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Bounding Dilation of Separator-Based Graph Embeddings

into Grids
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Abstract: In this report, we address a classical problem of embedding a guest graph with minimum dilation into a

multidimensional grid of the same size as that of the guest graph, and propose a relatively simple embedding bounding

dilation based on graph separators. Specifically, we prove that any graph with N nodes, maximum node degree ∆ ≥ 2,

and with a node-separator of size O(nα) can be embedded with a dilation of O(N1/d log∆/ log N) into a grid of a fixed

dimension d ≥ 2 with at least N nodes, where α is a fixed number with 0 ≤ α < 1. This dilation matches a trivial lower

bound within a constant factor. A remarkable merit of the proposed embedding is that it can be used to bound the

dilation of another embedding algorithm. Combining the proposed embedding with a previous embedding algorithm

bounding the edge-congestion, we can obtain an edge-congestion of O(∆) as well as the dilation O(N1/d log∆/ log N)

if d > 1/(1 − α). This congestion achieves constant ratio approximation. For d ≤ 1/(1 − α), we present a trade-off

between tight upper bounds of dilation and edge-congestion. Specifically, we prove a dilation of O(
N1/d log∆

ǫ logN
) and an

edge-congestion of O(∆(Nα−1+ 1
d
+ǫ + log N)) for any 1/ log N ≤ ǫ < 1 − α. These dilation and edge-congestion match

existential lower bounds within a constant factor for ǫ = Ω(1) and ǫ = 1/ log N, respectively. Besides, there exists

a guest graph for which better dilation and edge-congestion cannot be obtained for ǫ = log log N/ log N. The above

results improve and generalize a number of previous results.
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1. Introduction

The graph embedding of a guest graph into a host graph is to

map (typically one-to-one) nodes and edges of the guest graph

onto nodes and paths of the host graph, respectively, so that an

edge of the guest graph is mapped onto a path connecting the im-

ages of end-nodes of the edge. The graph embedding problem is

to embed a guest graph into a host graph with certain constraints

and/or optimization criteria. This problem has applications such

as efficient VLSI layout and parallel computation. I.e., the prob-

lem of efficiently laying out VLSI can be formulated as the graph

embedding problem with modeling a design rule on wafers and

a circuit to be laid out as host and guest graphs, respectively.

Also, the problem of efficiently implementing a parallel algo-

rithm on a message passing parallel computer system consisting

of processing elements connected by an interconnection network

can be formulated as the graph embedding problem with model-

ing the interconnection network and interprocess communication

in the parallel algorithm as host and guest graphs, respectively.

The graph embedding problem has a history over 30 years. See

for a survey, e.g., [22]. The major criteria to measure the effi-

ciency of an embedding are dilation, node-congestion, and edge-

congestion. In this paper, we consider the problem of embedding

a guest graph with the minimum dilation into a d-dimensional

grid with d ≥ 2 and the same size as that of the guest graph.
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Embeddings into grids important for both VLSI layout and par-

allel computation. Actually, design rules on wafers in VLSI are

usually modeled as 2-dimensional grids. As for parallel computa-

tion, multidimensional grid networks, including hypercubes, are

popular for interconnection networks. The setting that host and

guest graphs have the same number of nodes is important for par-

allel computation because the processing elements are expensive

resource and idling some of them is wasteful.

Previous Results

Table 1 summarizes previous results of graph embeddings min-

imizing dilation for various combinations of guest graphs and

host grids.

VLSI layout has been studied through formulating the layout

as the graph embedding into a 2-dimensional grid with objec-

tive of minimizing the grid under constrained congestion-1 rout-

ing [25]. Leiserson [18] and Valiant [26] independently proposed

such embeddings based on graph separators. In particular, it was

proved in [18] that any N-node graph with maximum node de-

gree at most 4 and an edge-separator of size O(nα) can be laid

out in an area of O(N) if α < 1/2, O(N log2 N) if α = 1/2, and

O(N2α) if α > 1/2. A separator of a graph G is a set S of either

nodes or edges whose removal partitions the node set V(G) of G

into two subsets of roughly the same size with no edge between

the subsets. The graph G is said to have a hereditary separator

of size s(n) if |S | ≤ s(|V(G)|) and any subgraph of G recursively

has a hereditary separator of size s(n). Separators are important

tools to design divide-and-conquer algorithms and have been ex-
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Table 1 Previous results of graph embeddings minimizing dilation.

Guest Graph Host Grid Dilation Congestion

N: # nodes, ∆: max degree # nodes dimension

s: separator size

binary tree any 2 NP-hard for 1 1 [10]

tree 2d given d NP-hard for 1 1 [27]

connected planar graph N 2 any NP-hard for 1 [8]

connected graph 2⌈log2 N⌉ ⌈log2 N⌉ any NP-hard for 1 [15]

complete binary tree N + 1 2 O(
√
N/ log N) O(

√
N/ log N) [11]

binary tree 2⌈log2 N⌉ ⌈log2 N⌉ 8 O(1) [12]

2-D h × w-grid (h ≤ w) h′w′ ≥ N∗ 2 ⌈h/h′⌉ + 1 ⌈h/h′⌉ + 1 [24]

2-D h × w-grid (h ≤ w) h′w′ ≥ N† 2 5 5 [24]

2-D grid 2⌈log2 N⌉ ⌈log2 N⌉ 3 2 [23]

∆ ≤ 4, s = O(nα), α < 1/2 O(N) 2 O(
√
N/ log N) 1 [4]

∆ ≤ 4, s = O(
√
n) O(N log2 N) 2 O(

√
N logN

log logN
) 1 [4]

