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Abstract: The core of TIFMO is an inference engine that operates on algebraic forms, in contrast to logical forms
that are traditionally used to represent the semantics of sentences. Algebraic forms are compositionally constructed
sets using relational algebra operators, and the meaning of sentences are represented by relations between the sets.
Features of the system include: (i) dynamically generated may-be-missing knowledge as local alignments between a
T-H pair; and (ii) an evaluation of logical overlap that indicates how close we are about to achieve a complete proof.
Experimental results and examples are shown to illustrate the usability of the system.

1. Introduction
Recognizing textual entailment (RTE) is the task of determin-

ing whether a given textual statement H can be inferred by a text
passage T. One ingenuous approach to this task is to represent T
and H in logical forms, focusing on deriving a proof by which
one can infer H from T. The main problem of this approach is
the lack of background knowledge, in that a strict proof of H al-
most always requires some extra information about language or
real world, which is not explicitly represented in T.

Attempts have been made to remedy this situation through vari-
ous techniques, including model-building [1], abductive theorem
proving [7], and addition of semantic axioms [8]. The model-
building provides features related to the cost of a proof (or dis-
proof), whereas abductive theorem proving requires an assump-
tion cost model, thus both of them need to learn on RTE datasets
to assign appropriate weights for the costs. These systems do not
necessarily outperform shallow features [2] such as word overlap
[4], as cost models linguistic and world knowledge, for which an
RTE dataset seems too sparse to learn from [9]. On the other
hand, addition of semantic axioms requiring manually defined
rules could be expensive.

The main contribution of TIFMO is a novel semantic repre-
sentation framework based on algebraic forms (Section 2), which
is desirable for two reasons: (i) it provides heuristics for gen-
erating may-be-missing inference rules, which can be used in a
logic-based RTE system to drastically improve the possibility of a
complete proof; and (ii) we can use algebraic forms to define log-
ical overlap, which enables the evaluation of an inference process
even if a complete proof is not available.

Evaluation is conducted on PASCAL RTE and NTCIR RITE
datasets (Section 5). We give examples both in English and in
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Japanese to show how the system works.

2. Algebraic Forms and Logical Overlap
A first order predicate logic (FOL) representation of meaning

focuses on relations among instances, as symbolized in the for-
mula ∃c,∃m, cat(c) ∧ mouse(m) ∧ eat(c,m), where c and m are
specific instances of cats and mice. However, daily life reason-
ing seems to prefer relations among “general concepts” or sets
of instances, as given the sentence “I’m annoyed by mice” we
may conclude that “I need a cat”, having the knowledge “cats
eat mice” rather than “a (specific) cat eats a mouse”. Since the
knowledge is about general cats and mice, a formalization such
as ∀m,mouse(m)→ (∃c, cat(c) ∧ eat(c,m)) should be untrue.

The framework of algebraic forms originates from relational
algebra. It compositionally constructs sets of instances using re-
lational algebra operators. By considering sets of instances and
regarding meanings of sentences as relations between the sets, we
acquire the convenience of dynamically generating new relations
among general concepts, as in the following example

T I’m annoyed by mice. Cats eat mice.
H I need a cat.

we may guess relations such as “mice that annoy me” ⊂ (subset
of) “mice eaten by cats” and “cats that eat mice that annoy me” ⊂
“cats that I need”. With these relations, we actually can prove H
from T. (Details on how to generate these relations are described
in §4)

2.1 Algebraic Forms
Formally, we fix a “world set” W, and to each content word (or

“predicate” in first order predicate logic) w, we assign a symbol
Iw representing the set of instances that can be denoted by w. Let
r1, . . . , rn be the possible semantic roles that w can take. We then
consider Iw to be a subset of Wr1 × . . . ×Wrn . Here, Wr1 , . . . ,Wrn

are copies of W, and × denotes the Cartesian product.*1

*1 The order of the Cartesian product is ignored; for example Wr1 × . . .×Wrn
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Fig. 1 Illustration of “books read by students”. The corresponding DCS
tree is shown on the left.

