
IPSJ Transactions on Advanced Computing Systems Vol.6 No.4 83–95 (Oct. 2013)

Regular Paper

Torta: Extending Applications’ Capability
to Select Heterogeneous Computing Resources

Adaptively to the PC Usage

Tetsuro Horikawa1,a) Jin Nakazawa1,b) Kazunori Takashio1,c)

Hideyuki Tokuda1,d)

Received: April 9, 2013, Accepted: August 5, 2013

Abstract: Spread of GPU-accelerated applications on PCs can cause serious degradation of the user experience such
as frame dropping on the video playback, due to applications’ resource competition on the same GPU due to arbitrary
processors selection. In this paper, we propose a processors assignment system for real applications that achieves pro-
cessors assignment according to condition based rules without modifying applications. To demonstrate the feasibility
of our concept, we implemented a prototype of the centralized processors assignment mechanism called Torta. Our
experiment using eight practical applications has shown that Torta achieves binary-compatible processors switching
with an average performance penalty on only 0.2%. In a particular case where a video playback application is executed
with three other GPU-intensive applications, our method enables users to enjoy the video playback with 60 frames per
second (FPS) while the FPS decreases to 14 without the mechanism. This paper shows the design and the implemen-
tation of Torta on Windows 7 and concludes that our mechanism increases the efficiency of computational resource
usage on PCs, thus improves the overall user experiences.

Keywords: processors assignment, resource management, users’ preference, users’ context, GPU, OpenCL, binary-
compatibility

1. Introduction

Recent Graphics Processing Units (GPUs) have been acquiring
powerful parallel computation capabilities. PC applications, such
as photo editors, have been rewritten to leverage this capability.
These so-called GPU-accelerated applications choose their com-
puting resources from CPUs and GPUs arbitrarily, which may
cause degradation in performance due to resource competition
on a single processor. For instance, in our preliminary experi-
ments, we found that the frame rate of video playback with mo-
tion interpolation by the application Splash PRO EX [29] signifi-
cantly decreases when multiple applications run concurrently on
the same GPU. The spread of GPU-accelerated applications will
cause such user experience degradation frequently in the future.
This necessitates a system-wide mechanism that manages hetero-
geneous processors, i.e., GPUs and CPUs, on a PC.

To suppress such performance degradation, many stud-
ies [24], [25], [34] have proposed fine-grained GPU management
schemes. They limit the GPU utilization time of each applica-
tion and schedule applications according to their priorities. How-
ever, they can still cause performance degradation on particularly
important applications due to GPU utilization by many unimpor-

1 Keio University, Fujisawa, Kanagawa 252–0882, Japan
a) techi@ht.sfc.keio.ac.jp
b) jin@ht.sfc.keio.ac.jp
c) kaz@ht.sfc.keio.ac.jp
d) hxt@ht.sfc.keio.ac.jp

tant applications. Furthermore, such studies do not achieve tasks
distribution between CPUs and GPUs on existing applications.
There is another problem with existing studies in that they do not
consider the heterogeneity of GPUs use. For instance, GPUs or
video player applications on CPUs output different images. In
such a case, switching the processor makes non-linear but gen-
erally acceptable results in both cases. Therefore, it is difficult
to manage heterogeneous processors of PCs by linear scale man-
agement models, such as priority models. In summary, there are
the following three requirements to prevent the degradation of
user experience caused by inappropriate processors assignment
on real PCs:
• A tasks distribution mechanism that supports processors in-

stalled on PCs such as CPUs and GPUs.
• Binary compatibility for existing applications.
• A mechanism to assign heterogeneous processor by non-

linear rules.
In this paper, we implemented a middleware prototype of mid-

dleware called Torta that achieves processors switching on real
applications. Our experimental results show that Torta’s high
compatibility to real applications incurs a small overhead. Al-
though our implementation has limitations, binary compatibility
with existing applications is a large advantage over other studies.
In addition, middleware implementation achieves compatibility
with existing operating systems (OSes) and drivers. The results
demonstrate the short-term feasibility of middleware implemen-
tation of devices switching mechanism.

c© 2013 Information Processing Society of Japan 83

IPSJ Transactions on Advanced Computing Systems Vol.6 No.4 83–95 (Oct. 2013)

This paper makes the following contributions:
• It provides quantitative evidence that a GPU-accelerated ap-

plication easily and heavily interferes the performance of
others.

• Our experimental results show quantitative evidence that
redirecting processors of applications significantly prevents
performance degradation.

• It outlines the requirements for achieving heterogeneous pro-
cessors assignment on PCs to suppress problems caused by
the PCs’ complicated heterogeneity of processors and pro-
cessors’ uses.

• It introduces the Torta system for redirecting real applica-
tions’ processors with negligible overhead and without mod-
ifying applications.

• It provides a mechanism for applying non-linear rules into
heterogeneous processors assignment.

On the other hand, this paper does not consider the following,
which we leave for future work:
• The best principle of heterogeneous resource management

mechanism such as fine-grained GPU resource management
systems.

• A scheme for expressing actual conditions and policies that
are necessary for processors assignment.

• A mechanism for converting actual users’ preferences into
assignment policies.

The rest of this paper is organized as follows. Section 2 states
the requirements for assigning heterogeneous processors adap-
tive to conditions such as users’ preferences. Section 3 describes
the design and implementation of Torta, and Section 4 demon-
strates our detailed experimental results. Section 5 discusses re-
lated work. We conclude with remarks and some directions for
future work in Section 6.

2. Torta: Cetralized Heterogeneous Processor
Assignment Middleware

To state the necessity of our concept and to organize prob-
lems and requirements for heterogeneous processors assignment
on PCs, we assume that a PC consists of one or more multi-core
CPUs and GPUs that are capable of executing General-Purpose
computing on GPU (GPGPU) tasks. GPUs are not limited to
discrete GPUs (dGPUs); integrated GPUs (iGPUs) are also our
targets.

2.1 Heterogeneity of GPU Uses and Static Processors Select-
ing

GPU utilization in PCs can be generally classified into one of
the following five categories:
3D graphics acceleration 3D games, 3D graphics based GUI

shell, modeling applications
2D graphics acceleration font rendering acceleration used in

modern web browsers
General purpose computing (GPGPU) simulation and data

compression
Video encoding acceleration video transcoders
Video decoding acceleration video players

Most of these GPU-accelerated applications, except for 3D

Fig. 1 FPS of video playback decreased when another application started
utilizing the same GPU.

Fig. 2 Common Combination of Processors on PCs.

graphics applications, allow processor selection in a configura-
tion menu. They also have programs which allow both CPUs and
GPUs to do the almost same computation internally. In particular,
applications with history inherit well optimized CPU programs
from previous versions. In addition, applications that are built
with processors abstraction layers (e.g., OpenCL) select proces-
sors by specifying the ID of the processor. Thus, they can also
select processors by changing the processor’s ID while calling
APIs of abstraction layers.

However, GPU-accelerated applications can compete for the
same GPU because they select processors statically. For instance,
as shown in Fig. 1, the frame per second (FPS) of video playback
on Splash PRO EX [29] decreased from 60 to about 35 due to the
static assignment of the same GPU by another application called
DirectComputeBenchmark. Since performance degradation due
to frame dropping results in a serious impact on the causes seri-
ous degradation of the user experience, we need a mechanism for
applications to dynamically yield the rights of GPU to another.

2.2 Processor Heterogeneity and Run-time Selection
Processors’ heterogeneity on PCs is increasing. Many re-

cent CPUs (e.g., 3rd generation Intel Core processors a.k.a. Ivy
Bridge) have an internal GPU in their dies. As shown in Fig. 2,
in addition to a CPU-integrated GPU (iGPU), most desktop PCs
or desktop-replace laptop computers embed one or more discrete
GPUs (dGPUs) to improve performance.