∆ ≤ 4, s = O(nα), α > 1/2 O(N2α) 2 O(Nα) 1 [4]

tree width t 2⌈log2 N⌉ ⌈log2 N⌉ O(log(∆t)) O(∆4t3) [13]

s = logO(1) N 2⌈log2 N⌉ ⌈log2 N⌉ O(log∆) ∆O(1) [14]

∆ = O(1) N d = O(1) O(N1/d log N) O(N1/d log N) [17]
∗ h′ × w′-grid with h′ < h ≤ w < w′
† h′ × w′-grid with h < h′ ≤ w′ < w

tensively studied. It is well-known that any planar graph has a

node-separator of size O(
√
n) [19]. This was generalized in [1] so

that any graph with an excluded minor of a fixed size has a node-

separator of size O(
√
n). Moreover, graphs with a fixed treewidth,

such as trees, outerplanar graphs, and series-parallel graphs have

a node-separator of a fixed size [16]. Bhatt and Leighton [4]

achieved a better layout with several nice properties including re-

duced dilation as well as the same or better area as that of [18]

by introducing a special type of edge-separators called bifurca-

tors. An approximation algorithm for VLSI layout was proposed

in [6]. Separator-based graph embeddings on hypercubes were

presented in [3], [14], [21]. In particular, Heun and Mayr [14]

proved that any N-node graph with maximum node degree ∆ and

an extended edge-bisector of polylogarithmic size can be embed-

ded into a ⌈log2 N⌉-dimensional cube with a dilation of O(log∆)

and an edge-congestion of ∆O(1).

A quite general embedding based on the multicommodity flow

was presented by Leighton and Rao [17], who proved that any

N-node bounded degree graph G can be embedded into an N-

node bounded degree graph H with both dilation and edge-

congestion of O((log N)/α), where α is the flux of H, i.e.,

minU⊂V(H)
|{(u,v)∈E(H)|u∈U, v∈V(H)\U}|

min{|U|,|V(H)\U|} . This implies that G can be em-

bedded into an N-node d-dimensional grid with both dilation and

edge-congestion of O(N1/d log N) for any fixed d.

Contributions and Technical Overview

All the previous results minimizing both dilation and edge-

congestion have drawbacks such as host grids of large size or

dimension, guest graphs of a fairly restricted class, and a gap be-

tween upper and lower bounds on either dilation or congestion.

In this paper, we bound both dilation and edge-congestion to ex-

istential lower bounds within constant factors for guest graphs of

a wide class and host grids having the optimal size and a fixed

dimension more than 1.

First, we propose a relatively simple embedding bounding di-

lation based on graph separators. Specifically, we prove the fol-

lowing theorem:

Theorem 1 Suppose that a guest graph G has N nodes, maxi-

mum node degree ∆ ≥ 2, and a hereditary node-separator of size

O(nα), where α is a fixed number with 0 ≤ α < 1. Moreover,

suppose that a host grid M has a fixed dimension d ≥ 2, at least

N nodes, and constant aspect ratio. Then, G can be embedded

into M with a dilation of O(N1/d log∆/ log N).

The dilation of Theorem 1 matches a trivial existential lower

bound, the diameter of M divided by the diameter of G, within

a constant factor. The basic idea of Theorem 1 is to construct a

complete binary tree structure of node sets of G using the node-

separator, and embed G by applying the embedding algorithm

provided in [11] to the tree structure. We can obtain the de-

sired dilation with the fact that the algorithm of [11] can embed a

complete binary tree with nearly optimal dilation, and with care-

ful choice of the size of node sets of the tree structure. Similar

techniques of embeddings via tree structures were previously pro-

posed in the literature ([3], [12], [13], [14]). However, our struc-

ture is much simpler than the previous ones. We discuss the tree

structure and prove Theorem 1 in Sects. 3 and 4, respectively.

Second, combining the embedding of Theorem 1 with a previ-

ous embedding algorithm bounding the edge-congestion [20], we

also bound the edge-congestion as well as the dilation. Specifi-

cally, we prove the following theorem:

Theorem 2 Suppose that a guest graph G has N nodes, maxi-

mum node degree ∆ ≥ 2, and a hereditary node-separator of size

O(nα), where α is a fixed number with 0 ≤ α < 1. Moreover,

suppose that a grid M has a fixed dimension d ≥ 2, at least N

nodes, and constant aspect ratio. Then, G can be embedded into

M with a dilation of O(N1/d log∆/ log N) and an edge-congestion

of O(∆) if d > 1/(1 − α), and with a dilation of O(
N1/d log∆

ǫ log N
) and

an edge-congestion of O(∆(Nα−1+ 1
d
+ǫ + log N)) if d ≤ 1/(1 − α),

where 1/ log N ≤ ǫ < 1 − α.

The embedding of Theorem 1, in fact, determines just loca-

tions of the node sets in the tree structure, neither a specific po-

sition of each node nor routing for edges. Therefore, we can use

any algorithms for embedding each node and routing edges. For
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these purposes, we adopt another separator-based embedding al-

gorithm bounding edge-congestion and a routing algorithm that

are presented in [20]. Theorem 2 is proved in Sect. 5.

The edge-congestion of Theorem 2 achieves constant ratio ap-

proximation for a fixed d > 1/(1−α). This is because any embed-

ding requires an edge-congestion of ∆/(2d). For d ≤ 1/(1 − α),

Theorem 2 provides a trade-off between tight upper bounds of

dilation and edge-congestion. Actually, the dilation and edge-

congestion of Theorem 2 match existential lower bounds within

a constant factor for ǫ = Ω(1) and ǫ = 1/ log N, respectively.

Besides, it is known that any embedding of an N-node mesh of

trees G, having ∆ = O(1), into a 2-dimensional grid with edge-

congestion 1 requires a dilation of Ω(
√
N log N/ log log N) and

an Ω(N log2 N) nodes of the grid [4]. This implies that any em-

bedding of G into a 2-dimensional N-node grid requires a dila-

tion of Ω(
√
N/ log log N) and an edge-congestion of Ω(log N).