As an example, since the word “student” usually ap-
pears as an argument in a predicate-argument structure (e.g.
read(student, book)), we consider the word to have semantic role
ARG, and regard Istudent as a subset of WARG. On the other hand,
the word “read” has semantic roles SBJ and OBJ, so Iread ⊂

WS BJ ×WOBJ .
Since WS BJ and WARG are copies to each other, we can also re-

gard Istudent as a subset of WS BJ , which is denoted by ιS BJ(Istudent).
Then the composition “students read” can be represented by the
set Iread ∩ (ιS BJ(Istudent) × WOBJ), as illustrated in Figure 1: the
1-dimensional set ιS BJ(Istudent) is drawn on the SBJ-axis, and 2-
dimensional set Iread shown as a region on the SBJ-OBJ plane, so
Iread∩(ιS BJ(Istudent)×WOBJ) is the intersection of the shadow with
this region.

This composition process is very similar to a relational
database: we can imagine a table “Read” of two fields, SBJ and
OBJ (Table 1), and a table “Students” containing names such as
{Mary, . . .}. Then “students read” should be those records in the
“Read” table, the SBJ value of which is the name of a student.
Furthermore, the concept “books read by students” should be in-
tersection of the values in the table “Book” and the OBJ values in
“students read”, which is also illustrated in Figure 1.

The set operators introduced herein are:
• ×: The Cartesian product.
• ∩: The intersection of two sets.
• π: Projection. We denote the i-th projection of Wr1 × . . . ×

Wrn → W by πri .
• ι: Relabeling. The identification map W → Wr is denoted

by ιr. Thus, for any A ⊂ W, we consider ιr(A) to be a subset
of Wr.

• Division operators, which are operators that resemble the di-
vision operator in relational algebra. Details are described in
§3.2.

• Selection operators, which produce a specific subset of A for
any A ⊂ W. Details are described in §3.3.

2.2 Logical Overlap
We consider three fundamental relations of sets: the non-

emptiness (, ∅), subsumption (⊂) and disjointness (‖). The mean-
ing of a sentence is represented by relations between algebraic
forms, as shown in the following examples:

and Wrn × . . .×Wr1 are thought to be the same. This does not cause con-
fusion because every component of the product is uniquely labeled by a
semantic role.

Table 1 “Read”
SBJ OBJ

Mark New York Times
Mary A Tale of Two Cities

... ...

• Cats eat mice: Ieat ∩ (Icat × Imouse) , ∅.
• All men are mortal: Iman ⊂ Imortal.
• No animals are harmed: Ianimal ‖ πOBJ(Iharm).
For a T-H pair, let the meaning of H be represented by a set

of relations, R0, among a set of algebraic forms, A0. Simpler al-
gebraic forms can be derived from elements in A0, for example
we can consider sub-trees of the expression tree of each algebraic
form. Now we fix a set A1 derived from A0, then the logical
overlap is defined as the rate r = |R′1|/|R1|, where R1 is the set
of relations among A1 that can be infered from H, and R′1 is the
subset of R1 that can be infered from T. The norm | · | is either
the cardinality of a set, or a weighted sum of its elements, with
some reasonable weight function such as the expression length of
algebraic forms that appear in a relation.

As an example, consider the following T-H pair:
T John reads a book.
H A boy reads a book.

We haveA0 = {Iread∩(Iboy×Ibook)} andR0 = {Iread∩(Iboy×Ibook) ,
∅}. For A1 we may put A1 = {Iread, Iboy, Ibook, Iread ∩ (Iboy ×

Ibook), Iread ∩ (WS BJ × Ibook), Iread ∩ (Iboy ×WOBJ)}. Then R1 is the
set of relations saying all elements in A1 are non-empty. Now if
we don’t have the knowledge “John is a boy”, the subset of rela-
tions provable from T should be R′1 = {Iread ∩ (WS BJ × Ibook) ,
∅, Iread , ∅, Ibook , ∅}.

Logical overlap can be viewed as an extension of word over-
lap, in that if we put A1 = {Iw | w is a content word of H}, then
in many cases we have R1 = {Iw , ∅ | w is a content word of H},
and the cardinality ofR′1 will be the number of content words of H
that also appear in T, as shown in the above example. On the other
hand, if we letA1 contain all elements inA0, then a logical over-
lap equal to 1 means an entailment relation exactly holds, since all
relations shaping the meaning of H are proven from T. In order to
make the value of a logical overlap rate more reasonable, we may
assign a larger weight on the relation Iread ∩ (WS BJ × Ibook) , ∅
than Ibook , ∅, since the former is harder to prove.

