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Uniformly Random Generation of Floorplans

Katsuhisa Yamanaka1,a) Shin-ichi Nakano2,b)

Abstract: In this paper we deal with problems on generating mosaic floorplans uniformly at random. We propose an
algorithm that generates mosaic floorplans with f faces uniformly at random in polynomial time for each. To the best
of our knowledge, this is the first such polynomial-time algorithm. By modifying the algorithm, we give two more
algorithms to generate mosaic floorplans with some specified properties uniformly at random.

1. Introduction
It is useful to have means to generate (or sample) objects in

a specified class uniformly at random, to have good test data, or
good choice, especially in probabilistic algorithms. Several al-
gorithms to generate graphs in a class uniformly at random are
known, for trees [2], triangulations [6] and bipartite permutation
graphs [7], etc. In this paper we design an algorithm to generate
mosaic floorplans with f faces uniformly at random.

A mosaic floorplan is a structure of a partition of a rectangle
into rectangles. See some examples in Fig. 1. Mosaic floorplans
are one of basic models for VLSI design [4], [5]. The number of
mosaic floorplans with f faces is known [8]. A one-to-one corre-
spondence between mosaic floorplans and Baxter permutations is
known [1], [3]. Also the number of mosaic floorplans with some
properties is known [1].

Our idea for a random generation is as follows. First we define
a tree T f , called the classification tree, in which (1) each leaf in
the tree corresponds to a distinct mosaic floorplan, and (2) each
vertex v in the tree corresponds to the set of mosaic floorplans
corresponding to the leaves in the subtree rooted at v. See Fig. 5.
The mosaic floorplans corresponding to a vertex is partitioned
into subsets, each of which corresponds to a child of the vertex.
Thus each path from the root to a leaf corresponds to a distinct
mosaic floorplan with f faces. So if we can choose such paths
uniformly at random then we can generate mosaic floorplans uni-
formly at random. Such paths can be chosen uniformly at random
as follows. Assume that we are now at vertex v in T f and v has
children c1, c2, . . .. Which child should we choose as the next ver-
tex of the path? We first compute the number, say M(v), of leaves
in the subtree rooted at v, and the number, say M(ci), of leaves
in the subtree rooted at ci for each i. Then with the probability
M(ci)/M(v) we choose each child ci.

1 Department of Electrical Engineering and Computer Science, Iwate Uni-
versity, Ueda 4-3-5, Morioka, Iwate 020-8551, Japan. Information Pro-
cessing Society of Japan

2 Department of Computer Science, Gunma University, Tenjin-cho 1-5-1,
Kiryu, Gunma 376-8515, Japan.

a) yamanaka@cis.iwate-u.ac.jp
b) nakano@cs.gunma-u.ac.jp

(a) (b) (c)
Fig. 1 Examples of mosaic floorplans.

With similar idea, but modified classification trees, we give two
more algorithms to generate mosaic floorplans with some speci-
fied properties uniformly at random.

The structure of the paper is as follows. Section 2 gives some
definitions. Section 3 defines the classification tree. Section 4
gives our first random generation algorithm. Section 5 gives two
more random generation algorithms for mosaic floorplans with
some specified properties. Section 6 is a conclusion.

2. Definitions
In this section we give some definitions.
A mosaic floorplan is a structure of a partition of a rectangle

into rectangles, called faces. See some examples in Fig. 1. The
unbounded face is the outer face, and other faces are inner faces.

Two mosaic floorplans M1 and M2 are isomorphic if there exist
(1) a one-to-one correspondence between maximal vertical line
segments and (2) a one-to-one correspondence between maximal
horizontal line segments such that the set of faces located to the
left and right of each maximal vertical line segment and the set of
faces located to the top and bottom of each maximal horizontal
line segment are preserved, respectively. For instance the three
mosaic floorplans in Fig. 1 are isomorphic. Intuitively mosaic
floorplans are isomorphic if and only if they can be converted to
each other by sliding some maximal horizontal and vertical line
segments, preserving the sets of faces located to the top, bottom,
left and right of each maximal line segment.