This is because we can easily transform an embedding into a 2-

dimensional N-node grid with a dilation δ and an edge-congestion

c into another embedding into a 2-dimensional O(c2N)-node grid

with a dilation cδ and the edge-congestion 1, by replacing each

row and each column of the N-node grid with O(c) rows and

O(c) columns, respectively. In this sense, we cannot simul-

taneously improve the dilation and edge-congestion of Theo-

rem 2 for ǫ = log log N/ log N. We note that because G has a

hereditary node-separator of size O(
√
n), by Theorem 1, G can

be embedded into a 2-dimensional N-node grid with a dilation

of O(
√
N/ log N). However, such a dilation involves an edge-

congestion of Ω(log2 N/ log log N). To the author’s best knowl-

edge, this is the first observation of a trade-off between dilation

and edge-congestion in embeddings into grids.

Our separator-based embedding algorithm performs in a poly-

nomial time on the condition that a separator of the guest graph

is given. Although finding a separator of minimum size is gen-

erally NP-hard [5], [9], approximation algorithms presented in

[2], [7], [17] can be applied to our algorithm.

2. Preliminaries

For a graph G, V(G) and E(G) are the node set and edge set

of G, respectively. We denote the set of integers {i | 1 ≤ i ≤ ℓ}
by [ℓ]. For a d-dimensional vector v := (xi)i∈[d], let π j(v) := x j

and π̄ j(v) := (xi)i∈[d]\{ j} for j ∈ [d]. We use π j and π̄ j also for a

set of vectors and for a graph whose nodes are vectors. I.e., for

a set V of d-dimensional vectors, we denote {π j(v) | v ∈ V} and

{π̄ j(v) | v ∈ V} as π j(V) and π̄ j(V), respectively. Moreover, for

a graph G with V(G) = V , we denote the graph with the node

set π̄ j(V(G)) and edge multiset {(π̄ j(u), π̄ j(v)) | (u, v) ∈ E(G)}
as π̄ j(G). For positive integers ℓ1, . . . , ℓd, the d-dimensional

ℓ1 × · · · × ℓd-grid, denoted as M(ℓi)i∈[d], is a graph with the node

set
∏

i∈[d][ℓi], i.e., the Cartesian product of sets [l1], . . . , [ld], and

edge set {(u, v) | ∃ j ∈ [d] π j(u) = π j(v) ± 1, π̄ j(u) = π̄ j(v)}. The

aspect ratio of M(ℓi)i∈[d] is maxi, j∈[d]{ℓ j/ℓi}. An edge (u, v) of

M(ℓi)i∈[d] with π j(u) = π j(v)±1 is called a dimension- j edge. The

grid M(ℓi)i∈[d] is called the d-dimensional cube if ℓi = 2 for every

i ∈ [d].

A routing request on a graph H is a pair of nodes, a source and

target, of H. A multiset of routing requests can be represented as

M(2, 3)
R

M(3)
π̄1(R)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

1 2 3

Fig. 1 A routing graph R on M(2, 3) and π̄1(R) on M(3).

Fig. 2 A (1/2)-node-decomposition tree (left) and a (1/2)-edge-

decomposition tree (right) for M(2, 4).

a routing graph R with the node set V(H) and directed edges join-

ing the sources and targets of all the routing requests. It should

be noted that R may have parallel edges and loops. In particular,

if H is a d-dimensional grid, then π̄ j(R) is a routing graph with

the multiset of edges (π̄ j(u), π̄ j(v)) for every (u, v) ∈ E(R) on the

(d − 1)-dimensional grid with node set π̄ j(V(H)) (Fig 1). R is

called a p-q routing graph if the maximum outdegree and inde-

gree of R are at most p and q, respectively. We define a routing

of R as a mapping ρ that maps each edge (u, v) ∈ E(R) onto a

set of edges of H inducing a path connecting u and v. We de-

note ρ((u, v)) simply as ρ(u, v). The dilation and edge-congestion

of ρ are maxe∈E(R) |ρ(e)| and maxe′∈E(H) |{e ∈ E(R) | e′ ∈ ρ(e)}|,
respectively.

An embedding 〈φ, ρ〉 of a graph G into a graph H is a pair of

mappings consisting of a one-to-one mapping φ : V(G) → V(H)

and a routing ρ of an arbitrary orientation of the graph with the

node set V(H) and edge set {(φ(u), φ(v)) | (u, v) ∈ E(G)}. The di-

lation and edge-congestion of the embedding 〈φ, ρ〉 are defined as

the dilation and edge-congestion of ρ, respectively. The minimum

dilation of an embedding of G into a path is called the bandwidth.

The node- and edge- separators are formally defined as fol-

lows: Let 1/2 ≤ β < 1 and s(n) be a non-decreasing function.