The derivation of A1 from A0, and the examination of R1 in-
stead of R0, is a strategy parallel to the one in an FOL setting that,
besides the single proposition corresponding to H, trying to prove
some “partial statements” (propositions that should be true if H
is true) as well. The difference is that, algebraic forms suggest
a systematic method to generate partial statements that are intu-
itively meaningful, in the sense that all relations in R1 are directly
related to the original sentence H, such as Iread∩(WS BJ×Ibook) , ∅
corresponding to “someone reads a book”. This may not be true
in an FOL setting, for example (∃x, boy(x)) → (∃y, book(y)) is a
true statement if H is true, but the meaning seems quite irrelevant.

3. DCS Trees
For the conversion of natural language sentences to algebraic

forms, we adopt the DCS framework proposed in [6], which con-
verts natural language sentences to semantically annotated de-
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pendency trees (DCS-trees) and then to database queries. Since
the logic behind a relational database is relational algebra, the
database queries can be rewritten as algebraic formulas using re-
lational algebra operators, i.e. algebraic forms. However, the
original DCS framework was developed for the purpose of build-
ing a natural language interface for some existing databases, and
the semantically annotated dependency trees are latently learned
from instances in the databases and QA datasets. For our purpose,
it is unrealistic to assume the existence of relational databases
for learning for open-domain semantic processing and real-world
RTE tasks. Thus, we use off-the-shelf dependency parsers and ap-
ply rule-based semantic annotations to convert dependency trees
to DCS-trees, making use of the fact that these two trees are fairly
similar. Therefore, the semantic annotations we add to depen-
dency trees are different from those in the original DCS, although
the basic version remains the same. As such, we also refer to the
annotated trees as “DCS trees”.

3.1 Basic Version
A basic version DCS tree T = (N ,E) is defined as follows:

T is a rooted tree in which each node σ ∈ N is labeled with a
content word w(σ) and each edge (σ,σ′) ∈ E ⊂ N × N is la-
beled with a pair of semantic roles (r, r′), which can be taken by
the word w(σ) and w(σ′), respectively (Figure 1). For any edge
(σ,σ′) labeled with roles (r, r′), we refer to the pairs (σ, r) and
(σ′, r′) as germs.

DCS trees are related to database queries or algebraic forms,
through the idea that they can define constraint satisfaction prob-
lems (CSP). For a DCS tree of basic version, each germ (σ, r)
corresponds to a variable xσr ∈ W, and the constraints are:
( 1 ) If an edge (σ,σ′) is labeled with roles (r, r′), then xσr = xσ′r′ .
( 2 ) For a node σ, let (σ, r1), . . . , (σ, rk) be germs, and Iw(σ) ⊂

Wr1 × . . . ×Wrk . Then (ιr1 (xσr1
), . . . , ιrk (xσrk

)) ∈ Iw(σ).
An instance α ∈ W is said to be consistent to a germ (σ, r), if there
exists a solution to the CSP such that xσr = α. The set of consis-
tent instances to the germ (σ, r) is refered to as the denotation of
(σ, r), denoted by D(σ, r;T ).

For example, the DCS tree for the phrase “books read by stu-
dents” (Figure 1) defines a CSP on four variables, x1, x2, x3 and
x4, corresponding to the four germs, (book, ARG), (read,OBJ),
(read, S BJ) and (student, ARG), respectively. Constraints im-
posed by the CSP are as follows:
( 1 ) x1 = x2, x3 = x4.
( 2 ) x1 ∈ Ibook, (ιOBJ(x2), ιS BJ(x3)) ∈ Iread, x4 ∈ Istudent.
So the denotation of germ (book, ARG) is the set {x ∈ W | x ∈
Ibook ∧ (∃y, y ∈ Istudent ∧ (ιOBJ(x), ιS BJ(y)) ∈ Iread)}, representing
the concept “books read by students”.

Point of the DCS framework is that the CSP defined by a DCS
tree can be explicitly solved, in the sense that the denotation of
each germ can be recursively calculated as algebraic forms (cf.
§2.1 in [6]). In the above example, the denotation of (book, ARG)
can also be written by Ibook ∩ πOBJ(Iread ∩ (ιS BJ(Istudent)×WOBJ)).