We assume no degree four vertex appears in any mosaic floor-
plan. A vertex with degree three is w-missing (west missing)
if it has line segments to the top, bottom and right. Similarly
we define e-missing (east missing), n-missing (north missing), s-
missing (south missing).
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Fig. 2 (a) An upward removable face and (b) a leftward removable face.
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Fig. 3 Removing the first face.

Now we define a floorplan for each set of isomorphic mosaic
floorplans as follows. A mosaic floorplan is a canonical floorplan
if any s-missing vertex appears on the left of any n-missing vertex
on any horizontal line segment, and e-missing vertex appears on
the top of any w-missing vertex on any vertical line segment. For
instance, the mosaic floorplan in Fig. 1(c) is a canonical floorplan.

Let C be a canonical floorplan with f > 1 inner faces. The
inner face of C having the upper-left corner of the outer face is
called the first face of C. The first faces are shaded in Figs. 2–4.
Let v be the lower-right corner vertex of the first face F of C. If
v is e-missing (See Fig. 2(a)), then by continually shrinking the
first face F into the uppermost horizontal line of C with preserv-
ing the width of F and enlarging the faces below F (See Fig. 3),
we can obtain a canonical floorplan with one less faces. So if v
is e-missing we say the first face F is upward removable. Other-
wise, v is s-missing (See Fig. 2(b)), then by continually shrinking
the first face F into the leftmost vertical line of C, with preserving
the height of F, and enlarging the faces located to the right of F,
we can obtain a canonical floorplan with one less faces. So if v is
s-missing we say F is leftward removable. Thus if f > 1 then F is
either upward removable or leftward removable. In either case let
P(C) be the floorplan derived from C by removing the first face
of C as above. Note that P(C) is also a canonical floorplan.

Given a canonical floorplan C, by repeatedly removing the
first face of the derived canonical floorplan, we have a sequence
C, P(C), P(P(C)), . . . of canonical floorplans which eventually
ends with the canonical floorplan with exactly one inner face. See
an example in Fig. 4. We call the sequence the removing sequence
of C. Note that each canonical floorplan has a unique removing
sequence.

Let RS = (C f = C,C f−1, . . . ,C1) be the removing sequence
of a canonical floorplan C. We define a label L(Ci) for each Ci

with i > 1 in RS so that L(Ci) explains how the first face of Ci

is removed to have Ci−1. Let Fi be the first face of Ci. If Fi is
upward removable, and the number of faces located to the south
of Fi is s, then we define L(Ci) = (U, s). Otherwise, Fi is left-
ward removable, and if the number of faces located to the east
of Fi is e, then we define L(Ci) = (L, e). We call L(Ci) the re-
moving label of Ci. The first k labels of C is the sequence of
k removing labels (L(C f ), L(C f−1), . . . , L(C f−k+1)). For example,
the first 5 labels of the leftmost canonical floorplan C in Fig. 4 are
((L, 3), (U, 2), (L, 1), (U, 1), (L, 2)). Each canonical floorplan has a

unique first f − 1 labels.
Let fU and fL be the number of upward removable faces and the

number of leftward removable faces in the removing sequence of
C. Let ev and eh be the number of maximal vertical line segments
and the number of maximal horizontal line segments excluding
the contour of the outer face of C. Then fU = eh and fL = ev
hold. Also ev + eh = f − 1 holds.

3. Classification Tree
In this section we define a tree T f , called the classification tree,

related to the canonical floorplans with f inner faces. In the next
section we design our main algorithm based on the tree.

Each leaf in the classification tree corresponds to a distinct
canonical floorplan, and each vertex v with depth d in the clas-
sification tree corresponds to the set of canonical floorplans (1)
corresponding to the leaves in the subtree rooted at v, and (2)
sharing the first d labels. Fig. 5 shows the classification tree T4.
We regard the root of the classification tree corresponds to the set
of all canonical floorplans with f inner faces, and sharing the first
0 label.

Now we explain how to compute the number of leaves in the
subtree rooted at a given vertex.

