
IPSJ SIG Technical Report

高速かつ省領域な線形時間LZ分解アルゴリズム

Keisuke Goto1,2,a) Hideo Bannai1,b)

Abstract: We present a new algorithm for computing the Lempel-Ziv Factorization (LZ77) of a given string of length
N in linear time, that utilizes only N log N + O(1) bits of working space, i.e., a single integer array, for constant
size integer alphabets. This greatly improves the previous best space requirement for linear time LZ77 factorization
(Kärkkäinen et al. CPM 2013), which requires two integer arrays of length N. Computational experiments show that
despite the added complexity of the algorithm, the speed of the algorithm is only around twice as slow as previous
fastest linear time algorithms.

1. Introduction
Lempel-Ziv (LZ77) factorization [16] is one of the most im-

portant concepts in string processing with countless applications
in compression [15], [16], as well as efficient string process-
ing [4], [10]. More recently, its importance has been reasserted
due to the highly repetitive characteristics of modern datasets,
such as collections of genome sequences, for which compression
schemes based on LZ77 have been shown to be particularly ef-
fective [11]. Thus, time and space efficient computation of LZ77
factorization is a very important and heavily studied topic (See [1]
for a survey).

In this paper, we focus on worst case linear time algorithms
for computing the LZ77 factorization of a given text. All existing
linear time algorithms are based on the suffix array, which can
be constructed in linear time independent of alphabet size, when
assuming an integer alphabet. The earlier algorithms further com-
pute and utilize several other auxiliary integer arrays of length N,
such as the inverse suffix array, the longest common prefix (LCP)
array [9], and the Longest Previous Factor (LPF) array [3], and
thus until recently, required at least 3 auxiliary integer arrays of
length N in addition to the text. Since all values in the LCP and
LPF arrays are not required for computing the LZ factorization,
the most efficient recent linear time algorithms [5], [6] avoid con-
structing these arrays altogether.

The currently fastest linear time LZ-factorization algorithm,
as well as the currently most space economical linear time LZ-
factorization algorithm, have been proposed by Kärkkäinen et
al. [6] They proposed 3 algorithms KKP3, KKP2, and KKP1,
which respectively store and utilize 3, 2, and 1 auxiliary integer
arrays of length N kept in main memory. All three algorithms
compute the LZ-factorization of the input text given the text and
its suffix array. KKP3 is very similar to LZ BG [5], but is mod-

1 Department of Informatics, Kyushu University, Japan
2 Japan Society for the Promotion of Science (JSPS)
a) keisuke.gotou@inf.kyushu-u.ac.jp
b) bannai@inf.kyushu-u.ac.jp

ified so that array accesss are more cache friendly, thus making
the algorithm run faster. KKP2 is based on KKP3, but further
reduces one integer array by an elegant technique that rewrites
values on the integer array. KKP1 is the same as KKP2, except
that it assumes that the suffix array is stored on disk, but since the
values of the suffix array are only accessed sequentially, the suffix
array is streamed from the disk. Thus, KKP1 can be regarded as
requiring only a single integer array to be held in memory. In this
sense, KKP1 is the most space economical linear time algorithm,
and has been shown to be faster than KKP2, if we assume that the
suffix array is already computed and exists on disk [6]. However,
note that the total space requirement of KKP1 is still two integer
arrays, one existing in memory and the other existing on disk.

In this paper, we propose new algorithms for computing the
LZ77 factorization that uses only a single auxiliary integer array
of length N. We achieve this by introducing a series of techniques
for rewriting the various auxiliary integer arrays from one to an-
other, in linear time and in-place, i.e., using only constant extra
space. Computational experiments show that our algorithm is at
most around twice as slow as previous algorithms, but in turn,
uses only half the total space, and may be a viable alternative
when the total space (including disk) is a limiting factor due to
the enormous size of data.

2. Preliminaries
Let Σ be a finite alphabet. In this paper, we assume that Σ is

an integer alphabet of constant size. An element of Σ∗ is called
a string. The length of a string T is denoted by |T |. The empty
string ε is the string of length 0, namely, |ε| = 0. Let Σ+ = Σ∗−{ε}.
For a string S = XYZ, X, Y and Z are called a prefix, substring,
and suffix of T , respectively. The set of prefixes of T is denoted
by prefix(T). The longest common prefix of strings X,Y , denoted
lcp(X,Y), is the longest string in prefix(X) ∩ prefix(Y).