The greatest difference between integrated GPUs (iGPUs) and
discrete GPUs (dGPUs) is the location of their video memory
(VRAM). The VRAM of a dGPU is usually implemented out-
side main memory (RAM). GPGPU tasks thus need copy and
copy-back data between RAM and VRAM, resulting in a large
overhead. This overhead has the potential to impact the perfor-
mance advantage of GPUs negatively. Therefore, many stud-
ies [8], [13], [22], [26] figured out the threshold for selecting a
CPU or a GPU, in order to provide a better overall net effect. On
the other hand, most iGPUs use a part of main memory as their
VRAM. Thus, some iGPUs allow accessing their memory with-
out copying by a zero-copy function. When a PC has an iGPU

c© 2013 Information Processing Society of Japan 84

IPSJ Transactions on Advanced Computing Systems Vol.6 No.4 83–95 (Oct. 2013)

Fig. 3 Arbitrary processors assignment by applications.

with a zero-copy function, an iGPU sometimes suits better than
a CPU for computing with small data size. Variable clock speed
technologies such as Turbo Boost on Intel CPUs also increase
processors’ heterogeneity. These technologies allow changing the
clock speed of each CPU core depending on the load of each core.
Since the thermal design of a processor limits the total power con-
sumable by the all cores of a processor, CPU cores and an iGPU
can compete for the clock speeds.

Since applications select processors arbitrarily, as in Fig. 3,
GPUs are not always utilized effectively. The simplest scheme
for assigning processors to applications, instead of arbitrary se-
lection, is to make applications select a processor according to
the load of the processors. However, this method may let applica-
tions select a GPU that results in only a small or no performance
improvement. Moreover, it may still cause performance degra-
dation of applications already running on the GPU. In the case
of Fig. 1, the frame per second (FPS) of the video playback de-
creased from 60 to about 35 despite Splash causing only 45%
of the GPU load. Due to the difficulty in collecting information
about GPU utilization by others, it is difficult for each application
to predict the influence of its own GPU utilization. The great-
est reason of unpredictable performance influence is the coarse-
grained management of GPUs resource. More precisely, current
OSes treat GPUs as input/output (IO) devices because GPUs are
usually accessible via PCI express buses. Therefore, achieving
the performance isolation and the tasks prioritization [24], [25]
on GPUs can suppress performance degradation in most cases.
However, such methods cannot prevent degradation of the user
experience because they still allow unimportant applications to
utilize GPUs. Therefore, a centralized manager should assign a
processor for each application adaptively to system-wide infor-
mation of processors utilization.

2.3 Condition Based Assignment
For interactive devices like PCs, users’ experience strongly

depends on the individual preferences of users. Therefore, we
need a condition based assignment model which can adapt to the
users’ contexts and preferences. For instance, in some cases, a
user hopes that the game runs smoothly to achieve a higher score
than his/her friends. In another case, he/she does not seriously
care about the FPS of the same game because he/she plays it to
pass the time. To prevent degradation of the user experience, we
need to assign processors adaptively to the current user’s context.
We believe that the concept of user preference based scheduling
will supersede legacy priority based scheduling on user interac-
tive computers.

Current PC OSes scarcely adapt information pertaining to the
user’s context to their schedulers. Actually, state of the AC power
connection and the foreground application are the only param-
eters that adapt to OS schedulers and processors’ drivers. For
instance, even when the browser works in the foreground, a user
may be just searching for information about a movie that is shown
in the adjacent window. On the other hand, a user may just hear
the audio of the concert movie while writing a paper. To im-
prove the user experience, resource management systems should
use such context information. Moreover, we actually need such
information to assign processors on PCs with complicated het-
erogeneity.

However, in reality, we cannot assign processors only by in-
formation about the user context. When we measured the FPS of
the same experiment as Fig. 1 with a different PC, the FPS de-
creased to only 45 FPS from 60 FPS. Thus, frame dropping may
not be noticed by the user when the user does not direct much
attention to the video. Besides, some users do not mind when so
few frames are dropped; this completely depends on the user’s
preference.

Processors assignment does not only cause a difference in FPS;
it also causes small differences in video frames. Because decod-
ing acceleration and post-processing are provided by GPUs hard-
ware and their driver, they are not the same as CPU codes imple-
mented in applications. Some users prefer one of their output in
spite of the small difference. Therefore, we cannot decide on the
proper processor according to linear metrics such as computing
speed. Assigning a faster processor to a task with higher priority
does not always satisfy the users’ preferences.

2.4 Requirements
There are two key requirements for demonstrating the feasibil-

ity of our concept on the processors assignment system for PCs.
One is task distribution with binary compatibility to existing ap-
plications. The other is condition based assignment for applying
users’ contexts and preferences.

Firstly, the processors assignment system must retain binary
compatibility with existing applications. Previously released ap-
plications are the greatest property of PC OSes such as Windows
and Mac OS; losing compatibility decreases the user’s experi-
ence. Tightly limiting assignment targets to applications built
with a specific library [8], [13], [22] is one of the straightfor-
ward ideas to enable processors switching. However, application

c© 2013 Information Processing Society of Japan 85

IPSJ Transactions on Advanced Computing Systems Vol.6 No.4 83–95 (Oct. 2013)

vendors are hesitant about re-designing their applications so that
they are forced to use a CPU. Another idea to achieve proces-
sors switching is modifying the applications binaries. However,
modifying applications by a third party can violate the law or ap-
plications’ licenses. Besides, technically speaking, the cost of
making binary patches for each update is too expensive. One
idea for achieving binary compatibility is creating a dynamic re-
compilation system (e.g., Apple Rosetta) or a system like vir-
tual machines. However, these technologies can spoil the benefits
of hand-tuned code implemented in applications. Besides, these
technologies need a long time for the implementation and the val-
idation. Consequently, we need a mechanism that achieves binary
compatible processors switching with short deployment time and
small performance penalty.

Secondly, as stated in Section 2.3, resource management sys-
tems need to adapt with the users’ contexts and preferences.
Therefore, we need a new mechanism that can assign devices ac-
cording to conditions instead of priority models. In our method,
we set users’ contexts as conditions and preferences as assign-
ment rules for each context.

2.5 Design Space
There are few methods that are supposed to prevent perfor-

mance degradation of GPU-accelerated applications. One is mod-
ifying OSes [25], [34]. OSes can manage GPU resource at a
small level of granularity. In addition, OSes have the author-
ity to manage any abstracted computation resource. Therefore,
modification to OSes has the potential to distribute tasks to CPUs
and GPUs. However, modification of OSes often needs a long
time to be merged into released versions. Besides, newly im-
plemented system calls [34] need modifications to applications.
Actually, these studies do not distribute tasks between all of the
installed GPUs and CPUs. Another option is to modify drivers to
manage GPUs’ resources [24]. These drivers achieve fine-grained
resource management on GPUs without modifying applications.
In addition, they can potentially support any APIs designed for
utilizing GPUs. However, this approach cannot distribute tasks
between GPUs and CPUs either. Although drivers are parts of
OSes, the goal of modifying drivers is separate from modifying
OSes. Drivers modification methods optimize resource manage-
ment of a GPU or GPUs provided by the same vendor. On the
other hand, OSes modification methods optimize resource man-
agement of any GPUs and CPUs installed on the PC. A third
option is creating a middleware [8], [13], [22] to switch proces-
sors. Although they achieved processors switching, these do not
provide binary compatibility with real applications.

To demonstrate the effectiveness of our method, the imple-
mented system must achieve processors switching with real ap-
plications. Therefore, we have implemented middleware using
an API hooking method. API hooking allows the changing of pa-
rameters and/or return values while hooking specific APIs. Hook-
ing APIs allows a system to change the behavior of applications
without modifying binaries. However, our method does not limit
the design space to middleware; it is also applicable to OSes.
Rather, to improve users’ experience, resource management sys-
tems of OSes should adapt to users’ contexts and preferences.