For a graph G, a set S of nodes (edges, resp.) are called a β-

cut nodes (edge, resp.) if G is partitioned into two subgraphs

G1 and G2 with at most β|V(G)| nodes (⌈β|V(G)|⌉ nodes, resp.)

and with no edges connecting G1 and G2. S is called a node-

or edge-bisector if |V(G1)| = |V(G2)|, and S is a set of nodes

or edges, respectively. A graph G has a recursive β-node(edge,

resp.)-separator of size s(n) if |V(G)| = 1, or if G has a β-cut

nodes (edges, resp.) S with |S | ≤ s(|V(G)|), and the two sub-

graphs of G partitioned using S recursively have a β-node(edge,

resp.)-separator of size s(n). A hereditary β-node(edge, resp.)-

separator of size s(n) is defined in the same manner, except that
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same size

size

O(Nγ)

O(Nγ)

same size

O(Nγ)

same size

O(Nλ)

N1−λ/2 < L ≤ N1−λ

log2 L

O(Nγ)

Fig. 3 Tree Structure.

not only the partitioned subgraphs but also all of the subgraphs of

G must recursively have a β-node(edge, resp.)-separator of size

s(n). By definition, a hereditary separator is also a recursive sep-

arator. The process of partitioning G into isolated nodes using

a recursive separator is typically referred to as a decomposition

tree. In this paper, we define a node-decomposition tree as the

tree such that the root is the cut nodes S to partition G, and the

subtrees of the root are recursively the node-decomposition trees

for two partitioned subgraphs by S . An edge-decomposition tree

is defined similarly, except that the root is not cut edges but G

itself. I.e., nodes of the edge-decomposition tree are subgraphs

of G appeared in partitioning G using a recursive edge-separator

(Fig. 2).

3. Tree Structure

In this section, we introduce a tree structure of a guest graph,

called a (γ, λ)-tree, and provide an algorithm to construct the tree

structure using a hereditary node-separator of the guest graph.

3.1 Definition

For an N-node graph G and γ < λ < 1, a (γ, λ)-tree of G is

a complete binary tree T that has a set of subsets of V(G) as its

nodes and satisfies the following conditions (Fig. 3):

Condition 1 ( 1 ) Every node of G is contained in a single node

of T , and every edge of G joins nodes contained in a single

node or two adjacent nodes of T .
( 2 ) T has L leaves with L ≤ N1−λ < 2L. These leaves have the

equal number Θ(Nλ) of nodes of G. We note that the height

of T is equal to log2 L.

( 3 ) Internal nodes of T at the same depth (the distance to the

root) have the equal number O(Nγ) of nodes of G.

( 4 ) For adjacent nodes U and V in T , the number of edges of G
connecting nodes of U and nodes of V is O(Nγ).

3.2 Construction using Node-Separator

We construct a (γ, λ)-tree using a hereditary node-separator as

follows:

Lemma 3 Any graph G with N nodes, maximum node degree

∆ ≥ 2, and with a hereditary β-node-separator of size Cnα

(C > 0, 0 < α < 1, 1/2 ≤ β < 1) has a (α + (1 − λ) log2 ∆, λ)-tree

for any λ with
log2 ∆+α

log2 ∆+1
< λ < 1.

Proof We initially find a node-bisector B of G. This can be

b(N)

b(N/2) ≤ ∆b(N)

B

U

≤ ∆b(N/2) ≤ ∆2b(N)b(N/4) ≤ ∆b(N/2) ≤ ∆2b(N)

A

F

Bisector of F-A
Bisector of G

b(N/4)

Fig. 4 Construction of Tree Structure.

done in a similar way as one for constructing a (1/2)-node-

decomposition tree [4]. I.e., we first construct a linear layout of

nodes of G so that an internal node of the node-decomposition

tree D associated with an hereditary β-node-separator of G is lo-

cated between the two subtrees of the internal node. Then, we set

B to U ∈ V(D) containing a node of G located at the center of

the layout and the ancestors of U. At this point, B is a (1/2)-cut

nodes of G. To make B a node-bisector, we move any nodes of

the larger subgraph to B so that the resulting two subgraphs have

the equal size.

We set B as the root of a tree structure T and the two subgraphs

of G partitioned by B as the leaves. Assume inductively that we

have constructed nodes of T of height i ≥ 1 satisfying Condi-

tion 1 except the bounds on the size of a node of T and number

of edges of G between adjacent nodes of T . I.e., we have T with

2i leaves such that all nodes at depth j with 0 ≤ j ≤ i have the

equal size. Unless 2i+1 > N1−λ, we grow T by partitioning every

leaf F by a node-bisector U that contains all nodes of G adjacent

to nodes in the parent P of F. The node-bisector U of F is sim-

ply the union of the nodes A contained in F adjacent to nodes

in P and a node-bisector of F − A constructed in the same way

as done for B. After constructing all internal nodes at depth i, if

they are not balanced, i.e., if an internal node U at depth i has the

size smaller than the maximum size X of another internal node at

depth i, then we move any (X − |U|)/2 nodes from each leaf of U

to U, by which all leaves as well as internal nodes at depth i are

balanced. We illustrate the construction in Fig. 4.

By the inductive assumption and the above construction, the

updated T also satisfies Condition 1 except the bounds on the

size of a node of T and number of edges of G between adjacent

nodes of T . In the rest of the proof, we derive these bounds. Let

γ := α + (1 − λ) log2 ∆. The size b(N) of the node-bisector B of

G is at most 2
∑O(logN)

i=0
C(βiN)α = O(CNα). This is because the

size of B is at most the sum of the sizes of a node of D and its at

most O(log N) ancestors, plus the number of nodes moved from

the larger subgraph to B. If Ii is the size of an internal node of T
at depth i, then we have the recurrence Ii ≤ ∆Ii−1 + b(N/2i) and

I0 ≤ b(N), yielding

Ii ≤
i

∑

j=0

∆i− jb(N/2 j) =

i
∑

j=0

∆i− jO(C(N/2 j)α)

= O

















CNα∆i
i

∑

j=0

(2α∆)− j

















= O(CNα∆i).

Thus, we have
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max
i
{Ii} = Ilog2 L−1 = O

(

CNα∆log2 L−1
)

= O
(

CNαLlog2 ∆/∆
)

= O
(

CNα+(1−λ) log2 ∆
)

= O(Nγ).

Moreover, it follows that the maximum number of edges of G

joining a node of T is at most ∆ · maxi{Ii} = ∆Ilog2 L−1 =

O(CNαLlog2 ∆) = O(CNα+(1−λ) log2 ∆) = O(Nγ).