3.2 Universal Quantifiers
For most declarative sentences, a large part of their syntac-

tic trees can be converted into basic version DCS trees, and the
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ARG
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qall ( I like ,ιSBJ ( I kid))

qall

Fig. 2 Division Operator

meaning, at least approximately, can be formalized by the sat-
isfiability of the corresponding CSP (e.g. Figure 3). Note that
the satisfiability is logically equivalent to the non-emptiness of
a denotation of any germ of the DCS tree, so in most cases the
meaning of a sentence can be represented by the non-emptiness
of some algebraic forms. However, sometimes we need to state
properties held by all elements in a denotation, which is parallel
to a universal quantifier in an FOL language, in contrast to the
existential quantifier corresponding to non-emptiness. Two rela-
tions and two division operators serve for this purpose:
• ⊂: Subsumption. For two denotations D1 and D2, the rela-

tion D1 ⊂ D2 represents the statement ∀x, x ∈ D1 → x ∈ D2.
• ‖: Disjointness. D1 ‖ D2 corresponds to the statement
∀x, x ∈ D1 → x < D2.

• qall: The “division” operator in relational algebra, for a set
A ⊂ Wr1 ×Wr2 × . . .×Wrn , the set qall(A, ιr1 (D)) is the largest
set X ⊂ Wr2 × . . . × Wrn such that ιr1 (D) × X ⊂ A. For ex-
ample, the denotation of “chocolate” in the phrase “choco-
lates that all kids like” can be represented by Ichocolate ∩

qall(Ilike, ιS BJ(Ikid)) (Figure 2).
• qno: Similar to qall, whereas qno(A, ιr1 (D)) is the largest set X

such that ιr1 (D) × X ‖ A.
In practice, universal quantifiers are neither dense in usual sen-

tences, nor critical in most T-H pairs. However, universal quan-
tifiers are useful for stating common sense knowledge, for exam-
ple we can represent hypernyms Icat ⊂ Ianimal, mutually exclusive
events Irise ‖ I f all, derivations Icriminal ⊂ πS BJ(Icommit, ιOBJ(Icrime))
(all criminals commit a crime), and world knowledge Ichampion ⊂

qall(Iwin, ιOBJ(Igame)) (champions win all the games).

3.3 Selection
Selection operators select subsets of specific properties out of

concepts. Examples are: (i) superlatives, shighest(πARG(Imountain ∩

(W× ιLOC(IAsia)))) (the highest mountain in Asia); and (ii) numer-
ics, stwo(Isoldier ∩ Iwounded) (two wounded soldiers).

We implement selection operators as markers assigned to deno-
tations, applying special axioms designed for each type of selec-
tion. Currently for superlatives we have downward monotonicity:
A ⊂ B & shighest(B) ⊂ A ⇒ shighest(B) ⊂ shighest(A), and for nu-
merics we have awareness of size: sa(A) ⊂ sb(B) & a > b ⇒ ⊥.
New rules can be added if necessary.

3.4 Negation
Currently we implement two types of negations: (i) atomic
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negation, for each content word w we allow negation w̄ of that
word, characterized by the property Iw ‖ Iw̄; and (ii) root nega-
tion, for sentences having a meaning that can be represented by
the non-emptiness of an algebraic form α, we can negate the en-
tire sentence by claiming that α ‖ α.

4. The TIFMO System
As an RTE system, TIFMO operates as follows:

( 1 ) For a T-H pair, it applies preprocessing, parsing, and coref-
erence resolution on the natural language sentences.

( 2 ) Rule-based semantic annotations are performed to convert
dependency parses into DCS trees. The meaning of sen-
tences are translated into relations between algebraic forms.

( 3 ) Add the premise T and solid knowledge to the inference en-
gine, and try to prove H.

( 4 ) If H is not proven, it compares DCS trees of T with DCS
trees of H, in order to dynamically generate may-be-missing
rules, in the form of aligned paths in DCS trees.

( 5 ) Use some similarity measure to estimate the confidence of
generated paths alignments. Then select the most confident
one as a new piece of knowledge.

( 6 ) Convert the selected path alignments into new relations be-
tween algebraic forms, add the relations to the inference en-
gine, and try to prove H again.