Implementing our concept into OSes is supposed to be more ap-
propriate as a long-term solution.

3. Prototype Design and Implementation

In this section, we state our target environments and the design
concept of Torta.

3.1 Processors Utilization Model
To evaluate our method, we focus on applications that are built

with OpenCL in this paper. However, our method is also applica-
ble to applications that utilize heterogeneous processors through
the same model.
Compute Device

Processors, such as CPUs and GPUs, are abstracted as com-

pute devices in OpenCL. However, such an abstraction layer is
not mandatory when applying our method. It is applicable when
the application recognizes each processor as a kind of compute
device and has executable code for each compute device.
Devices List

OpenCL APIs provide the device listing function, which lists
devices by specifying a device type (e.g., CPU, GPU) on each
OpenCL platform provided by each hardware vendor. Our
method does not limit the format of devices list; it is applica-
ble to applications that select a compute device from arbitrarily-
formatted lists that contains available compute devices.
Context

To utilize a compute device via OpenCL, applications create
an OpenCL context which is similar to a virtual computer. Before
executing tasks on a specific compute device, applications need
to compile their OpenCL C programs for the context that includes
the target compute device. This step is only needed for systems
that abstracts compute devices. In other cases, our method does
not need objects like OpenCL contexts.

In addition to applications that follow the above model, our
method can be applied to applications that have programs for both
CPUs and GPUs internally. For instance, a common web browser
called “Firefox” can use GPUs to accelerate its rendering. Accel-
eration can be enabled and disabled by changing settings stored
in the “prefs.js” profile. Therefore, we can also switch devices
on such applications by changing settings which are stored in
their setting files or Windows registries. Although opportuni-
ties to switch devices are limited to when applications read their
settings, this method also achieves binary compatibility with ex-
isting applications. Still, applications can bypass such compute
devices switching mechanisms to utilize a compute device arbi-
trarily. Therefore, our design cannot manage all of the compute
device assignment. However, this limitation is not a fundamental
problem. More precisely, some tasks such as graphics render-
ing always need a specific type of compute devices. Also, GPU
resource management mechanisms [24], [25] can work coopera-
tively with Torta to suppress problems caused by applications that
do not allow compute devices from switching.

3.2 Centralized Resource Management Mechanism
To eliminate the need for any modification of operating sys-

tems, we implemented the Resource Manager (RM) of Torta as

c© 2013 Information Processing Society of Japan 86

IPSJ Transactions on Advanced Computing Systems Vol.6 No.4 83–95 (Oct. 2013)

Fig. 4 Assumed environment and centralized resource management model.

a user-land application (middleware).
On the other hand, to achieve devices switching with bi-

nary compatibility, we implemented the API Hooking Module
(AHM) that hooks all OpenCL APIs to change compute device
assignment by cooperating with the RM.

Figure 4 shows the working layers of our work. (1) When ap-
plications try to utilize a device via an abstraction layer, Torta
hooks on to the APIs to change the APIs parameters and/or re-
turn values. (2) Then, the AHM asks the RM for the appropriate
device of the application. To decide on an appropriate device for
applications, the RM always collects various data such as devices’
loads and the user’s context. The RM can ask about the appropri-
ate device from the user when it cannot automatically decide it.
(3) The AHM changes parameter and/or return value according
to the answer of the RM. After that, the AHM calls the original
APIs of the abstraction layer. (4) As a result, applications use
more appropriate devices than originally specified.

To redirect device assignment, the RM and the AHM commu-
nicates with each other for sharing devices’ information. Firstly,
the AHM sends the list of all available compute devices to the
RM. Secondly, the RM chooses an appropriate device for the ap-
plication adaptively to the user’s context and preference, and an-
swers the selected device to the AHM. Thirdly, the AHM changes
the ID of the compute device during each API call to redirect the
device assignment. Lastly, the AHM sends the actual assignment
information into the RM. Following these steps, both device as-
signment information and device assignment authority are cen-
tralized. Therefore, Torta can achieve central resource manage-
ment between CPUs and GPUs.

3.3 Management of Users’ Contexts and Preferences
As stated in Section 2, resource management of heterogeneous

processors on PCs must be based on condition based assignment

in order to deal with users contexts and preferences. Because a
system cannot infer all the situations that are brought by his/her
context and preference, Torta asks the user to express his/her con-
text and preference via profiles. A profile corresponds to a con-
text; users create several profiles to express their contexts. A
profile is constructed from two parts, the condition part and the
assignment rule part. The condition part expresses the user’s con-
text. The assignment rule part expresses the user’s preference.
Therefore, Torta can assign the appropriate device expressed in
the profile which matches the current context.

To express situations, our method accepts various information
that can help express the user’s situation. Some examples include
where the user is, how many key strokes per minute, which part
of the display the user looking at, and so on. In particular, the
impact on the user experience varies depending on the user’s at-
tention to the application. However, we cannot easily imagine all
of them because collectible information strongly depends on the
hardware configuration. Therefore, we do not focus on creating
the format for expressing users’ contexts; our current implemen-
tation supports running applications and AC connection as inputs
to evaluate whole concept. Also, switching profiles adaptively to
user’s context is inevitably out of our focus because we have not
precisely defined how such information can be expressed.

On the other hand, expressing assignment rules is essential for
Torta to select devices internally. To avoid writing assignment
rules for all applications, we need to reduce the number of appli-
cations that express the preferred assignment. Real world appli-
cations can be generally classified into the following three types
according to the impact on the user experience and computation
intensity.
An impact on the user experience with computation intensity:
Applications such as 3D games, video players with rich image
processing, creative applications for multimedia such as video,
image and music usually have a large impact on the user experi-
ence when a user seriously works on the task with the application.
These applications are computationally intensive and need to be
responsive. In addition, users usually need to focus on such ap-
plications.
An impact on the user experience without computation inten-
sity: Applications like Microsoft Office file creation, music play-
back and access of encrypted file systems usually have a large
impact on the user experience. Slow response or sound skipping
makes users frustrated. However, these applications do not need
a large amount of computing resources.
A small impact on the user experience: Although applications
like file compression and video or audio file encoding are impor-
tant, such non real-time tasks do not affect the user experience
strongly. Even slow processing of these applications will rarely
frustrate the user.

According to this classification, we need special attention to
the assignment of compute devices to applications based on the
impact on the user experience and computationally intensity.
However, necessary computing resources vary depending on the
actual purpose of the application. In addition, importance of ap-
plications also vary depending on the user’s context and prefer-
ence. Therefore, we define the following two types of rules for

c© 2013 Information Processing Society of Japan 87

IPSJ Transactions on Advanced Computing Systems Vol.6 No.4 83–95 (Oct. 2013)

expressing assignments that adapt to the user’s preference.
Fixed Assignment

This rule fixes the assignment of a specific device to applica-
tions based on their importance to the user. Because this rule is
fixed, Torta always assigns the specified device to the application
even when the load of the target device is high. To make the sys-
tem more effective, we define the following two non-exclusive
options:
• Monopoly

This option assigns a specific device to a specific application.
Torta never assign the device to other applications managed
by Torta. However, we cannot achieve actual monopoly be-
cause Torta cannot manage all of the running applications.
Thus, we need other schedulers to ensure this option remains
effective: e.g., OSes’ schedulers for CPUs and schedulers of
modified drivers [24] for GPUs.

• Virtual
This option is needed for applications that Torta cannot man-
age assignment of devices. For instance, expressing a game
application with a GPU using this option helps to improve
frame rate of the game by switching the devices of other ap-
plications to the CPU.