It remains to bound the size of leaves of T . Because we grow

the height i unless 2i+1 > N1−λ, the number L of leaves satisfies

L = 2i ≤ N1−λ < 2L. Therefore, the size of a leaf is at most

N/L < 2Nλ. To show that the size of a leaf is at least Ω(Nλ), it

suffices to prove that the total size of all internal nodes is o(N),

because this implies that the total size of leaves is Ω(N) and the

size of a leaf is Ω(N)/L = Ω(Nλ). The total size of all internal

nodes is at most

log2 L−1
∑

i=0

2iIi =

log2 L−1
∑

i=0

O(CNα(2∆)i)

= O
(

CNα(2∆)log2 L
)

= O
(

CNαLlog2 ∆+1
)

= O
(

CNα+(1−λ)(log2 ∆+1)
)

= O(CNγ+1−λ),

which is o(N) because γ − λ = α + (1 − λ) log2 ∆ − λ =

(α + log2 ∆) − (1 + log2 ∆)λ < 0 by the assumption of λ. �

4. Embedding with Bounded Dilation

In this section, we prove Theorem 1 by showing the following

lemma:

Lemma 4 An N-node graph with a (γ, λ)-tree can be embedded

into a grid with at least N nodes, a dimention d ≥ 2, and with a

constant aspect ratio, with a dilation of O( d2

1−λ ·
N1/d

logN
).

In fact, Theorem 1 is obtained by setting λ :=
log2 ∆+1−ǫ

log2 ∆+1
and

0 < ǫ < 1 − α with ǫ = Ω(1), and combining Lemmas 3 and 4.

We note that Theorem 1 for the case α = 0 is implied by the case

α > 0.

We prove Lemma 4 by providing a desired algorithm. Broadly,

we embed each leaf of a (γ, λ)-treeT of an N-node guest graphG

into each of L subgrids with Θ(N/L)-nodes, called blocks, which

are obtained by dividing each dimension of the host grid M into

L1/d segments of length Θ((N/L)1/d). We map also L − 1 internal

nodes of T to the blocks as if an (L − 1)-node complete binary

tree were embedded into an L-node grid K using an algorithm

presented in [11]. The algorithm of [11] achieves a nearly opti-

mal dilation of O(dL1/d/ log L) with evenly distributing the leaves

of the complete binary tree among K. Therefore, we can locate

any pair of adjacent nodes of T on M within a distance of the

bandwidth of an L-node complete binary tree multiplied by the

diameter of a d-dimensional Θ(N/L)-node grid. Thus, we can

bound the maximum dilation of an edge of G by

O

(

dL1/d

log L

)

· O
(

d

(

N

L

)1/d
)

= O

(

d2

1 − λ ·
N1/d

log N

)

. (1)

The rest of this section is devoted to a formal proof of

Lemma 4. We review the algorithm of [11] in Sect. 4.1. We

define and analyze our algorithm in Sect. 4.2.

layer 1

layer 2

layer 3

z

y

x

Fig. 5 Embedding a 63-node comlete binary tree into M(4, 4, 4). Subtrees

in layer 1, 2, and 3 are mapped on 1-dimensional grids along x-, y-,

z-axis, respectively.

4.1 Embedding of Complete Binary Trees

For d = 2 and a given complete binary tree with odd height, the

algorithm of [11] splits the tree at half of the height, yielding an

upper complete binary tree and
√
N lower complete binary trees,

where N is the number of the nodes of the given tree plus 1. The

upper and lower trees have
√
N − 1 nodes. The algorithm em-

beds the upper tree onto the center row of a
√
N ×

√
N-grid and

the lower trees the lower trees onto columns with leaving nodes

on the center row empty. This embedding achieves the dilation

O(
√
N/ log N) because each of upper or lower complete binary

trees can be embedded onto a path in such a way that the follow-

ing conditions are satisfied:

Condition 2 ( 1 ) The dilation is exactly equal to the band-

width. The bandwidth of a complete binary tree is equal to a

trivial lower bound ⌈ (# nodes)−1

diameter
⌉ [11].

( 2 ) The root is mapped at a middle node of the path.

( 3 ) If x1, x2 . . . with xi < xi+1 for i ≥ 1 are positions to which

the leaves of the complete binary tree are mapped, then

2i − (bandwidth) ≤ xi ≤ 2i + (bandwidth) for all i ≥ 1.

If the given complete binary tree has an even height, then it

is similarly embedded into
√
N × 2

√
N-grid. The aspect ratio

of the underlying grid can be reduced within a constant over-

heads of dilation and edge-congestion using embeddings of grids

into grids [24]. Moreover, as mentioned in [11], the above algo-

rithm can be generalized to a larger dimension d ≥ 3, in which

the dilation is O(dN1/d/ log N). This can be done by splitting a

given complete binary tree into d layers with (roughly) the equal

height, i.e., removing edges joining nodes at height h+1
d
· i− 1 and

nodes at height h+1
d
· i for all 1 ≤ i < d, where h is the height

of the complete binary tree, and by embedding each layer into

line(s) of each dimension (Fig 5). The dilation is derived from

the fact that an N1/d-node complete binary tree has the bandwidth

O(N1/d/ log(N1/d)) = O(dN1/d/ log N).

4.2 Embedding of Graphs with (γ, λ)-Tree

4.2.1 Algorithm

We define below our algorithm to embed a given guest graph

G with a (γ, λ)-tree T with L leaves into a host grid M. For sim-

plicity, we ignore rounding of numbers that should be integers,

because such rounding is not essential for our result.

( 1 ) Let K be an L1/d × · · · × L1/d-grid.