The i-th character of a string T is denoted by T [i] for 1 ≤ i ≤
|T |, and the substring of a string T that begins at position i and
ends at position j is denoted by T [i.. j] for 1 ≤ i ≤ j ≤ |T |. For
convenience, let T [i.. j] = ε if j < i, suf (i) indicates T [i..|T + 1|],

c⃝ 2013 Information Processing Society of Japan 1

Vol.2013-AL-145 No.6
2013/11/6

IPSJ SIG Technical Report

and T [|T | + 1] = $ where $ is a special delimiter character that
does not occur elsewhere in the string.

2.1 Suffix Arrays
The suffix array [12] SA of any string T is an array of length

|T | such that for any 1 ≤ i ≤ |T |, SA[i] = j indicates that suf (j) is
the i-th lexicographically smallest suffix of T . For convenience,
we assume that SA[0] = SA[N + 1] = 0. The inverse suffix array
SA−1 of SA is an array of length |T | such that SA−1[SA[i]] = i. As
in [7], let Φ be an array of length |T | such that Φ[SA[1]] = |T |
and Φ[SA[i]] = SA[i − 1] for 2 ≤ i ≤ |T |, i.e., for any suffix
j = SA[i], Φ[j] = SA[i − 1] is the immediately preceding suffix
in the suffix array. The suffix array SA for any string of length
|T | can be constructed in O(|T |) time regardless of the alphabet
size, assuming an integer alphabet (e.g. [8], [14]). Furthermore,
there exists a linear time suffix array construction algorithm for a
constant alphabet using O(1) working space [13].

2.2 LZ Encodings
LZ encodings are dynamic dictionary based encodings with

many variants. The variant we consider is also known as the s-
factorization [2].
Definition 1 (LZ77-factorization). The s-factorization of a string
T is the factorization T = f1 · · · fn where each s-factor fk ∈
Σ+ (k = 1, . . . , n) starting at position i = | f1 · · · fk−1| + 1 in T
is defined as follows: If T [i] = c ∈ Σ does not occur before i then
fk = c. Otherwise, fk is the longest prefix of suf (i) that occurs at
least once before i.

Note that each LZ factor can be represented in constant space,
i.e., a pair of integers where the first and second elements respec-
tively represent the length and position of a previous occurrence
of the factor. If the factor is a new character and the length of its
previous occurrence is 0, the second element will encode the new
character instead of the position. For example the s-factorization
of the string T = abaabababaaaaabbabab is a, b, a, aba, baba,
aaaa, b, babab. This can be represented as (0, a), (0, b), (1, 1),
(3, 1), (4, 5), (4, 10), (1, 2), (5, 5).

We define two functions LPF and PrevOcc below. For any
1 ≤ i ≤ N, LPF(i) is the longest length of longest common prefix
between suf (i) and suf (j) for any 1 ≤ j < i, and PrevOcc(i) is a
position j which gives LPF(i)*1. More precisely,

LPF(i) = max({0} ∪ {lcp(suf (i), suf (j)) | 1 ≤ j < i})
and

PrevOcc(i) =

−1 if LPF(i) = 0

j otherwise

where j satisfies 1 ≤ j < i, and T [i : i + LPF(i) − 1] = T [j :
j + LPF(i) − 1]. Let pk = | f1 · · · fk−1| + 1. Then, fk can be rep-
resented as a pair (LPF(pk),PrevOcc(pk)) if LPF(pk) > 0, and
(0,T [pk]) otherwise.

Crochemore and Ilie [3] showed that candidates values for
PrevOcc(i) can be reduced to only 2 position, namely, the pre-
vious smaller value (PSV) and the next smaller value (NSV) [3],
which are defined as follows:

*1 There can be multiple choices of j, but here, it suffices to fix one.

PSV[i] = SA[j1]

NSV[i] = SA[j2]

where j1 = max({0} ∪ {1 ≤ j < SA−1[i] | SA[j] < SA[i]}) and
j2 = min({N + 1} ∪ {N ≥ j > SA−1[i] | SA[j] < SA[i]}).

In what follows, we assume that the algorithms output each LZ
factor sequentially, and will not include the total size of the LZ
factorization in the working space.