( 7 ) Record the selected alignments, their confidence, and the
gain of logical overlap rates after applying the correspond-
ing knowledge. If H is not proven yet, go back to Step 4. If
H is proven or no more knowledge can be generated, break
the loop.

( 8 ) The records of selected alignments, confidence, and the gain
of logical overlaps are used by a classifier to output the final
label.

Details of each step are described in subsections.

4.1 Parsing and Semantic Annotation
For English, we use BIU Number Normalizer*2 for preprocess-

ing, and Stanford CoreNLP*3 for parsing and coreference resolu-
tion. The collapsed dependency tree output by the Stanford parser
is designed to maximize dependencies between content words*4,
therefore suitable for our purpose, and the Stanford dependency
labels provide rich information for semantic annotation. Seman-
tic role labels are produced by pattern matching according to
Stanford dependency labels and POS tags. Determiners such as
“all”, “every”, “each” and “no” trigger universal quantifiers. Nu-
meric expressions and superlatives are recognized as selections.

For Japanese, we use normalizeNumexp*5 for preprocess-
ing, and we use Cabocha [5] and Syncha [3] for dependency
parsing and zero anaphora resolution. Since the dependencies
output by Cabocha are between Japanese chunks, which can
have compound words in the content word part, we use Nihon-
goGoiTaikei*6 and Wikipedia page titles as dictionaries to apply

*2 u.cs.biu.ac.il/˜nlp/downloads/normalizer.html
*3 nlp.stanford.edu/software/corenlp.shtml
*4 nlp.stanford.edu/software/dependencies_manual.pdf
*5 www.cl.ecei.tohoku.ac.jp/˜katsuma/software/

normalizeNumexp/
*6 www.kecl.ntt.co.jp/icl/lirg/resources/GoiTaikei/
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Fig. 3 DCS trees. Unmarked germs are labeled with semantic role ARG.

max-length matching from the left to separate compound words.
Rules based on function words (categorized by Tsutusji Function
Words Dictionary*7) and verb frames in NihongoGoiTaikei are
used to obtain semantic roles.

The semantic roles we use (for both Japanese and English) are:
ARG, SBJ, OBJ, IOBJ, POSS, TIME, LOC, R1 and R2. Role POSS is
used for possessions, R1 and R2 are used in directed binary rela-
tions. Finally obtained DCS trees are mixed structures of depen-
dencies, predicate-argument structure, semantic roles, quantifiers
and relationships (e.g. Figure 3).

4.2 Knowledge Resources
For English, synonyms, hypernyms, antonyms and derivations

from WordNet*8 are regarded as solid knowledge and applied at
the beginning of a proof. We wrote several templates for deriva-
tions. As an example, if a verb v and a noun n are derivationally
related, we have templates such as πARG(In ∩WS BJ × ιPOS S (X)) =

πS BJ(Iv ∩WS BJ × ιOBJ(X)), representing knowledge such as “X’s
director = the subject who direct X”. We also adopt a stopword
list used for MySQL full text search*9, and consider Iw of stop-
word w to be Cartesian product of W.

For Japanese, synonym relations are extracted from Bun-
ruiGoiHyo*10 and Wikipedia redirect*11, hypernyms are obtained
from ALAGIN verb entailment database*12 and Wikipedia hy-
ponymy extraction tool*13, and antonyms are extracted from Ni-

*7 kotoba.nuee.nagoya-u.ac.jp/tsutsuji/
*8 wordnet.princeton.edu/wordnet/
*9 dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.

html
*10 www.ninjal.ac.jp/archives/goihyo/
*11 code.google.com/p/wikipedia-redirect/
*12 alaginrc.nict.go.jp/resources/nictmastar/

li-resource-info/li-resource-outline.html#A-2
*13 alaginrc.nict.go.jp/hyponymy/index.html
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hongoGoiTaikei and Kojien dictionary*14.