( 2 ) Let a mapping τ map L − 1 internal nodes of T to V(K)
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according to the algorithm of [11].

( 3 ) Split the subtree of T induced by the internal nodes into d

layers with the equal height
log2 L

d
−1 by removing edges join-

ing nodes at height
log2 L

d
· j and nodes at height

log2 L

d
· j − 1

for 1 ≤ j < d. We note that the ith layer to the top con-

tains Li/d subtrees with L1/d − 1 nodes, which are embedded

by τ into L1/d-node 1-dimensional grids (i.e., paths) of the

same dimension in K. We assume without loss of generality

that the subtrees in the ith layer are embedded into paths of

dimension i.

( 4 ) We make τ map L leaves of T to V(K) as follows: Let F1

and F2 be leaves of T having a common parent U, which

is a leaf of a subtree S in the lowest layer. Suppose that

τ embeds S into a 1-dimensional grid P in K. Since S
is embedded so that Condition 2 is satisfied, if U is the

ith leaf of S appeared on P, then the position of U on P

is between 2i − Θ(dL1/d/ log L) and 2i + Θ(dL1/d/ log L).

Note that S has L1/d − 1 nodes, and hence, its bandwidth

is Θ(L1/d/ log L1/d) = Θ(dL1/d/ log L). We define τ(F1) and

τ(F2) as the (2i − 1)st and ith positions on P, respectively.

( 5 ) We partition M into L blocks, i.e., subgrids. Roughly, we di-

vide each dimension into L1/d segments of the equal length,

by which we can regard M as an L1/d × · · · × L1/d-grid of

Θ(N/L)-node blocks. We aim to embed nodes of G con-

tained in a leaf F ∈ V(T ), together with nodes in an internal

node U ∈ V(T ) with τ(U) = τ(F), into the block corre-

sponding to the node τ(F) in K. Therefore, we partition M

into L blocks with exactly the same numbers of nodes as

those to be mapped to the blocks. We do this by dividing

dimensions in the increasing order. I.e., we first divide di-

mension 1, along which the subtree of T contained in the

top layer is embedded by τ, so that the resulting L1/d sub-

grids have the same number of nodes as those to be mapped

to the subgrids. For each of the resulting L1/d grids, we then

similarly divide the dimension 2, along which the subtrees

in the second layer (to the top) are embedded. We repeat this

process for all dimensions.

( 6 ) For each u ∈ V(K), map nodes of G contained in a leaf

F ∈ V(T ) with τ(F) = u and in an internal node U ∈ V(T )

with τ(U) = u, to the block (obtained in the previous step)

corresponding to u.

4.2.2 Analysis

Any two adjacent internal nodes of T are mapped by τ within

a distance of Θ(dL1/d/ log L) on K. Moreover, any adjacent leaf

F of T and its parent U are also mapped within a distance of

Θ(dL1/d/ log L) on K, since for some i, U and F are located on

positions between 2i − Θ(dL1/d/ log L) and 2i + Θ(dL1/d/ log L),

and 2i − 1 or 2i of a 1-dimensional grid in K as mentioned in

Step 4. Thus, any two nodes of T are mapped by τ and τ within

a distance of Θ(dL1/d/ log L).

On the other hand, L blocks in M constructed in Step 5 have

a diameter Θ(d(N/L)1/d) since M has a constant aspect ratio and

each block has Θ(Nλ) = Θ(N/N1−λ) = Θ(N/L) nodes. We note

that the number of nodes of G contained in an internal node of

T is at most O(Nγ) = O(Nλ). Moreover, we claim the following

lemma:

Lemma 5 For any two blocks Bu and Bv of M corresponding

two adjacent nodes u and v of K, the distance between a node in

Bu and a node in Bv is at most O(d(N/L)1/d).

Proof Suppose that (u, v) is a dimension-i edge of K. This im-

plies that Bu and Bv are separated in dividing dimension i of a

subgrid D of M in Step 5. Since dimensions from 1 to i − 1 have

been already divided, D has side length Θ((N/L)1/d) = Θ(Nλ/d)

for such dimensions, whereas Θ(N1/d) for dimensions from i to

d. If i = d, then because Bu and Bv are adjacent in D without

no dislocation along dimension other than i, the lemma holds. If

i < d, then Bu and Bv will possibly have dislocation along dimen-

sions from i + 1 to d. We prove the amount of such dislocation is

at most O((N/L)1/d) for each dimension.

When D is partitioned into L1/d subgrids by dividing dimen-

sion i, Bu and Bv are contained in consecutive subgrids, say, Du

and Dv, respectively. The numbers of nodes of Du and Dv dif-

fers at most Θ(Nγ). This follows from the following reasons: D

contains a 1-dimensional grid of blocks along dimension i onto

which a subtree S of T in the ith layer and (unless i = 1) a node

of T in a higher layer are mapped. Each of Du and Dv contains a

block onto which either one node of S or the node in the higher

layer is mapped, and blocks onto which all descendants of a leaf

of S are mapped. Nodes of T at the same height have the equal

size. Therefore, the difference of |Du | and |Dv | is caused only by

the difference of sizes of nodes of S and the node in the higher

layer. This difference is at most the sizeΘ(Nγ) of an internal node

of T . Assume without loss of generality that |Dv | = |Du |+O(Nγ).

If ℓ j is the side length of Du in each dimension j ∈ [d], then Dv

has side length ℓi + δ in dimension i, where

δ := O

(

Nγ

∏

j∈[d]\{i} ℓ j

)

= O

(

Nγ

Nλ(i−1)/dN(d−i)/d

)

= O(Nγ−λ+(2λ−1)/d).