3. Previous Algorithm
We first describe the 3 variants (KKP3, KKP2, and KKP1) of

the LZ factorization algorithm proposed by Kärkkäinen et.al [6].
KKP3 consists of two steps, which we shall call the prelim-

inary step and the parsing step. In the preliminary step, KKP3
computes PSV and NSV for all positions and stores them in
integer arrays. Although we defer the details, the PSV and
NSV arrays can be computed in linear time by sequentially
scanning SA of T , and is based on the peak elimination by
Crochemore and Ilie [3]. Then, in the parsing step, KKP3 com-
putes the LZ-factorization by a naive comparison between suf (i)
and suf (PSV[i]), as well as suf (i) and suf (NSV[i]), for all po-
sitions i that a factor starts (See Algorithm 1. lcp(i, j) com-
putes the length of the longest prefix between suf (i) and suf (j)
in O(lcp(i, j)) time). In order to compute a factor f j, the algo-
rithm compares at most twice | f j| characters. Since the sum of
the length of all the factors is N, the parsing step of the algorithm
runs in linear time. KKP3 needs 3 integer arrays, SA, PSV and
NSV arrays in the preliminary step, and 2 integer arrays PSV and
NSV in the parsing step. Therefore KKP3 runs in linear time us-
ing a total of 3 auxiliary integer arrays (SA,PSV ,NSV) of length
N.

Algorithm 1: Computing the LZ77 factorization from SA via
PSV and NSV arrays (KKP3)

Input : Suffix Array SA[1..N] of string T of length N
1 SA[0]← 0 ;
2 SA[N + 1]← 0 ;
3 for i← 1 to N + 1 do
4 while SA[top] > SA[i] do
5 NSV[SA[top]]← SA[i] ;
6 PSV[SA[top]]← SA[top − 1] ;
7 top← top − 1 ;

8 top← top + 1 ;
9 SA[top]← SA[i] ;

10 while i ≤ n do
11 lcpnsv ← lcp(i,NSV[i]) ; // return 0 if NSV[i] = 0
12 lcppsv ← lcp(i,PSV[i]) ; // return 0 if PSV[i] = 0
13 l← −1 ;
14 p← T [i] ;
15 if lcpnsv > 0 and lcpnsv ≥ lcppsv then l← lcpnsv ; p← NSV[i] ;
16 else if lcppsv > 0 then l← lcppsv ; p← PSV[i] ;

Output: ((l, p))
17 i← i +max(1, l) ;

For KKP2, Kärkkäinen et al. show that the parsing step can be
accomplished by using only the NSV array. The idea is based on
a very interesting connection between PSV , NSV , and Φ arrays.

c⃝ 2013 Information Processing Society of Japan 2

Vol.2013-AL-145 No.6
2013/11/6

IPSJ SIG Technical Report

They showed that starting from the NSV array, it is possible to se-
quentially scan and rewrite the NSV array (consequently to the Φ
array) in-place, during which, values of PSV (and naturally NSV)
for each position can be obtained sequentially as well.
Lemma 1 ([6]). Given the NSV array of a string T of length N,
PSV(i) and NSV(i) of T can be sequentially obtained for all posi-
tions i = 1, . . . ,N in O(N) total time using O(1) space other than
the NSV array and T .

By making use of this technique, only the NSV array is now
required for the parsing step. KKP2 uses 2 integer arrays (SA
and NSV) in the preliminary step, and 1 integer array (NSV) in
the parsing step, and thus in summary, KKP2 runs in linear time
using a total of 2 auxiliary integer arrays of length N.

We can see that the memory bottleneck of KKP2 is in the pre-
liminary step, i.e., the computation of the NSV array, where the
space for SA is required as input, and the space for NSV is re-
quired for output. This is because elements of SA are in lexico-
graphic order and elements of NSV are in text order. Although the
scanning on SA can be sequential, the writing to NSV is not, and
both arrays must exist simultaneously. KKP1 partly overcomes
this problem, by first storing SA to disk, and then streams the SA
from the disk, storing only the NSV array in main memory. Thus,
KKP1 runs in linear time keeping only 1 auxiliary integer array
of length N in main memory, although of course, the total storage
requirement is still 2 integer arrays (SA and NSV).