Prioritized Assignment
This rule allows expressing the user desire to assign a specific

device to an application because the application is moderately im-
portant. Applications specified as Fixed Assignment always pre-
cede others. Torta cannot always assign specified device to Pri-

oritized applications. If the specified device is utilized by a Fixed

application in Monopoly mode, then Prioritized applications can-
not use the device.

To improve the effectiveness of this rule, we defined the fol-
lowing three non-exclusive options.
• Priority Level

Prioritized applications can compete with each other for the
same device. To give a specific device to a part of the com-
peting applications, Torta can use Priority Level to order
the applications’ importance. However, we do not focus on
creating an assignment algorithm using this value; testing
such algorithms needs a number of device switchable appli-
cations.

• Secondary Device
Prioritized applications with low priority levels may not be
able to use the specified device. Still, these applications are
important to the user. Therefore, this Secondary Device op-
tion allows the assignment of a device when the application
cannot use the firstly specified device. Priority Level option
also affects this option.

• Forbidden Device
Forbidden Device option allows specifying devices that the
system must not assign to a specific application. This op-
tion is useful when the application gets extremely slow with
a specific device, or when a specific device brings only tiny
performance improvement with huge power consumption.

The preference of processors assignment can be expressed like
the following (using XML in the implementation);
Device: CPU

Fixed: FileCompressor.exe

Device: iGPU

Fixed Virtual Monopoly: VideoPlayer.exe

Device: dGPU

Prioritized Level1: Simulator.exe

Secondary: CPU

A method that simply assigns faster device to important appli-
cations does not work well. For example, if that the most im-
portant application A was assigned to the fastest device α, it is
difficult for us to choose a device from device α or β for the sec-
ond most important application B. If application B works faster
by sharing device α with application A than monopolizing device
β, we need a threshold to regulate the performance degradation
of application A and the performance gain of application B. To
decide this threshold, a system needs a linear scale of applica-
tions’ importance like “application A is 3 times important than
the application B.” However, it is almost impossible since users
can order applications by importance. Calculating the importance
of applications is generally more difficult. Furthermore, if an ap-
plication is designed for real-time processing like video playback,
it does not need a device to achieve more than real-time interac-
tion. Besides, we cannot give the generalized score for the video
output of GPUs; only that the user prefers one over another. Con-
sequently, existing pure priority models are not applicable.

3.4 Interruption on Devices Selection
To utilize a compute device via OpenCL APIs, applications

perform the following steps based on the OpenCL specification:
(1) Acquire the list of devices to recognize the installed devices.
(2) Decide on the devices that can be used.
(3) Create a context that includes device(s) chosen in the previ-

ous step.
(4) Compile a program with the created context to utilize the

devices.
(5) Create a command queue to actually send instructions and

data by determining the device to use.
(6) Enqueue necessary transactions to the command queue, such

as data copying or OpenCL kernels.
To redirect device assignment, Torta changes the value of the

device ID when the application tries to assign a device by creat-
ing a context. We chose a method called API Hook to change the
device ID when applications call the OpenCL APIs. In our im-
plementation with Microsoft Windows 7, there are some choices
available to achieve API hooking. We chose the method of
“Wrapper DLL,” which is the shell of the original DLL that im-
plements all of the original entry points. To implement the same
APIs of the original, we extracted the original APIs from the orig-
inal DLL which was created by Khronos and included them in
the OpenCL SDKs. Then, as show in Fig. 5, we injected some
codes before and/or after calling the original APIs from the orig-
inal DLL. Codes were injected according to the OpenCL Refer-
ence Pages [1] to retain compatibility of the APIs. Placing the im-
plemented wrapper DLL with the original file name in the appli-
cation installed directory always forces to applications to execute
injected codes since applications load the DLLs in their installed
directory prior to the DLLs installed in the system directory. This

c© 2013 Information Processing Society of Japan 88

IPSJ Transactions on Advanced Computing Systems Vol.6 No.4 83–95 (Oct. 2013)

Fig. 5 Torta’s API hooking of original OpenCL.dll.

method has the advantage of stability brought by isolating each
API hook to the applications. The detailed information of all API
hooking methods and the comparison between methods are stated
in our previous work [18].

To switch devices on each application, the RM needs to know
all of the device IDs available on the target application. Because
some applications try to list only GPUs, the AHM lists all avail-
able devices by using the clGetDeviceIDs() API and then sends
the list to the RM. Then, the AHM waits until the applications
try to assign a device. In our current implementation, the AHM
asks the RM to decide on the device in order for the application
to create a context by calling clCreateContext() or clCreateCon-

textFromType(). Then, the RM decides on the device according to
the current profile and answers the appropriate device. The AHM
assigns a device by changing the device ID; it then sets the param-
eter cl device id *devices of clCreateContext() according to the
RM’s order. When applications call clCreateContextFromType(),
AHM substitutes clCreateContextFromType() with clCreateCon-

text() to create a context that includes only a device. After these
steps, applications keeps working as usual except the assigned
device.

In fact, it is possible to create a context with multiple de-
vices that belong to the same platform; OpenCL platforms are
vendor-provided drivers for OpenCL that include compilers for
compute devices. Although OpenCL’s ICD (Installable Client
Driver) system allows multiple OpenCL platforms concurrently,
the specification of OpenCL does not allow the creation of a con-
text with devices that belong to the different platforms. In our
previous work [18], we created a context with multiple devices
to achieve devices switching after creating a context. However,
Ref. [18] achieved device switching using only on a single plat-
form with a few applications. Actually, the supported functions
(e.g., OpenCL Extensions) of the devices are subtly different; cre-
ating a context with multiple devices limits the number of avail-
able functions supported by all devices in the context. Lack of
functions does not only decrease the performance of applications,
but also decreases applications’ compatibility. Therefore, Torta
always creates a context with only a single device. In addition,
compilation of OpenCL code is slightly faster on a context with a
single device than with multiple devices. Therefore, our current
implementation creates contexts that include only a single device.

Because of the API hooking stated above, applications are
forced to use the compute device which the resource manager of

Torta specified instead of the one the application specified. Actu-
ally, the current implementation of Torta can dynamically switch
computing devices at every context creation. Therefore, the fre-
quency of opportunities to switch devices depends on the imple-
mentation of each application. More precisely, opportunities to
switch devices are restricted to every context creation according
to the OpenCL specification. Each abstraction layer of processors
has different opportunities to switch devices dynamically.

3.5 Device Information Handling
Even using an abstraction layer like OpenCL, applications still

need to collect detailed device information to optimize their per-
formance. Some applications collect the information of all de-
vices before assigning a device. On such applications, changing
the device ID can cause incoherence of the device information.
This inconsistent information not only causes performance degra-
dation, but it can also cause unexpected behavior in the applica-
tion. Therefore, Torta improves the applications’ compatibility
by using the following three methods.
Changing Device Type Information

Some applications show incomprehensible behavior when the
information of device type (e.g., CPU, GPU) is inconsistent.
For instance, one such application returns an error when a
CPU is assigned to it even though the application specified a
GPU device. Therefore, the AHM of Torta inquires the cam-

ouflaged device type from the RM when the application in-
voked an OpenCL API clGetDeviceInfo() with cl device info

param name as CL DEVICE TYPE to acquire information of
the device type. After the RM answers the device type as
CPU or GPU, the AHM changes the information of device type
by setting void *param value as CL DEVICE TYPE CPU or
CL DEVICE TYPE GPU.
Remapping Device IDs

To prevent making inconsistent device information, Torta
remaps device IDs after assigning a device by creating a context.
When one of the application’s threads finishes creating a context,
the AHM remaps the device ID to the one which is actually as-
signed when the application calls the information acquiring API
called clGetDeviceInfo(). Therefore, acquired information from
the device matches the information of the one that was actually
assigned. The AHM keeps remapping device IDs during the con-
text until the context is released by clReleaseContext().
Correcting Information After Assigning a Device

