to enumeration of tree-like
chemical compounds, Journal of Bioinformatics and Computational
Biology (to appear).

[17] Nakano, S. and Uno, T.: Generating colored trees, Lecture Notes in
Computer Science, Vol. 3787, pp. 249–260 (2005).

c⃝ 2013 Information Processing Society of Japan 5

Vol.2013-MPS-96 No.15
Vol.2013-BIO-36 No.15

2013/12/11

IPSJ SIG Technical Report

Table 1 Comparison of BfsSimEnum with existing methods.

Molecular # enumerated Computational time (sec.)
formula results BfsSimEnum MOLGEN EnuMol

C18H38 60523 0.016 3.04 0.025
C19H40 148284 0.036 5.93 0.060
C20H42 366319 0.086 8.18 0.15
C22H46 2278658 0.53 79.80 0.939
C24H50 14490245 3.284 733.12 6.153
C26H54 93839412 21.361 7367.48 41.292
C6O3H14 772 0.001 0.01 0.001
C7O3H16 2275 0.002 0.01 0.002
C10O4H22 317677 0.072 1.19 0.108
C12O4H26 3118708 0.691 15.31 1.088
C16O4H34 278960984 60.16 2272.55 101.69
C18O4H38 2567668160 533.84 − 965.4
C6N2O3H16 140014 0.031 0.36 0.049
C7N2O2H18 82836 0.019 0.17 0.029
C7N3O2H19 649970 0.135 1.48 0.216
C8N3O2H21 2361374 0.485 6.24 0.81
C9N2O2H22 893769 0.188 2.59 0.309
C9N3O2H23 8373347 1.683 25.52 2.839
C10N3O2H25 29105924 5.887 93.94 10.303
C11N3O2H27 99494345 20.110 367.72 35.139

Table 2 Comparison of BfsMulEnum with existing methods.

Molecular M2 + 2M3
enumerated Computational time (sec.)

formula results BfsMulEnum MOLGEN EnuMol
C18H34 2 3218346 0.266 145.99 0.311
C19H34 3 31503100 2.727 3753.04 2.7
C20H34 4 250132215 23.689 98799.2 23.39
C20H28 6 1185277179 181.37 − 188.6
C22H36 5 5445565067 556.21 − 544.52
C22H34 6 10198151506 1185.27 − 1192.53
C22H30 8 19663780677 3255.08 − 3392.54
C10O4H16 3 10003272 1.5 400.83 1.335
C12O4H16 5 282338151 63.33 176186.1 56.352
C12O4H10 8 49498872 78.91 1183717.4 90.82
C16O2H20 7 1996919931 467.48 − 470.21
C16O4H30 2 12880695359 1172.81 − 1137.07
C6N2O3H14 1 643197 0.1 5.13 0.1
C6N2O3H10 3 1499019 0.345 44.01 0.307
C7N2O2H10 4 1312737 0.360 83.95 0.317
C7N2O2H6 6 257531 0.380 329.75 0.41
C7N3O2H9 5 8360420 3.932 1855.59 3.836
C7N3O2H7 6 3282844 3.81 11166.89 4.21
C8N3O2H11 5 62066528 20.931 16791.67 20.141
C8N3O2H9 6 31421502 21.52 70591.54 23.36
C9N2O2H10 6 18780376 10.038 15779.98 10.478
C9N2O2H8 7 7205103 9.27 76774.18 11.33
C9N3O2H11 6 252761084 119.06 288470.42 123.68
C9N3O2H9 7 107205329 113.67 637866.1 138.33
C10N3O2H11 7 932854039 637.2 − 715.99
C11N3O2H21 3 7268812476 802.67 − 774.56
C11N3OH15 6 956851032 247.52 − 250.02

c⃝ 2013 Information Processing Society of Japan 6

Vol.2013-MPS-96 No.15
Vol.2013-BIO-36 No.15

2013/12/11