4. New Algorithm using a single integer array
In this section, we describe our linear time LZ77 factorization

algorithm that uses only a single auxiliary integer array of length
N. As described in the previous section, once the NSV array has
been obtained, the parsing step can be performed within the time
and space requirements due to Lemma 1. What remains is how
to compute NSV using only a single integer array, including the
NSV array itself.

Our algorithm achieves this in two steps. We first show in Sec-
tion 4.1 that, given the Φ array, NSV can be computed in linear
time and O(1) extra space, by rewriting Φ array in-place. Then,
we show in Section 4.2 that, given T , the Φ array can be com-
puted in linear time and O(1) extra space. By combining the two
algorithms, we obtain our main result.
Theorem 1. Assuming a constant size integer alphabet, the LZ77
factorization of a string of length N can be computed in O(N) time
using of N log N + O(1) bits of total working space, i.e., a single
auxiliary integer array of length N.

We call the algorithm that uses two integer arrays by incor-
porating the former technique, BGtwo, and the algorithm that
uses only a single integer array by incorporating both techniques,
BGone. (See Figure 1)

4.1 In-place computation of the NSV array from the Φ ar-
ray

Since Φ[i] for each i indicates lexicographic predecessor of
suf (i), we can sequentially access values of SA from right to left,
by accessing theΦ starting from the lexicographically largest suf-
fix, which is Φ[0]. More precisely, since the SA is a permutation
of the integers 1, . . . ,N, Φ can be regarded as an array based im-

Algorithm 2: In-place computation of NSV from Φ.
Input : Φ array (denoted as NSV)

1 cur ← NSV[0] ; // Φ[0]: lexicographically largest suffix

2 prev← 0 ;
3 while cur , 0 do
4 while cur < prev do
5 prev← NSV[prev] ; // peak elimination

6 next ← NSV[cur] ; // Φ[cur]
7 NSV[cur]← prev ;
8 prev← cur ;
9 cur ← next ;

plementation of a singly linked list, linking the elements of SA
from right to left. Thus, the algorithm for computing NSV from
SA can be simulated using the Φ array. An important difference
is that while elements of SA are in lexicographic order, elements
of Φ are in text order, which is the same as NSV . Also, since
the access on SA is sequential, the value Φ[i] is not required any-
more after it is processed, and we can rewriteΦ[i] to NSV[i]. The
pseudo code of the algorithm is shown in Algorithm 2. The cor-
rectness and running time follows from the above arguments.
Lemma 2. Given the Φ array of a string T , NSV array of T
can be computed from Φ in linear time and in-place using O(1)
working space.

KKP3 KKP2 BGone

Φ

Φ

SASA

PSV PSVNSV

PSV NSV PSV NSV

NSV NSV

NSV

p
ar

si
n

g

st
ep

p
re

li
m

in
ar

y

st
ep

array 1 array 1array 1 array 2array 2 array 3

tim
e

Φ

NSV

Φ

NSV

BGtwo

SA

array 1 array 2

Fig. 1 A comparison of the auxiliary arrays used and how their contents
change with time for the KKP variants and our algorithm.

4.2 Computing the Φ array using O(1) working space
In the previous section, we showed that the NSV array can be

computed from theΦ array in-place in linear time. By combining
Lemma 1 and Lemma 2, if the Φ array is given, we can com-
pute the LZ-factorization in linear time by rewriting Φ array to
NSV array in-place, and rewriting NSV array to Φ array in-place
(and sequentially obtain NSV and PSV values), using only con-
stant extra working space. The problem is now how to compute
the Φ array. Although the Φ array can easily be computed in lin-
ear time by a naive sequential scan on SA, storage for both the
input SA and output Φ array is required for such an approach, as
in the case of computing NSV from SA. As far as we know, an in-
place linear time construction algorithm for the Φ array has not
yet been proposed. Below, we propose the first such algorithm.