Each device has different limitation on the maximum working
array size in order to execute parallelized tasks. Although appli-
cations usually confirm this limitation before utilizing the device,
this information also becomes inconsistent by devices switching.
If the array size exceeds the limitation of the assigned device,
the application will crash or stop with errors. Therefore, Torta
changes such information retained by applications after switching
devices. In our current implementation, Torta changes a parame-
ter of clEnqueueNDRangeKernel(), size t local work size. In the
OpenCL specification, size t global work size must be divisible
by size t local work size. This value is rounded to an integer by
the AHM.

c© 2013 Information Processing Society of Japan 89

IPSJ Transactions on Advanced Computing Systems Vol.6 No.4 83–95 (Oct. 2013)

3.6 Control of the Number of Recognized Devices
Some applications utilize multiple devices concurrently to im-

prove performance. However, if an application utilizes all of the
installed GPUs concurrently, other GPU-accelerated applications
will suffer performance degradation. For example, when such ap-
plications are executed on a PC with two GPUs (an iGPU and a
dGPU), both GPUs will be used. In some cases, Torta redirects
GPU assignment to the other GPU (iGPU & dGPU to dGPU &
dGPU). However, this causes meaningless overhead because of
the task distribution on to the same GPU.

In fact, these applications decide on the concurrency by using
the number of devices they recognized. Therefore, Torta limits
the number of devices that are shown to such applications. Due
to the OpenCL specification that a command queue can deal with
only a compute device, such applications need to create and use
multiple command queues at once in order to use multiple GPUs
concurrently. Therefore, Torta can recognize that the application
is implemented as using multiple GPUs concurrently. Reading
loads of devices also helps Torta to recognize devices utilization
by applications. Then, applications will try to utilize only a GPU
because Torta shows only a single GPU. This method prevents
performance degradation of other applications and the target ap-
plication because of the task distribution. The limit on the num-
ber of devices can be any natural number less than the number of
available devices.

Torta changes the parameter of cl uint num entries in clGet-

DeviceIDs() in order to limit the maximum number of devices
on the list. Because clGetDeviceIDs() can list only devices in a
platform, applications need to invoke this API as many times as
the platforms installed on the PC. The AHM asks the RM the
maximum number of devices for the application when the appli-

cation is launched since most applications list available devices
only when they are launched. Torta distributes remaining slots
of devices to platforms in order to control the total number of
devices shown.

On the other hand, Torta can increase the number of
devices shown by changing cl device type device type to
CL DEVICE TYPE ALL from CL DEVICE TYPE CPU or
CL DEVICE TYPE GPU. This not only improves the appli-
cations’ compatibility, but is also helps in the increase of the
concurrency of the applications’ tasks distribution.

4. Evaluation

To demonstrate the deployability of our method, we evaluated
the compatibility with various hardware and software, and the
performance effects of Torta. Also, we compared Torta with other
existing approaches.

4.1 Evaluation Environment
We chose the OpenCL platforms shown in Table 1 on Win-

dows 7 x64 and x86 for our experiments.
As for hardware configurations, we prepared the PCs shown in

Table 2.
As target applications for the switching devices, we chose the

following applications:

Table 1 OpenCL platforms used in our experiments.

Target Processors OpenCL Platform

Intel CPUs
Intel SDK for
OpenCL* Applications 2012 [20]

Intel iGPUs
Intel HD Graphics
Driver 8.15.10.2761 [19]

AMD CPUs
(incl. Intel CPUs) AMD APP SDK ver. 2.7 [4]

AMD GPUs
(incl. AMD/Intel CPUs)

Catalyst Software Suite with
.NET 4 Support 12.10 [5]
(Catalyst Software Suite 12.6 on PC(A) 64 bit)

nVidia GPUs GeForce 306.97 Driver [32]

Benchmark/Simulation Applications
• DirectComputeBenchmark ver.0.45b [31]
• N-Queen Solver for OpenCL [10] (recompiled with Visual

Studio 2010 SP1)
• ratGPU ver.0.5.5 [35]
• LuxMark ver.2.0 32 bit [27]

Utilities
• WinZIP ver.17.0 (10283) 32 bit [38]
• FLACCL (in CUETools) ver.2.1.4 [12]

Image Processing Applications
• Adobe Photoshop CS6 EXTENDED ver.13.0.1 x32 [3]
• GIMP ver.2.8.2 x86 [37]
• PhotoMonkee ver.0.56b [39]

Video Processing Applications
• vReveal 3 ver.3.2.0.13029 [30]
• x264 with OpenCL lookahead patch rev.2230+696 tMod [2]

4.2 Switching Compatibility
To evaluate the compatibility of Torta, we evaluated device

switching of the applications stated in Section 4.1. Table 3 shows
the results of these experiments. The denominators and numera-
tors show the number for all PCs and switching respectively.

As a result, Torta achieved devices switching on 87.5% of all
applications. Torta also achieved devices switching through any
combination of devices with 6 out of 8 applications. Even with
1 out of 8 applications, Torta achieved device switching through
any combination of devices on 40% of tested PCs.

PCs used for our experiment include ones with complicated
hardware configurations, such as ones with all three OpenCL plat-
forms (A, C, E) and ones with multiple GPUs (A, B, D, E). Thus,
the experimental result demonstrates that Torta can achieve de-
vice switching on most modern PCs.

Experimented applications can be classified into the following
four types:
Completely Switchable

Torta is completely compatible with DirectComputeBench-
mark, N-Queen Solver for OpenCL, ratGPU, LuxMark, GIMP
and PhotoMonkee. Torta could switch devices except those which
are originally incompatible with applications. Intel HD Graphics
4000 on ratGPU and AMD’s GPUs and CPUs on PhotoMonkee
were originally incompatible. Because GIMP’s installer does not
allow installing x86 binary on x64 platform, we experimented
GIMP on PC(A) with the x86 OS only.
Partially Switchable

Torta could switch devices for most of the available devices on

c© 2013 Information Processing Society of Japan 90

IPSJ Transactions on Advanced Computing Systems Vol.6 No.4 83–95 (Oct. 2013)

Table 2 The result of compute device switching compatibility on each application.

Type CPU GPU1 GPU2 GPU3
(A) Desktop Intel Core i7-3770K HD Graphics 4000 (iGPU) AMD RADEON HD 7770 GHz Edition nVidia GeForce GTX 660

(B) Desktop AMD FX-8150 RADEON HD 6970 AMD RADEON HD 6970 GeForce GTX 550 Ti

(C) Laptop Intel Core i7-2760QM (HD Graphics 3000 iGPU) GeForce GT 555M none

(D) Laptop AMD A6-3400M RADEON HD 6520G (iGPU) AMD RADEON HD 6650M none

(E) Ultrabook Intel Core-i7 3517U HD Graphics 4000 (iGPU) nVidia GeForce GT620M none

Table 3 Compute devices switching compatibility on real applications.