4.3 Logical Overlap
The set of denotations of all germs of DCS trees of H is de-

noted by A0. The set A1 consists of algebraic forms derived
from A0, which are obtained as follows: for any α ∈ A0, con-
sider its expression tree Eα; for any node n in Eα, consider the
subtree rooted at n and its complement. For example, from
the algebraic form Ibook ∩ πOBJ(Iread ∩ (ιS BJ(Istudent) × WOBJ))
representing “books read by students”, and the node Iread in
the expression tree, we can obtain a subtree rooted at Iread as
Iread ∩ (ιS BJ(Istudent) × WOBJ) (“students read”), and its comple-
ment Ibook. The weight of each algebraic form are set to the
number of nodes in its expression tree that correspond to non-
stopwords. In the above example, weight of Ibook is 1, and weight
of Iread ∩ (ιS BJ(Istudent) × WOBJ) is 2 because there are two non-
stopwords, “student” and “read”, in the expression.

4.4 Inference Engine
As we mentioned in §2.2, considering the relations among var-

ious algebraic forms is equivalent to considering several partial
statements in an FOL setting, and we must determine which of
these relations can be proven. This becomes a non-trivial problem
when relations increase, if we naively translate algebraic forms to
sets in an FOL language and rely on theorem provers. The infer-
ence engine of TIFMO directly operates on algebraic forms. The
engine regards Iw for each content word w as constants rather
than predicates, relational algebra operators as functions, and al-

*14 www.iwanami.co.jp/kojien/

gebraic forms as terms, rather than sentences. As a result, rela-
tions such as Ibook , ∅ become atomic sentences rather than first
order formulas such as ∃x, book(x). The inference process for
atomic sentences can be treated simply as in propositional logic.
The cost is that we should write axioms for relational algebra op-
erators, such as (A∩B)×(C∩D) = (A×C)∩(B×D), by ourselves.
Approximately 30 axioms for relational algebra are implemented,
which enables most common theorems to be proven very quickly.

4.5 May-be-missing Knowledge
To generate may-be-missing knowledge, we simply compare

all paths in DCS trees of T and H, according to their denotations.
For a path p1 joining two germs (σ1, r1) and (σ′1, r

′
1) in a DCS

tree T1 of T, and a path p2 joining (σ2, r2) and (σ′2, r
′
2) in T2

of H, we generate an “alignment” of p1 and p2, if (i) the deno-
tation D(σ1, r1;T1) and D(σ2, r2;T2) subsume a common alge-
braic form; and (ii) σ′1 and σ′2 are leaf nodes, or D(σ′1, r

′
1;T1) and

D(σ′2, r
′
2;T2) also subsume a common algebraic form. All pos-

sible alignments are generated and assigned a confidence score.
Alignments of the highest confidence are regarded as knowledge
and are added to the inference engine. The inference rule cor-
responding to an alignment is generated as follows: let Tp1 be
the subgraph of T1 corresponding to the path p1, and let Tp2 be
the subgraph of T2 corresponding to p2. Then we generate the
relation D(σ1, r1;Tp1 ) ⊂ D(σ2, r2;Tp2 ).

4.6 Confidence Score
Each path alignment should be assigned a confidence score.

This is actually the most flexible part of TIFMO system, as we
can experiment on various methods of calculating similarities of
short phrases.

Currently for English, we have used distributional similarities
calculated from Google Web 1T 5-gram corpus*15. For a word
set S , we calculate its distribution vector as follows: for a 5-gram
w1, . . . , w5, if S ⊂ {w1, . . . , w5} and w ∈ {w1, . . . , w5} \ S is a non-
stopword, we add 1 to coordinate w*16. Then the similarity of
two phrases are obtained as the cosine similarity of their distribu-
tion vectors. As for Japanese, we use BunruiGoiHyo categories
to calculate a similarities between each two words, and take the
average as the similarity of two phrases.

The rationale for combining strict logical inference with rough
similarities in this way, is that (i) we only need to calculate sim-
ilarities for short phrases, and then combine them via composi-
tional semantics, which overcomes the sparsity problem for long
sentences; and (ii) though the similarity measure is inaccurate and
noisy, we can expect that strict logical inference acts as “filters”,
to cut off irrelevant alignments and highlight critical ones that are
actually necessary for proving H from T.

As an example, we present the following pair taken from PAS-
CAL RTE2 development set.