As noted in the previous subsection, the Φ array can be con-
sidered as an alternative representation of SA, which allows us to
simulate a sequential scan on the SA. Thus, in order to construct
Φ in-place, our algorithm simulates the in-place suffix array con-
struction algorithm by Nong [13] which runs in linear time on

c⃝ 2013 Information Processing Society of Japan 3

Vol.2013-AL-145 No.6
2013/11/6

IPSJ SIG Technical Report

constant size integer alphabets. We first describe the outline of
the algorithm by Nong for computing SA, and then describe how
to modify this to compute the Φ array.
4.2.1 Construction of the suffix array by induced sort-

ing [13]
Nong’s algorithm is based on induced sorting, which is a well

known technique for linear time suffix sorting. Induced sorting
algorithms first sort a certain subset of suffixes, either directly or
recursively, and then induces the lexicographic order of the re-
maining suffixes by using the lexicographic order of the subset.
There exist several methods depending on which subset of suf-
fixes to choose. Nong’s algorithm utilizes the concept of LMS
suffixes defined below.
Definition 2. For 1 ≤ i ≤ N, a suffix suf (i) is an L-suffix if suf (i)
is lexicographically larger than suf (i + 1), and an S-suffix oth-
erwise. We call S or L the type of the suffix. An S-suffix suf (i)
is a Left-Most-S-suffix (LMS-suffix) if suf (i) is an S-suffix and
suf (i − 1) is an L-suffix.

Recall that T [N + 1] = $, where $ is a special delimiter char-
acter that does not occur elsewhere in the string. We define
suf (N + 1) to be an S-suffix. Notice that for i ≤ N, suf (i) is an
S-suffix iff T [i] < T [i + 1], or T [i] = T [i + 1] and suf (i + 1) is an
S-suffix. The type of each suffix can be determined by scanning
T from right to left.

In SA, all suffixes starting with the same character c occur con-
secutively, and we call the interval on the suffix array of such
suffixes, the c-interval. A simple observation is that the L-suffixes
that start with some character c must be lexicographically smaller
than all S-suffixes that start with the same character c. Thus a c-
interval can be partitioned into to two sub-intervals, which we call
the L-interval and S-interval of c.

The induced sorting algorithm consists of the following steps.
We denote the working array to be SA, which will become the
suffix array of the text at the end of the algorithm.
(1) Sort the LMS-suffixes.

We call the result LMS SA. We omit details of how this is
computed, since our algorithm will use the algorithm de-
scribed in [13] as is, but it may be performed in linear time
using O(1) extra working space. We assume that the result
LMS SA is stored in the first k elements of SA, i.e. SA[1..k],
where k is the number of LMS-suffixes.

(2) Put each LMS-suffix into the S-interval of its first character,
in the same order as LMS SA.
We scan T from right to left, and for each c ∈ Σ, compute and
store the number of L-suffixes and S-suffixes, that start with
c. We also compute the number of suffixes that start with
a character that is lexicographically smaller than c. Storing
these values requires only constant space, since we assume a
constant size alphabet. From these values, we can determine
the start and end positions of the L-interval and S-interval
for any c. Initially, all intervals are marked empty. By also
maintaining a pointer to the left-most or right-most empty
element in an interval, adding elements to an L-interval or
S-interval can also be performed in O(1) time using O(1) ex-
tra space. By a right to left scan on LMS SA (i.e. SA[1..k]),
we put each LMS-suffix in the right most empty element of

the S-interval of the corresponding character
(3) Sort and put the L-suffixes in their proper positions in SA.

This is done by scanning SA from left to right. For each
position i, if SA[i] > 1 and suf (SA[i] − 1) is an L-suffix,
suf (SA[i] − 1) is put in the left-most empty position of the
L-interval for character T [SA[i] − 1]. The correctness of the
algorithm follows from the fact that if suffix suf (SA[i] − 1) is
an L-suffix, then, suf (SA[i]) must have been located before i
(in the correct order), in SA.

(4) Sort and put the S-suffixes in their proper positions in SA.
This is done by scanning SA from right to left. For a po-
sition i, if S A[i] > 1 and suf (S A[i] − 1) is an S-suffix,
suf (S A[i] − 1) is put in the right most empty position of the
S-interval for character T [S A[i] − 1]. The correctness of the
algorithm follows from the fact that if suffix suf (SA[i] − 1)
is an S-suffix, then, suf (SA[i]) must have been located after i
(in the correct position), in SA.