Application Name Perfectly Compatible PCs Partially Compatible PCs Succeed Assignment Combinations Succeed Combination Ratio

DirectComputeBenchmark 5/5 0/5 58/58 100%

N-Queen Solver for OpenCL 5/5 0/5 19/19 100%

ratGPU 5/5 0/5 17/17 100%

LuxMark 5/5 0/5 19/19 100%

FLACCL 0/5 2/5 4/19 21.1%

GIMP 1/1 0/1 5/5 100%

PhotoMonkee 4/4 0/4 11/11 100%

x264 with OpenCL 2/5 3/5 12/15 80.0%

vReveal 3 N/A N/A N/A N/A

Photoshop CS6 N/A N/A N/A N/A

WinZIP N/A N/A N/A N/A

x264 with OpenCL lookahead patch. It could not switch devices
into CPUs via the AMD platform on PCs that have RADEON
GPU(s). When we tried to switch the device into CPUs via the
AMD platform, the application showed CL INVALID ARG SIZE

error on clSetKernelArg() due to inconsistent information about
the devices.
Not Switchable

Torta could not switch devices except GPUs in the first plat-
form on FLACCL. Because FLACCL is a .NET application, it
calls the OpenCL APIs via a .NET class library: OpenCLNet.dll.
This specification limits Torta’s switching capability. Switch-
ing into a device on another platform caused KeyNotFoundEx-

ception. On the other hand, switching into CPUs on the same
platform caused INVALID WORK GROUP SIZE error on clEn-

queueNDRangeKernel() due to inconsistent devices’ information.
However, we could not apply the information correcting methods
stated in Section 3.5 due to the restrictions of .NET.
Excluded from Our Experiment

Photoshop CS6, WinZIP and vReveal 3 were excluded from
our experiments because they have fatal problems during our
experiments with Torta. Photoshop and WinZIP do not load
OpenCL.dll. However, our current implementation only targets
applications that load OpenCL.dll to call OpenCL APIs. On
the other hand, vReveal 3 could not launch the application with
Torta’s AHM (OpenCL.dll). Because of the application’s compi-
lation options and the difference between linked MSVCRT ver-
sions, it crashed with MSVCRT R6030 [28] error. Because it is a
problem with the OS, we excluded vReveal 3.

4.3 Overhead
To evaluate the overhead caused by the cost of device switch-

ing, we measured the execution time of the N-Queen Solver for

OpenCL with Torta and without Torta. Figure 6 shows the per-
formance difference between these two conditions.

We experimented with PC(A) and chose RADEON HD
7770 GHz Edition as the target compute device. To mea-

Fig. 6 Overhead of Torta on N-Queen Solver for OpenCL.

sure the execution time, we used the “Measure-Command”
cmdlet of PowerShell. Measure-Command{.\nqueen_cl.exe
-platform 0 N}

To calculate the ratio of the original execution time to Torta’s
overheads, we changed the N (board size) value of the command
line option, from 16 to 18. To minimize the impact of other fac-
tors, we used a RAMDisk and calculated the average over 5 repli-
cate experiments.

As a result, Torta causes 1.7% of the overhead for handling de-
vices’ information, switching device IDs and other API wrapping
when N=16. However, the overhead kept decreasing according
to the board size. It became 0.2% when N=17. Moreover, when
N=17 or N=18, it seems there is no significant difference accord-
ing to a 95% confidence interval between the execution time of
the two conditions. As expected, hooking APIs results in a small
overhead. Thus, Torta cannot shorten the execution time. How-
ever, real applications utilize GPUs as GPGPU only for heavy
processing like N=18. Torta’s overheads are negligible in most
cases.

4.4 Performance Degradation
Torta cannot always avoid creating inconsistent devices’ infor-

mation in spite of its information correction functions. How-
ever, some applications optimize their processing adaptively to
the specifications of the device, such as the number of compute

c© 2013 Information Processing Society of Japan 91

IPSJ Transactions on Advanced Computing Systems Vol.6 No.4 83–95 (Oct. 2013)

Fig. 7 Result of performance degradation on DirectComputeBenchmark.

Fig. 8 Result of performance degradation on ratGPU.

Fig. 9 Result of performance degradation on LuxMark.

units and the hierarchy of device memory. Therefore, we com-
pared the scores of three benchmark applications under the fol-
lowing conditions: switching the applications’ devices with Torta
and executing applications without Torta. Figures 7, 8 and 9
show the results of the relative benchmark scores.

We experimented with PC(A) and used a RAMDisk, just like
the previous experiment. As a result, Torta caused 1.3% of
performance penalty in the worst case and caused only 0.20%
of performance penalty on average. Rather, Torta improved
benchmark scores on DirectComputeBenchmark. Torta does not
only make possible for the application to utilize RADEON HD
7770 GHz Edition which is not originally recognized by Direct-
ComputeBenchmark, but it also makes it possible to utilize two
devices concurrently. Thus, utilizing multiple GPUs significantly
increases the score of the benchmark.

4.5 Performance Protection for an Important Application
Since users’ preferences vary, we cannot easily evaluate the

degradation of the user experience objectively. Therefore, we
measured the FPS of video playback by executing other GPU-
intensive applications with and without Torta. We assumed the
context is that the user is watching a video. The user prefers real-
time video playback and he/she does not allow even a few frame
droppings. Figure 10 shows FPS of the video playback of each

Fig. 10 FPS of video playback during multiple GPU-accelerated applica-
tion running.

second under each condition. For example, 30 along the X-axis
means that the FPS is greater than or equal to 30 and less than 40.
The bar on 30 means that there are eight seconds that matches the
range of FPS stated above.

We measured the FPS of Splash PRO EX utilizing HD Graph-
ics 4000 on PC(A). Other applications that were executed were
the N-Queen Solver for OpenCL, DirectComputeBenchmark and
LuxMark. Although DirectComputeBenchmark and LuxMark
select HD Graphics 4000 by default, N-Queen Solver for OpenCL
does not. To keep the FPS of the video playback, Torta redi-
rected the device of additional applications to another GPU called
GeForce GTX 660. As a result, with Torta, the FPS of the video
playback stays at 60 FPS (real-time) even when all three of the ad-
ditional applications were executed. On the other hand, without
Torta, the FPS of video playback decreased to about 46 on aver-
age when two additional applications were executed. Also, the
FPS decreased to about 14 on average when three additional ap-
plications were executed. This result demonstrates that Torta can
prevent degradation of the user experience at least under specific
conditions. Torta achieved realtime video playback as in existing
studies [24], [34] with more restricted conditions such as binary
compatibility with existing applications.

4.6 Effectiveness of Device Assignment According to Users’
Contexts and Preferences

To evaluate the effectiveness of our concept, we compared two
device assignment models; an existing priority based model and
Torta’s model.

We assumed that a video playback application (Task A) and
another GPU application (Task B) work concurrently on a PC
with two different GPUs. GPU0 is two times faster than GPU1.
On the current user’s context, the user concentrates on watching
the video. Therefore, the user prefers video playback on GPU1
because of the video quality. The GPU load caused by video
playback is moderate; 30% on GPU0 and 60% on GPU1.

Table 4 shows the assigned device of video playback (Task
A) and another GPU application (Task B). When using a priority
model based on the devices’ computation resource, giving higher
priority to Task A forces device assignment to Task A. Task A is
always executed on the faster device, GPU0. The device assign-
ment caused by low priority is better than one with high priority.
In this case, prioritizing tasks does not make sense at all. To
make devices assignment on priority models as correct as Torta’s

c© 2013 Information Processing Society of Japan 92

IPSJ Transactions on Advanced Computing Systems Vol.6 No.4 83–95 (Oct. 2013)

Table 4 Comparison of devices assignment models.

Load of GPU0 (which is faster than GPU1) caused
when Task B is executed on the GPU0. 0% 25% 50% 75%

Assigned Device

Task A Task B Task A Task B Task A Task B Task A Task B

Without Torta
(Target’s priority is set as higher than another.) GPU0 N/A GPU0 GPU0 GPU0 GPU1 GPU0 GPU1

Without Torta
(Target’s priority is set as lower than another.) GPU0 N/A GPU1 GPU0 GPU1 GPU0 GPU1 GPU0

With Torta (Target has right to monopoly GPU1) GPU1 N/A GPU1 GPU0 GPU1 GPU0 GPU1 GPU0

Table 5 Approaches for GPU resource management or tasks distribution on heterogeneous processors.