An inner face F of a floorplan C is n-touch if F shares a line
segment with the uppermost horizontal line segment of C. Simi-
larly, an inner face F of a floorplan C is w-touch if F shares a line
segment with the leftmost vertical line of C.
Lemma 3.1 ([1]) Let C( f , r) be the set of canonical floorplans
with f inner faces and r maximal vertical line segments not on the
outer face, and C( f , n, w, r) the set of canonical floorplans with f
inner faces, r maximal vertical line segments not on the outer
face, n n-touch faces and w w-touch faces. Then the following
equations hold.

|C( f , r)| =
(

f+1
r

)(
f+1
r+1

)(
f+1
r+2

)

(
f+1
1

)(
f+1
2

)

|C( f , n, w, r)| =
(

f + 1
r + 1

)
wn

f ( f + 1)

((
f − n − 1
f − r − 2

)(
f − w − 1

r − 1

)

−
(

f − n − 1
f − r − 1

)(
f − w − 1

r

))

Given a vertex v in the classification tree, now we can calculate
the number of corresponding canonical floorplans (sharing some
first labels), as follows. We start with an example. Let f = 20 and
v at depth 3 corresponds to the set of canonical floorplans sharing
the first 3 labels ((U, 3), (U, 2), (L, 4)). Then each canonical floor-
plan shares the same graph structure around the upper-left corner,
as shown in Fig. 6, and removing the first 3 inner faces, as in
the removing sequence, results in a distinct canonical floorplan
with 17 inner faces, including at least three n-touch faces and
at least four w-touch faces. Note that if the resulting canonical
floorplan has two or less n-touch faces, then the first 3 labels is
never ((U, 3), (U, 2), (L, 4)). Conversely, for each canonical floor-
plan with 17 inner faces including at least three n-touch faces and
at least four w-touch faces, adding three faces in the reverse way
in the removing sequence results in a distinct canonical floorplan
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C P(C) P(P(C)) ...
Fig. 4 The removing sequence.
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Fig. 5 The classification tree T4

C P(C) P(P(C)) P(P(P(C)))

Fig. 6 A canonical floorplan C with the first 3 labels ((U, 3), (U, 2), (L, 4))
and the first 4 floorplans in its removing sequence.

with 20 inner faces sharing the first 3 labels ((U, 3), (U, 2), (L, 4)).
We can generalize this example. Let S ( f , Lk) be the set of canon-
ical floorplans with f inner faces sharing the first k labels Lk. Let
n( f , Lk) be the minimum number of n-touch faces in a canonical
floorplans derived from a canonical floorplan in S ( f , Lk) by re-
moving the first k inner faces. Similarly w( f , Lk) is defined. Now
we have the following equation. Note that if a floorplan has x
faces then the maximum number of maximal vertical line seg-
ments not on the outer face is x − 1.

|S ( f , Lk)| =
f−k−1∑

r=0

f−k∑

n=n( f ,Lk)

f−k∑

w=w( f ,Lk)

|C( f − k, n, w, r)| (1)

4. Algorithm
In this section we explain our first random generation algo-

rithm for mosaic floorplans. We compute a path from the root
to a leaf in the classification tree, without constructing the whole
part of the tree. We repeatedly choose the next vertex of the path
among the children of the current vertex so that each leaf has an
equal chance to be reached. Thus we can generate mosaic floor-
plans uniformly at random.

Our algorithm is shown below. Algorithm 1 is the main rou-
tine. Algorithm 2 randomly chooses the next vertex of the path

among the children of the current vertex in the classification tree.

Algorithm 1: Generate-Mosaic( f )
1 begin
2 Find-Child(S ( f , ε))

Algorithm 2: Find-Child(S ( f , Lk))
1 begin
2 S ( f , Lk) is the set of canonical floorplans with f inner faces sharing

the first k labels Lk

3 if k = f − 1 then
4 return S ( f , Lk)
5 /* S ( f , Lk) has exactly one canonical floorplan.

*/
6 else
7 Let S ( f , L1

k+1), S ( f , L2
k+1), . . . , S ( f , Ld

k+1) be a partition of
S ( f , Lk), where Lk is the common prefix of
L1

k+1, L
2
k+1, . . . , L

d
k+1.