In total, the algorithm computes suffix array in linear time
using only a single integer array and constant extra working
space. Note that for any position i, determining whether suffix
suf (SA[i] − 1) is an L-suffix or not, can be done in O(1) time us-
ing no extra space. If T [SA[i]−1] < T [SA[i]] then it is an S-suffix,
and if T [SA[i]−1] > T [SA[i]] then it is an L-suffix. For the case of
T [SA[i] − 1] = T [SA[i]], the type of suf (SA[i] − 1) is the same as
that of suf (SA[i]), which can be determined by the position i, and
the start and end positions of the L and S-intervals of character
T [SA[i]].
4.2.2 Construction of the Φ array by induced sorting

We regard Φ as an array based implementation of a singly
linked list containing elements of SA from right to left. The ba-
sic idea of our algorithm to construct the Φ array is to modify
Nong’s algorithm for computing SA, to use this list representa-
tion instead. However, there are some technicalities that need to
be addressed.

We denote the working array to be A, which will be an array
based representation of a singly linked list that links (in lexico-
graphic order) the set of so-far sorted suffixes at each step, and
will become the Φ array of the text at the end of the algorithm.
The algorithm is described below.
(1) Sort the LMS-suffixes.

First, we sort LMS-suffixes in the same way as [13]. The
result will be called LMS SA and stored in A[1..k], where k
is the number of LMS-suffixes.

(2) Put each LMS-suffix into the S-interval of its first character,
in the same order as LMS SA.
In this step, we transform LMS SA to the array based
linked list representation, so that for each LMS-suffix
suf (LMS SA[i]), its lexicographically succeeding LMS-
suffix suf (LMS SA[i + 1]) will be put in A[LMS SA[i]], i.e.,
A[LMS SA[i]] = LMS SA[i + 1] for i < k. If LMS SA
and A were different arrays, then we could simply set
A[LMS SA[i]] = LMS SA[i + 1] for each i < k. The problem
here is that since LMS SA is stored in A[1..k], when setting
a value at some position of A, we may overwrite a value of
LMS SA which has not been used yet. We overcome this
problem as follows.

c⃝ 2013 Information Processing Society of Japan 4

Vol.2013-AL-145 No.6
2013/11/6

IPSJ SIG Technical Report

First, we memorize LMS SA[1], the first value of LMS SA.
Then, for 1 ≤ i ≤ k, we set A[2i] = LMS SA[i] and
A[2i − 1] = EMPTY by scanning A[1..k] from right to left.
Since k never exceeds N/2, we have 2i ≤ N for all 1 ≤ i ≤ k.
Next, for 1 ≤ i ≤ k − 1, let j1 = A[2i](= LMS SA[i])
and j2 = A[2(i + 1)](= LMS SA[i + 1]). We attempt to
set A[j1] = j2 . If A[j1] = EMPTY , then we simply set
A[j1] = j2. Otherwise j1 = 2i′ for some 1 ≤ i′ ≤ k, and A[j1]
stores the value LMS SA[i′]. Therefore, we do not overwrite
this value, but instead, borrow the space immediately pre-
ceding position j1, and set A[j1 − 1] = j2. An important ob-
servation is that A[j1 − 1] must have been EMPTY , because
LMS-suffixes cannot, by definition, start at consecutive posi-
tions, and if j1 was an LMS suffix, j1 − 1 cannot be an LMS
suffix and the algorithm will never try to set another value at
this position.
After this, we set A[2i] = EMPTY for all 1 ≤ i ≤ k, and
we arrange the remaining values to their correct positions by
attempting to traverse succeeding suffixes stored in A from
the lexicographically smallest suffix of LMS SA memorized
at the beginning of the process. Let i be the current position
we are traversing. We attempt to obtain its succeeding suf-
fix by reading A[i]. If A[i] , EMPTY , the succeeding suffix
of suf (i) was stored at correct position, and we continue with
the next position A[i]. If A[i] = EMPTY , then the succeeding
suffix of suf (i) may be stored at the immediately preceding
position, i.e. A[i − 1]. In such a case, A[i − 1] , EMPTY ,
and we set A[i] = A[i − 1] and A[i − 1] = EMPTY , and
continue with the next position A[i]. If A[i − 1] = EMPTY ,
this means that suf (i) is the lexicographically largest suffix
of LMS-suffixes, and we finish the process.
In this way, for all LMS-suffixes suf (i), we can set the suc-
ceeding suffix at A[i]. The process essentially scans the val-
ues of LMS SA on A twice. Therefore, this step runs in O(k)
time and O(1) working space.