OS Modification [25], [34] Driver Modification [24] Original Libraries [8], [13], [22] Torta

Adapts with existing GPGPU applications No Yes No Yes (OpenCL)

Adapts with other existing GPU-accelerated applications No Yes No Depends

Distributes tasks between CPUs and GPUs Depends No Yes Yes

Adapts with new GPUs cooperation technologies Difficult Quickly Easily Easily

Overheads of resource management Small Small Large Large

Granularity of tasks distribution Depends Small Small Large

Supports GPU resource management Yes Yes No No

Needs modification of applications Yes No Yes No

Cost of installation Heavy Small Little Little

Short-term Deployability Low Depends on GPU vendors None High

assignment, we need to combine users’ preferences into the pri-
ority models. Interestingly, GPU1 should be assigned to Task A
even when the context is that the user does not concentrates on
watching the video. If Task A is not important to the user, Task A
should work on a device with smaller computing resource. How-
ever, assigning GPU1 statically to Task A is a bad idea. In another
context, Task C may need to monopolize GPU1 to satisfy the user.

This comparison demonstrates that existing priority models are
not suitable for assigning a different device causes a non-linear ef-
fect. Reading processors’ load does not help to improve the user
experience under such non-linear conditions. The comparison
also shows that applying users’ contexts and preferences gives
better assignment performance than priority models under some
conditions. Our method helps to improve the user experience by
condition based assignment.

4.7 Approaches Comparison
Our experimental results demonstrate that our approach is de-

ployable and effective. Thus, we compared our approach with
other existing approaches.

Table 5 shows the difference between the OS modification ap-
proach, the driver modification approach, the original library ap-
proach and our approach.

When compared to the OS modification approaches, Torta has
an advantage in terms of practicality. Our experiments demon-
strate its outstanding deployability. However, Torta has a dis-
advantage of performance overheads and granularity of resource
management. It only distributes tasks between compute devices;
it does not manage the resource of GPUs. Also, the OpenCL
specification limits the granularity of task distribution. When
compared to the driver modification approaches, Torta has the ad-
vantage of tasks distribution. As stated in Section 2.5, the drivers
modification methods only optimize the resource management
of the GPUs provided by the specific GPU vendors. Therefore,

driver modification approaches cannot distribute tasks between
GPUs and CPUs. However, Torta has the disadvantage of over-
heads, the number of target applications and the granularity of
resource management. Thus, driver modification approaches and
our approach are complementary rather than competitive. When
compared to the original libraries approaches, Torta has one no-
table advantage: compatibility with practical applications. How-
ever, Torta has disadvantage in terms of the granularity of task
distribution because the granularity of task distribution and bi-
nary compatibility are trade-offs.

Although this comparison shows relative advantages of Torta,
this paper does not focus on showing the supremacy of
middleware-based solutions. To apply our concept to PC envi-
ronments in the near future, creating middleware fulfills require-
ments well.

5. Related Work

Task distributing among heterogeneous processors
Harmony [13] and other studies [8], [22], [26] propose meth-

ods for scheduling tasks between heterogeneous processors. Al-
though they achieve improvement for existing metrics such as
performance and power consumption, their schedulers are not
enough for preventing poor user experience on PCs.
Extending existing task distributing frameworks

Hybrid OpenCL [7] and others [6], [33] extend OpenCL to al-
low applications to utilize compute devices on remote hosts. Al-
though our current implementation only assumes local compute
devices, adapting these works to ours will allow some tasks to be
offloaded to the cloud.
Resource management on GPUs

TimeGraph [24] and GERM [9] propose driver based systems
for achieving fair resource allocation on GPUs between multiple
applications. Since Torta lacks fine-grained GPU resource man-
agement, it works more effectively with them than works alone.

c© 2013 Information Processing Society of Japan 93

IPSJ Transactions on Advanced Computing Systems Vol.6 No.4 83–95 (Oct. 2013)

Gdev [25] and PTask [34] are OS extensions for GPU resource
management. Although they are effective, modification of OSes
need a long time. Scheduling methods proposed in Ref. [23] also
provide isolation between competitive graphics tasks. However,
it does not deal with minor tasks of GPUs such as video decoding
and encoding.
GPU virtualization

GViM [16] and other studies [14], [36] virtualize a GPU on a
hypervisor to share GPUs between multiple VMs. However, their
works deal with only limited GPU utilization purposes; they are
not easily applicable to PC platforms.
GPU acceleration

Many acceleration studies are applicable to PC environments.
Some studies [17] propose offloading methods for encryption.
Meanwhile, Ref. [11] accelerates video encoding using GPUs.
Many studies [15], [21] use GPUs for accelerating image anal-
yses and tracking. Increasing the number of purposes of GPUs
increases the necessity of tasks distribution between CPUs and
GPUs.

6. Conclusion

This paper has presented a centralized processors assignment
middleware called Torta that achieves heterogeneous processors
assignment on real applications for PCs. It realizes switching
compute devices (almost the same as processors) on real applica-
tions by enabling to hook to OpenCL APIs without any modifi-
cation of applications. In addition, Torta uses a condition based
model to assign compute devices instead of existing priority mod-
els. It allows the appropriate device assignment to adapt to users’
contests and users’ preferences.

Our experiment using eight practical applications has shown
that Torta achieves binary-compatible processors switching with
only an average performance penalty of 0.2%. In one particular
case where a video playback application is executed with other
three GPU-intensive applications, our mechanism enables users
to enjoy the video playback with 60 FPS while the FPS decreases
to 14 without the mechanism. The results demonstrate the feasi-
bility and effectiveness of our method.

As future work, we plan to design a scheme for expressing
users’ contexts and preferences, and a user friendly GUI for pro-
files creation that abstracts raw processors’ assignment rules. In
addition, we plan to expand our method into other resource man-
agements such as priorities of application processes. Our goal is
to adapt users’ contexts and preferences to resource management
for user interactive devices to improve the overall user experi-
ence.

References

[1] OpenCL 1.2 Specification, available from 〈http://www.khronos.org/
registry/cl/specs/opencl-1.2.pdf〉.

[2] x264 rev2230+696 tMod/avs4x264mod 0.9.0, available from
〈http://astrataro.wordpress.com/2012/11/11/x264-rev2230696-tmod-
avs4x264mod-0-9-0/〉.

[3] Adobe Systems Incorporated: Adobe Photoshop CS6 Extended, avail-
able from 〈http://www.adobe.com/products/
photoshopextended.html〉.

[4] Advanced Micro Devices, Inc.: Accelerated Parallel Processing (APP)
SDK, available from 〈http://developer.amd.com/tools/heterogeneous-
computing/amd-accelerated-parallel-processing-app-sdk/downloads/

download-archive/〉.
[5] Advanced Micro Devices, Inc.: AMD Catalyst Display Driver for

Windows Vista/Windows 7, available from 〈http://support.amd.com/
us/gpudownload/windows/Pages/radeonaiw vista64.aspx〉.

[6] Aoki, R., Oikawa, S., Tsuchiyama, R. and Nakamura, T.: Improving
Hybrid OpenCL Performance by High Speed Network, Proc. ICNC,
pp.262–263 (2010).

[7] Aoki, R., Oikawa, S., Tsuchiyama, R. and Nakamura, T.: Hybrid
OpenCL: Connecting Different OpenCL Implementations over Net-
work, Proc. IEEE CIT, pp.2729–2735 (2010).

[8] Augonnet, C., Thibault, S., Namyst, R. and Wacrenier, P.-A.: StarPU:
a unified platform for task scheduling on heterogeneous multicore ar-
chitectures, Proc. Concurrency and Computation: Practice and Expe-
rience, Vol.23, No.2, pp.187–198 (2011).