Suppose that Du and Dv are partitioned into smaller grids

D1
u, . . . ,D

L1/d

u and D1
v , . . . ,D

L1/d

v , respectively, by dividing dimen-

sion i + 1 in Step 5. Then, |Dh
u | = |Dh

v | + O(Nγ) for some h ∈ [d]

and |Dp
u | = |Dp

v | for p ∈ [d] \ {h}. Let kp be the side length

of D
p
u in dimension i + 1. Note that D

p
u has side length ℓ j for

each dimension j , i + 1. For p ∈ [d] \ {h}, the side length of

D
p
v in dimension i + 1 is shorter than kp, because |Dp

u | = |Dp
v |

and D
p
v has longer side length in dimension i than D

p
u has. If δp

is the shortened amount, then it follows from |Dp
u | = |Dp

v | that

kp
∏

j∈[d]\{i+1} ℓ j = (kp − δp)(ℓi + δ)
∏

j∈[d]\{i,i+1} ℓ j, by which we

obtain

δp =
kpδ

ℓi + δ
=
Θ(Nλ/d)δ

Θ(Nλ/d) + δ
= O(δ).

The side length of Bh
v in dimension i + 1 is longer than kh since

|Dh
u | = |Dh

v | + O(Nγ). If δh is the lengthened amount, then

δh = O(Nγ/d) obviously.

Therefore, maximum amount of dislocation between Bu and

Bv along dimension i + 1 is at most
∑

p δp = (L1/d − 1)O(δ) +

O(Nγ/d) = O(Nλ/dNγ−λ+(2λ−1)/d) + O(Nγ/d) = O(Nλ/d). We can

similarly estimate dislocation amount also for dimensions from

i + 2 to d. Thus, the distance of a node of Bu and Bv is at most

(d − i)O(Nλ/d) = O(d(N/L)1/d). �
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With the above discussion, we can estimate the dilation as done

in (1), and hence, obtain Lemma 4.

5. Bounding Dilation and Edge-Congestion

In the embedding algorithm provided in the previous section,

we just defined a mapping of nodes of a (γ, λ)-tree T of a guest

graph G to L blocks, i.e., we did not define a specific position for

each node of G. Moreover, we did not specifically define rout-

ings for edges ofG. An edge of G joins two nodes of G contained

in either a single node or distinct nodes of a (γ, λ)-tree T . In the

previous section, edges of the former and latter types were implic-

itly routed with shortest paths inside a block and through at most

O(dL1/d/ log L) blocks, respectively. We can obtain an embed-

ding with bounded edge-congestion, as well as bounded dilation,

if we can bound edge-congestion in embedding each node of T
into a block and routing edges of the latter type.

In this section, we prove Theorem 2 by combining our embed-

ding with the previous routing and embedding algorithms of [20]

with bounded edge-congestion. In Sect. 5.1, we review the previ-

ous results that will be combined with our embedding. We define

and analyze the combined algorithm in Sect. 5.2.

5.1 Routing and Embedding with Bounded Edge-Congestion

Suppose that a guest graph G has N nodes, maximum node de-

gree ∆, and a recursive node-separator of size O(nα), where α is a

fixed number with 0 ≤ α < 1. In the embedding of [20], we first

construct a recursive edge-separator with bounded expansion, i.e.,

the number of outgoing edges from a subgraph in each recur-

sive step. Specifically, we can construct an edge-decomposition

tree D of G with expansion of O(∆nα) using the recursive edge-

separator of size O(nα). Then, we embed G into a d-dimensional

host grid with at least N nodes and a constant aspect ratio, with a

dilation of O(dN1/d) and an edge-congestion of



















O(d2∆) if d > 1/(1 − α), and

O(∆(Nα−1+ 1
d + log N + d2)) if d ≤ 1/(1 − α).

(2)

This is a recursive algorithm, which takes as input a subgraph

G′ of G appeared as a node of D, together with the multiset X

of O(∆|V(G′)|α) nodes of G′ incident to outgoing edges from G′

(i.e., a node appears in X as many times as the number of outgo-

ing edges incident to the node), and produces an embedding of G′

into a host grid M′, together with a mapping ψ from X to V(M′)

satisfying the following condition:

Condition 3 Nodes in X are evenly distributed across a dimen-

sion of M′ by ψ. Specifically, maxv∈π̄i(V(M′)) |{s ∈ X | π̄i(ψ(s)) =

v}| = ⌈|X|/|V(M′)|1−1/d⌉ for some i ∈ [d].

This property is essential to route outgoing edges of G′ with the

desired edge-congestion in ancestor processes, because if X was

mapped into a dense “ball” in M′, then we would need an edge-

congestion of |X| divided by the surface area of the ball, i.e.,

Ω(|X|/|X|1−1/d) = Ω(|X|1/d), which could be much larger than the

desired congestion. On the contrary, if sources and targets of

routing requests are distributed across a dimension, then we can

route the requests with nearly tight edge-congestion as stated in

the following lemma:

Lemma A ([20]) Let R be a routing graph on M := M(ℓi)i∈[d]

with d ≥ 2 and aspect ratio µ. If π̄h(R) is a p-q routing graph with

node set π̄h(V(M)) for some h ∈ [d], then R can be routed on M

with a dilation at most 2
∑d

i=1 ℓi and an edge-congestion at most

2⌈µ ·max{p, q}⌉.

We use Lemma A in a slightly different form. If the host grid

has constant aspect ratio, and if sources and targets are distributed

across different dimensions, then we can route the requests with

similar dilation and edge-congestion via some (d−1)-dimensional

hyperplane across both these dimensions. Thus, we have the fol-

lowing lemma:

Lemma 6 Let R be a routing graph with multisets S of sources

and T of targets on a grid M with N nodes, a dimension

d ≥ 2, and with constant aspect ratio. Then, R can be routed

on M with a dilation of O(dN1/d) and an edge-congestion of

O(max{π̄i(S ), π̄ j(T )}/N1−1/d), where i and j are any dimensions

of M.