8 Generate an integer x in [1, |S ( f , Lk)|] uniformly at random.
9 Choose the minimum j such that x ≤ ∑ j

i=1 |S ( f , Li
k+1)|

10 Find-Child(S ( f , L j
k+1)

Assume that we are now at a vertex v in the classification
tree, and v corresponds to the canonical floorplans S ( f , Lk)
sharing the first k labels Lk. Also assume that after remov-
ing k inner faces from canonical floorplans in S ( f , Lk) the
minimum number of n-touch faces is n( f , Lk) and the min-
imum number of w-touch faces is w( f , Lk). Each child ci,
i = 1, 2, . . . , d, of v in the classification tree corresponds to
the set of canonical floorplans S ( f , Li

k+1) for some Li
k+1 sharing
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the first k + 1 labels Li
k+1. Since Lk is the common prefix of

L1
k+1, L

2
k+1, . . . , L

d
k+1 then S ( f , L1

k+1), S ( f , L2
k+1), . . . , S ( f , Ld

k+1) is
a partition of S ( f , Lk). Algorithm 2 computes a random value,
say x, in [1, |S ( f , Lk)|] uniformly at random, chooses the mini-
mum j with x ≤ ∑ j

i=1 |S ( f , Li
k+1)|, then recurse with S ( f , L j

k+1).
To compute a path randomly we need to compute |S ( f , Lk)| and
|S ( f , L1

k+1)|, |S ( f , L2
k+1)|, . . . , |S ( f , Ld

k+1)|.
For the root we can compute |S ( f , L0)| = ∑ f−1

r=0 |C( f , r)| by
Lemma 3.1. Now n( f , L0) = w( f , L0) = 1 holds. Assume that
we know |S ( f , Lk)|, n( f , Lk) and w( f , Lk), then we now explain
how to compute |S ( f , L1

k+1)|, |S ( f , L2
k+1)|, . . . , |S ( f , Ld

k+1)|. All we
need to know is n( f , Li

k+1) and w( f , Li
k+1), since then we can com-

pute |S ( f , Li
k+1)| by Equation (1). Assume that the (k+ 1)-th label

of Li
k+1 is ("1, "2). We have the following two cases.

Case 1: "1 = U
Let Fk+1 be the first face of the canonical floorplan C f−k de-

rived from some canonical floorplan in S ( f , Li
k+1) by removing

k inner faces. Since "1 = U, Fk+1 is upward removable. Hence,
the minimum number n( f , Li

k+1) of n-touch faces of a canonical
floorplan in S ( f , Li

k+1) is n( f , Lk)+"2−1. So we have n( f , Li
k+1) =

n( f , Lk)+"2−1. Also if w( f , Lk) > 1 then w( f , Li
k+1) = w( f , Lk)−1

holds, otherwise w( f , Lk) = 1 then w( f , Li
k+1) = 1 holds.

Case 2: "1 = L
Similarly, we have w( f , Li

k+1) = w( f , Lk) + "2 − 1. Also if
n( f , Lk) > 1 then n( f , Li

k+1) = n( f , Lk) − 1 holds, otherwise
n( f , Lk) = 1, then n( f , Li

k+1) = 1 holds.

Thus we can compute n( f , Li
k+1) and w( f , Li

k+1) in constant
time. Also note that "2 < f holds. Thus the maximum number of
children is at most 2 f − 2.

We have the following theorem.
Theorem 4.1 Our algorithm generates mosaic floorplans uni-
formly at random in polynomial time for each.
Proof. We can compute |C( f , n, w, r)| in O(1) time by
Lemma 3.1 assuming we have a table of

(
a
b

)
. Thus we can

compute |S ( f , L0)| in O( f 3) time by Equation (1). To choose a
child in Algorithm 2, since the number of the children is at most
2 f , we need to compute Equation (1) at most O( f ) times and
O( f 4) time in total. We repeatedly choose a child f − 1 times, so
we need O( f 5) time for whole algorithm. ! !

5. Random Generation of Mosaic Floorplans
with Some Properties

We propose two more algorithms that generates mosaic floor-
plans with some properties uniformly at random.

The first algorithm generates mosaic floorplans with f inner
faces including exactly fN n-touch faces.

Similar to Section 3, we can define a classification tree T fN
f

related to the canonical floorplans with f inner faces including
exactly fN n-touch faces.