(3) Sort and put the L-suffixes in their proper positions in A.
To simulate the algorithm for SA, we need to scan the suf-
fixes in lexicographically increasing order by using A. Let
suf (i) be a suffix the algorithm is processing. We want to set
A[j] = i−1 if suf (i − 1) is an L-suffix, and suf (j) is the suffix
that lexicographically precedes suffix suf (i − 1).
To accomplish this, we introduce four integer arrays of size
|Σ| each, Lbkts[c], Lbkte[c], Sbkts[c] and Sbkte[c]. Lbkts[c]
and Lbkte[c] store the lexicographically smallest and largest
suffix of the L-interval for a character c which have been
inserted into A, and Sbkts[c] and Sbkte[c] are the same for
each S-interval. All values are initially set to EMPTY . We
first scan the list of LMS suffixes in lexicographically in-
creasing order represented in A constructed in the previous
step, and insert each LMS suffixes into the corresponding S-
interval, by updating Sbkts[c] and Sbkts[e]. Then, we scan all
LMS- and L-suffixes in lexicographically increasing order
by traversing the succeeding suffixes on A by starting from
Lbkts[c], traversing the list represented by A until we pro-
cess Lbkte[c]. Then we do the same starting from Sbkts[c]
and process the suffixes until we reach Sbkte[c], and repeat

the process for all character c in lexicographic order.
Let suf (i) be a suffix the algorithm is currently process-
ing. We store suf (i − 1) in the appropriate position of A, if
suf (i − 1) is an L-suffix, and do nothing otherwise. Since we
know the type of suffix suf (i) since we are either process-
ing a suffix between Lbkts[c] and Lbkte[c] or Sbkts[c] and
Sbkte[c], the type of suf (i − 1) can be determined in con-
stant time by simply comparing T [i− 1] and T [i], i.e. it is an
L-suffix if T [i − 1] > T [i], an S-suffix if T [i − 1] < T [i], and
has the same type as suf (i) if T [i − 1] = T [i].
When storing suf (i − 1) in A, we check Lbkts[T [i]]. If
Lbkts[T [i − 1]] = EMPTY , then, suf (i − 1) is the lexico-
graphically smallest suffix starting with T [i − 1]. We set
Lbkts[T [i − 1]] = Lbkte[T [i − 1]] = i − 1. Otherwise,
there is at least one suffix lexicographically smaller than
suf (i − 1) in the L-interval for character T [i − 1]. This suffix
is Lbkte[T [i − 1]] = j, and we set A[j] = i − 1, and update
Lbkte[T [i − 1]] = i − 1.
In this way we can compute all the lexicographically suc-
ceeding suffix of each L-suffixes in the corresponding L-
interval, and store them in A. Since the number of times
we read the values of A is at most the number of LMS- and
L-suffixes, and the updates for each new L-suffix can be done
in O(1) time, the algorithm runs in linear time using only a
single integer array and O(1) working space in total.

(4) Sort and put the S-suffixes in their proper positions in A.
To simulate the algorithm for SA, we need to scan all L-
suffixes in lexicographically decreasing order by using A.
However, since the linked list of L-suffixes constructed on
A in the previous step is in increasing order, we first rewrite
A to reverse the direction of the links. That is, we want to set
A[j] = i−1 if suf (i − 1) is an L-suffix and suf (j) is the suffix
that lexicographically succeeds suffix suf (i − 1).
This rewriting can be done by scanning the succeeding suf-
fixes in a similar way as that of Step 3. For each c in lexi-
cographically increasing order, traverse the L-suffixes by us-
ing Lbkts[c], Lbkte[c], and A, and simply rewrite the values
in A to reverse the links, i.e., if suf (j) preceded suf (i) then
A[i] = j.
Now we have a lexicographically decreasing list of L-
suffixes represented in A, and want to insert the S-suffixes
into A. The process is similar to that of Step 3. Initially the
values for Sbkts[c] and Sbkte[c] for all c are set to EMPTY .
Then, for each c in lexicographically decreasing order, we
traverse preceding suffixes on A by starting from Sbkte[c],
traversing the list represented by A until we process Sbkts[c].
Then we do the same starting from Lbkte[c] and process the
suffixes until we reach Lbkts[c], and so on. Let suf (i) be a
suffix the algorithm is currently processing. If suf (i − 1) is
an S-suffix, we store suf (i − 1) in the appropriate position
of A and update Sbkts[c] and Sbkte[c] accordingly, and do
nothing otherwise. A minor detail during this process is that
we also link preceding suffixes which are in different S or L
intervals.
Now that all suffixes have been inserted and linked, we can
obtain all suffixes in decreasing order by traversing preced-

c⃝ 2013 Information Processing Society of Japan 5

Vol.2013-AL-145 No.6
2013/11/6

IPSJ SIG Technical Report

ing suffixes on A, i.e. A is now equal to theΦ array. Similarly
to the previous step, we can see that this step runs in linear
time using one integer array of length N (A) and O(1) extra
space.