5.2 Combined Embedding

5.2.1 Algorithm

We replace Step 6 of the algorithm in Sect. 4 with the following

procedures:

( 6 ) For each u ∈ V(K), let Gu be the subgraph of G induced by

nodes contained in a leaf F ∈ V(T ) with τ(F) = u and in an

internal node U ∈ V(T ) with τ(U) = u. Construct an embed-

ding ofGu into the block Bu corresponding to u using the em-

bedding algorithm of [20], in such a way that the multiset Xu

of nodes of Gu incident to outgoing edges from Gu is evenly

distributed by a mapping ψu : Xu → V(Bu) across a dimen-

sion. We note that since G has a hereditary node-separator of

size O(nα), Gu has an edge-decomposition tree with expan-

sion O(∆nα). Because |Xu| = O(|V(Gu)|γ/λ) by |Xu| = O(Nγ)

and |V(Gu)| = Θ(Nγ), putting Gu and outgoing edges from

Gu together, Gu can be regarded as a node of a larger edge-

decomposition tree of expansion max{O(∆nα),O(nγ/λ)}.
( 7 ) Let D1, . . . ,DL1/d

be the subgrids obtained from M by par-

titioning dimension 1 in Step 5. For each j ∈ [L1/d], there

exists a block B j in D j to which a node of the subtree S of T
in the top layer or no internal node of T is mapped. We route

edges of G between two nodes of S through B1, . . . , BL1/d

.

Since there may be dislocation between consecutive blocks

as mentioned in the proof of Lemma 5, we actually route the

edges through a shortest “bending” sequence Q of blocks

containing B1, . . . , BL1/d

. In each block B in Q, more specif-

ically, we define intermediate nodes that evenly distributes

edges passing through B on a (d − 1)-dimensional hyper

plane. Then, we apply Lemma 6 on every consecutive blocks

in Q. For edges of G between a leaf of S and its child, we

partially route the edges through Q to the subgrid D j con-

taining the destination block.

( 8 ) For each D j, we similarly route edges of G between nodes of

the subtree S j of T that is in the second layer (to the top) and
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mapped to D j, as well as edges between the root of S j and

its root, and edges between leaves of S j and their children.

We repeat this process for all layers T .

5.2.2 Analysis

We prove the above algorithm achieves a dilation and an edge-

congestion as stated in the following lemma:

Lemma 7 An N-node graph with a (γ, λ)-tree can be embedded

into a grid with at least N nodes, a dimension d ≥ 2, and with

a constant aspect ratio, with a dilation of O( d2

1−λ ·
N1/d

logN
) and an

edge-congestion of

O

(

d2

1 − λ ·
Nγ−λ+1/d

log N

)

+



















O(∆) if γ/λ < 1 − 1/d,

O(∆(Nγ−(1−1/d)λ + log N + d2)) if γ/λ ≥ 1 − 1/d.

Proof Because Lemma 6 achieves a dilation of O(diam) of

the underlying grid, we obtain the similar dilation as that of

Lemma 4. In what follows, we estimate the edge-congestion.

In Step 6, Gu is regarded as a node of an edge-decomposition

tree of expansion max{O(∆nα),O(nγ/λ)}, which is in fact O(∆nγ/λ)

because γ/λ = (α + (1 − λ) log2 ∆)/λ > α. Therefore, it fol-

lows from (2) that the edge-congestion of embedding of Gu is

O(∆) if γ/λ < 1 − 1/d, and O(∆(Nλ(γ/λ−1+1/d) + log N + d2)) =

O(∆(Nγ−(1−1/d)λ + log N + d2)) if γ/λ ≥ 1 − 1/d.

In Step 7, because any two nodes of T are mapped within a

distance of Θ(dL1/d/ log L), and because the number of outgoing

edges fromGu is O(Nγ), the number of edges ofG between nodes

of S passing through a block is at most

Θ

(

dL1/d

log L

)

· O(Nγ) = O

(

d

1 − λ ·
Nγ+(1−λ)/d

log N

)

.

Because these edges are evenly distributed across a dimension in

the block, and each block has a constant aspect ratio, it follows

from Lemma 6 that the edge-congestion is

O

(

d

1 − λ ·
Nγ+(1−λ)/d

Nλ(1−1/d) log N

)

= O

(

d

1 − λ ·
Nγ−λ+1/d

log N

)

.

Since this routing is repeated for d layers, putting the edge-

congestion in Steps 6 and 7 together, we have the desired edge-

congestion.

�

To prove Theorem 2, we set λ :=
log2 ∆+1−ǫ

log2 ∆+1
with 0 < ǫ < 1 − α.

For the case d > 1/(1 − α), we set ǫ := 1 − α − 1/d > 0. Then,

γ − (1 − 1/d)λ < γ − λ + 1/d = α + (1 − λ) log2 ∆ − λ + 1/d =

α − 1 + 1/d + ǫ = 0. By Lemma 7, therefore, we obtain a dila-

tion of O(
d2 log∆

1−α−1/d
· N1/d

logN
) = O(

N1/d log∆

logN
) and an edge-congestion of

O(
d log∆

1−α−1/d
· 1

logN
) + O(∆) = O(∆).

For the case d ≤ 1/(1 − α), by Lemma 7, we obtain a dilation

of O(
N1/d log∆

ǫ log N
) and an edge-congestion of

O

(

d2 log∆

ǫ
· N

γ−λ+1/d

log N

)

+ O(∆(Nγ−λ+1/d + log N + d2))

= O(∆(Nα−1+1/d+ǫ + log N))

for any 1/ log N ≤ ǫ < 1−α. Thus, we have obtained Theorem 2.
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