[9] Bautin, M., Dwarakinath, A. and Chiueh, T.: Graphic engine resource
management, Proc. MMCN, Vol.6818 (2008).

[10] N-Queen Solver for OpenCL, available from 〈http://forum.beyond3d.
com/showthread.php?t=56105〉.

[11] Chen, W.-N. and Hang, H.-M.: H.264/AVC motion estimation impl-
mentation on Compute Unified Device Architecture (CUDA), Proc.
ICME, pp.697–700 (2008).

[12] FLACCL, available from 〈http://www.cuetools.net/wiki/FLACCL〉.
[13] Diamos, G.F. and Yalamanchili, S.: Harmony: An execution model

and runtime for heterogeneous many core systems, Proc. ACM HPDC,
pp.197–200 (2008).

[14] Dowty, M. and Sugerman, J.: GPU virtualization on VMware’s hosted
I/O architecture, Proc. ACM SIGOPS Operating Systems Review,
Vol.43, No.3, pp.73–82 (2009).

[15] Fung, J. and Mann, S.: OpenVIDIA: Parallel GPU computer vision,
Proc. ACM Multimedia, pp.849–852 (2005).

[16] Gupta, V., Gavrilovska, A., Schwan, K., Kharche, H., Tolia, N.,
Talwar, V. and Ranganathan, P.: GViM: GPU-accelerated virtual ma-
chines, Proc. HPCVirt 2009, pp.17–24 (2009).

[17] Harrison, O. and Waldron, J.: AES Encryption Implementation and
Analysis on Commodity Graphics Processing Units, Proc. CHES,
Paillier, P. and Verbauwhede, I. (Eds.), Vol.4727, pp.209–226 (2007).

[18] Horikawa, T., Honda, M., Nakazawa, J., Takashio, K. and Tokuda,
H.: PACUE: Processor Allocator Considering User Experience, Proc.
Euro-Par 2011: Parallel Processing Workshops, pp.335–344 (2012).

[19] Intel Corporation: Intel HD Graphics Driver for Windows* 7, avail-
able from 〈http://downloadcenter.intel.com/Detail Desc.
aspx?lang=eng&changeLang=true&DwnldId=21476〉.

[20] Intel Corporation: Intel SDK for OpenCL* Applications 2012, avail-
able from 〈http://software.intel.com/en-us/vcsource/tools/
opencl-sdk〉.

[21] Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli,
P., Shotton, J., Hodges, S., Freeman, D., Davison, A. and Fitzgibbon,
A.: KinectFusion: real-time 3D reconstruction and interaction using a
moving depth camera, Proc. ACM UIST, pp.559–568 (2011).

[22] Jiménez, V.J., Vilanova, L., Gelado, I., Gil, M., Fursin, G. and
Navarro, N.: Predictive Runtime Code Scheduling for Heterogeneous
Architectures, Proc. HiPEAC, pp.19–33 (2009).

[23] Kato, S., Lakshmanan, K., Ishikawa, Y. and Rajkumar, R.: Resource
Sharing in GPU-Accelerated Windowing Systems, Proc. IEEE RTAS,
pp.191–200 (2011).

[24] Kato, S., Lakshmanan, K., Rajkumar, R. and Ishikawa, Y.: Time-
Graph: GPU Scheduling for Real-Time Multi-Tasking Environments,
Proc. USENIX ATC, pp.17–30 (2011).

[25] Kato, S., McThrow, M., Maltzahn, C. and Brandt, S.: Gdev: First-
Class GPU Resource Management in the Operating System, Proc.
USENIX ATC, pp.37–48 (2012).

[26] Luk, C.-K., Hong, S. and Kim, H.: Qilin: Exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping, Proc. IEEE
ACM MICRO, pp.45–55 (2009).

[27] LuxMark, available from 〈http://www.luxrender.net/wiki/LuxMark〉.
[28] Microsoft Corporation: C Run-Time Error R6030, available from

〈http://msdn.microsoft.com/en-us/library/9ecfyw6c.aspx〉.
[29] Mirillis Ltd.: Splash PRO EX, available from 〈http://mirillis.com/en/

products/splashexport.html〉.
[30] MotionDSP Inc.: vReveal Video Enhancement Software, available

from 〈http://www.vreveal.com/〉.
[31] NGOHQ.com: DirectCompute & OpenCL Benchmark, available from

〈http://www.ngohq.com/graphic-cards/
16920-directcompute-and-opencl-benchmark.html〉.

[32] NVIDIA Corporation: NVIDIA DRIVERS 306.97WHQL, available
from 〈http://www.nvidia.com/object/
win8-win7-winvista-64bit-306.97-whql-driver.html〉.

[33] Ozaydin, R. and Altilar, D.: OpenCL Remote: Extending OpenCL
Platform Model to Network Scale, Proc. HHPCC-ICESS, pp.830–835
(2012).

[34] Rossbach, C.J., Currey, J., Silberstein, M., Ray, B. and Witchel, E.:

c© 2013 Information Processing Society of Japan 94

IPSJ Transactions on Advanced Computing Systems Vol.6 No.4 83–95 (Oct. 2013)

PTask: operating system abstractions to manage GPUs as compute
devices, ACM SOSP, pp.233–248 (2011).

[35] Santiago Orgaz: ratGPU, available from 〈http://www.ratgpu.com/〉.
[36] Shi, L., Chen, H., Sun, J. and Li, K.: vCUDA: GPU-Accelerated High-

Performance Computing in Virtual Machines, IEEE Trans. Comput.,
Vol.61, No.6, pp.804–816 (2012).

[37] The GIMP Team: GIMP, available from
〈http://gimp-win.sourceforge.net/〉.

[38] WinZip Computing: WinZip, available from 〈http://www.winzip.com/
win/en/index.htm〉.

[39] Zimventures, LLC: PhotoMonkee, available from
〈http://photomonkee.com/〉.

Tetsuro Horikawa received his BIS
(2011) and ME (2013) from Keio Univer-
sity. His research interests include high
performance computing, context-aware
services, ubiquitous computing systems
and audio digital signal processing.

Jin Nakazawa is an Associate Professor
of the Faculty of Environment and Infor-
mation Studies, Keio University, Japan.
He obtained his B.S. (1998), M.S. (2000),
and Ph.D. (2003) from Keio University.
His research interests include dependable
systems, dependability assurance, ubiqui-
tous computing systems, sensor networks,

and distributed middleware systems. He is a member of IEEE,
ACM, IPSJ, and IEICE.

Kazunori Takashio is an Associate Pro-
fessor in the Faculty of Environment and
Information Studies at Keio University,
Japan. He received his Ph.D. in computer
science from Keio University. He spe-
cializes in mobile and ubiquitous comput-
ing. His research interests include real-
time distributed systems, mobile agents,

context-aware services and applications, and privacy protection
in ubiquitous computing environment. He is a member of ACM,
IEEE, IPSJ and JSSST. He was a Visiting Researcher of Institute
for Cognitive Systems (ICS), Technische Universitaet Muenchen
(TUM) in 2012–2013.

Hideyuki Tokuda is the Dean of the
Graduate School of Media and Gover-
nance and a Professor of the Faculty
of Environment and Information Stud-
ies, Keio University, Japan. He ob-
tained his B.S. (1975), M.S. (1977) from
Keio University and Ph.D. (Computer Sci-
ence) (1983) from University of Waterloo,

Canada, respectively. His research interests include ubiquitous
computing systems, decentralized autonomous systems, embed-
ded systems, sensor networks, and smart spaces. He is a cor-
responding member of Science Council of Japan, IPSJ Fellow,
JSSST Fellow, and a member of IEEE, ACM, IPSJ, IEICE, and
JSSST.

c© 2013 Information Processing Society of Japan 95