Each leaf in the classification tree corresponds to a distinct
canonical floorplan with f inner faces including exactly fN n-
touch faces, and each vertex v with depth d in the classification
tree corresponds to the set of canonical floorplans (1) correspond-

(U,1) (U,2) (L,1) (L,2) (L,3)

(U,1)

(U,1)

(U,1) (U,2)

(L,1)(U,1)

(U,1) (U,2)
(L,1)

(L,1)

(U,1)

(L,1)

(L,1) (L,2)

(U,1)(U,1) (L,1)(U,1)

Fig. 7 The classification tree T 2
4 .

ing to the leaves in the subtree rooted at v, and (2) sharing the first
d labels. For example, T 2

4 is shown in Fig.7.
Let S ( f , fN , Lk) be the set of canonical floorplans with f in-

ner faces including exactly fN n-touch faces and having the first
k labels Lk. Let n( f , fN , Lk) be the number of n-touch faces
in a canonical floorplan derived from a canonical floorplan in
S ( f , fN , Lk) by removing the first k inner faces. Note that ev-
ery such floorplan has exactly n( f , fN , Lk) n-touch faces. Let
w( f , fN , Lk) be the number of w-touch faces in such floorplans.
We can compute n( f , fN , Lk) and w( f , fN , Lk) with a similar man-
ner in Section 4 but with a different initialization n( f , fN , Lk) =
fN . Now |S ( f , fN , Lk)| can be calculated by the equation below.

|S ( f , fN , Lk)|

=

f−k−1∑

r=0

f−k∑

w=w( f , fN ,Lk)

|C( f − k, n( f , fN , Lk), w, r)| (2)

Similar to the algorithm in Section 4, we can compute a path
in the classification tree T fN

f uniformly at random.
We have the following theorem.

Theorem 5.1 Our algorithm generates mosaic floorplans with f
inner faces including exactly fN n-touch faces uniformly at ran-
dom in polynomial time for each.

The second algorithm generates mosaic floorplans with f inner
faces including exactly fN n-touch faces and exactly fW w-touch
faces.

Similar to Section 3, we can define a classification tree T fN , fW
f

related to the canonical floorplans with f inner faces including
exactly fN n-touch faces and exactly fW w-touch faces.

Each leaf in the classification tree corresponds to a distinct
canonical floorplan with f inner faces including exactly fN n-
touch faces and exactly fW w-touch faces, and each vertex v with
depth d in the classification tree corresponds to the set of canoni-
cal floorplans (1) corresponding to the leaves in the subtree rooted
at v, and (2) sharing the first d labels.

Let S ( f , fN , fW , Lk) be the set of canonical floorplans with f
inner faces including exactly fN n-touch faces and exactly fW w-
touch faces, and having the first k labels Lk. Let n( f , fN , fW , Lk) be
the number of n-touch faces in a canonical floorplan derived from
a canonical floorplan in S ( f , fN , fW , Lk) by removing the first k in-
ner faces. Similarly, w( f , fN , fW , Lk) is defined. We can compute
n( f , fN , fW , Lk) and w( f , fN , fW , Lk) with a similar manner in Sec-
tion 4 but with different initializations n( f , fN , fW , Lk) = fN and
w( f , fN , fW , Lk) = fW .

Now we can compute |S ( f , fN , fW , Lk)| by the follwing equa-
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tion.

|S ( f , fN , fW , Lk)|

=

f−k∑

r=0

|C( f − k, n( f , fN , fW , Lk), w( f , fN , fW , Lk), r)| (3)

Similar to the algorithm in Section 4, we can compute a path
in the classification tree T fN , fW

f uniformly at random.
We have the following theorem.

Theorem 5.2 Our algorithm generates mosaic floorplans with f
inner faces including exactly fN n-touch faces and exactly fW w-
touch faces uniformly at random in polynomial time for each.

6. Conclusions
We have designed an algorithm that generates mosaic floor-

plans uniformly at random in polynomial time for each. To the
best of our knowledge, this is the first polynomial-time algorithm.
Also we proposed two more algorithms to generate a mosaic
floorplan with some specified properties uniformly at random.

A rectangular drawing is a drawn graph in which every face is a
rectangle. The three drawings in Fig. 1(b) and (c) are isomorphic
as mosaic floorplans but distinct as rectangular drawings. Can we
generate rectangular drawings uniformly at random?
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