T The revamped engine indexes more pages than before, can
give direct answers to factual questions, and features tools

*15 www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=

LDC2006T13
*16 For searching of 5-grams we used SSGNC (code.google.com/p/
ssgnc/).
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Table 2 Evaluation on PASCAL RTE
RTE1 RTE2 RTE3 RTE5

Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc.
Pre 71.43 11.25 53.38 81.43 14.25 55.50 74.42 7.80 51.38 71.43 10.00 53.00
Post 57.98 47.25 56.50 61.64 56.25 60.63 58.77 46.59 55.88 68.45 42.67 61.50

Table 3 Evaluation on NTCIR RITE
RITE1-Exam-dev RITE1-Exam-test RITE2-ExamBC-dev RITE2-ExamBC-test

Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc.
Pre 50.00 3.92 59.12 60.00 1.66 59.28 66.67 3.81 59.61 60.00 1.73 61.61
Post 64.18 21.08 62.93 67.21 22.65 63.80 71.70 18.10 63.33 47.62 11.56 60.94

Table 4 Ablation Test of Features (English)

SWO HPF LOL RTE1 RTE2 RTE3 RTE5
X 55.75 57.25 66.25 59.67

X 55.88 60.50 57.88 61.67
X 58.25 60.88 59.75 60.50

X X 57.38 63.25 64.13 63.17
X X 58.00 62.88 67.13 60.67

X X 59.00 61.25 59.88 63.67
X X X 60.00 62.38 64.63 65.17

to help people create detailed queries.
H The engine can answer specific queries directly.

A part of the DCS tree of T, and the DCS tree of H, output by
TIFMO, are shown in Figure 4. At the begining of proof, Word-
Net contributes the knowledge Iquestion = Iquery, Idirect = Idirectly

and πS BJ(Ianswer/V ) = πS BJ(Igive∩W×ιOBJ(Ianswer/N)). The aligned
paths selected by TIFMO are marked as 1 , 2 and 3 . After
these rules are generated, H is proven from T. Though alignment
1 is incorrectly selected because of their frequent co-occurence
with “questions”, we should be noted that H can already be in-
fered from T by the generated alignments 2 and 3 , even with-
out 1 . It shows that logical inference can actually provide useful
information for good alignments.

5. Experiments
We evaluate the system on PASCAL RTE and NTCIR RITE

datasets. Firstly we show how many pairs can be completely
proven by injection of may-be-missing rules. The result is shown
in Table 2 and Table 3. We produce a “Y” label if H is completely
proven*17. The row “Pre” is the result of strict proof before in-
jection of may-be-missing knowledge, and the row “Post” is the
result after injection.

From the tables we can see drastic improvement of recall
brought by the may-be-missing knowledge, and in most cases
drop of precision is moderate, which significantly increases the
accuracy. For RITE1-Exam-dev, RITE1-Exam-test and RITE2-
ExamBC-dev datasets, the precisions even increase.

Secondly we show the effect of using logical overlap rates to
evaluate incomplete proofs. For this purpose, we use logical over-
laps as features to train supervised classifiers. Results on PAS-
CAL RTE datasets are shown in Table 4. We use three types
of features: SWO is a simple word overlap feature, HPF is a fea-
ture showing if there is a complete proof (after may-be-missing
knowledge injection), and LOL are weighted sums of logical over-

*17 In practice, the meaning of some H may correspond to more than one
statements. So we actually output a “Y” when the proportion of proven
statements is > 0.5.

Table 5 Ablation Test of Features (Japanese)

SWO HPF LOL RITE1-Exam RITE2-ExamBC
X 65.84 64.29

X 64.03 59.15
X 59.28 61.16

X X 65.84 60.71
X X 66.97 63.62

X X 64.48 60.94
X X X 65.61 61.38

lap gains, the weights are obtained by confidence scores of the dy-
namically generated alignments that are responsible to the gain.

Table 4 shows that a combination of SWO and logical features
can usually boost the performance, and in particular, HPF and LOL
features are significantly different from SWO feature, while their
stand-alone performances are comparable.

Results on NTCIR RITE datasets are shown in Table 5. We can
see feature LOL slightly improves the accuracy in RITE1-Exam.
In RITE2-ExamBC, feature SWO performs the best, a result com-
patible to the precision drop appeared in Table 3.

6. Conclusion
We introduced TIFMO, an inference-based system for textual

entailment recognition. The behind semantics framework using
algebraic forms are described, and two features, (i) dynamical
generation of may-be-missing rules and (ii) evaluation of incom-
plete proving process using logical overlaps, are discussed. The
system is evaluated on PASCAL RTE and NTCIR RITE datasets.
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