All steps run in linear time using A and O(1) extra space, thus
giving a linear time algorithm for computing Φ using O(1) extra
working space.

The above procedure describes how to construct Φ from T us-
ing only a single integer array of length N. We propose another
variant of the algorithm that, given SA, computes the Φ by rewrit-
ing SA in-place in linear time and O(1) extra working space. The
idea may seem useless at a glance, but may have applications
when the SA is already available, since the conversion does not
require the expensive recursion step as in the linear time SA con-
struction algorithm (in Step 1), but can be achieved in a few scans.
Lemma 3. Given the SA of a string T of length N, Φ array of T
can be computed from SA in O(N) time and in-place using O(1)
working space.

Proof. It suffices to compute LMS SA, since then we can run the
above algorithm from Step 2. We scan T from right to left, and
for each character c, count the number of L- and S-suffixes that
start with c, and obtain the L- and S-interval for each character c
on SA. Let k be a counter of the number of LMS suffixes initially
set to 0. We then scan SA from left to right for 1 ≤ i ≤ N. If i is
within an S-interval and T [SA[i]] < T [SA[i]− 1], then, suf (SA[i])
is an LMS-suffix and we store it in SA[k + 1], and increment k.

In this way, we can obtain LMS SA and also SA by applying
Step 2-4 in O(N) time and O(1) extra working space. □

4.3 In-place computation of SA from the Φ array
An advantage of the KKP algorithms compared to BGone may

be that SA is left untouched after the LZ-factorization. On the
other hand, the Φ array is left after running BGone. Actually, it
is possible to show that the Φ array can be converted back to SA
in linear time and in-place, using O(1) extra working space.
Lemma 4. Given a string T and its Φ array, the SA array of T
can be computed in linear time and in-place using O(1) working
space.

Proof. The induced sorting algorithm constructs SA by first
computing LMS SA and stores it in SA[1..k], where k is the num-
ber of LMS suffixes. Thus, if we can somehow compute LMS SA
from the Φ array in linear time using O(1) extra working space
and save it in SA[1..k], we have proved the lemma.

Let A be an integer array of size N, used in our algorithm, ini-
tially equal to the Φ array. Our algorithm will consist of two
steps. First, for all LMS-suffixes suf (i), we compute the preced-
ing suffix of suf (i), and store it in A[i] (we store A[i] = EMPTY if
suf (i) is not an LMS suffix), thus obtaining an array based linked
list representation of LMS-suffixes in lexicographically decreas-
ing order. Second, we rewrite A so that A[1..k] = LMS SA[1..k],
reversing the procedure described in Step 2 of Section 4.2.2.

For the first step, we compute for each character c, the start-
ing positions in SA of the S-interval for c by counting the num-
ber of L-suffixes and S-suffixes that start with the character c.
As in Step 2 of Section 4.2.1, this can be done in linear time

and constant space. We then simulate a right to left traversal on
the SA using the Φ array stored as A. Let suf (SA[i]) be the suf-
fix that the algorithm currently processing. For suf (SA[i]) to be
an LMS-suffix, it must be that suf (SA[i]) is an S-suffix, and also
T [SA[i]−1] > T [SA[i]]. The former condition can be checked by
whether the position i is in an L-interval or an S-interval. During
the process, we remember the previous LMS-suffix suf (j), and
set A[j] = i if suf (i) is an LMS-suffix, and we continue travers-
ing by reading A[i] and setting A[i] = EMPTY . In this way, we
can compute a lexicographically decreasing list of LMS suffixes,
represented in A in linear time and O(1) working space.

Now, we only have to rearrange this list of suffixes to LMS SA.
The process is the opposite of Step 2 in Section 4.2.2. We first tra-
verse the LMS suffixes in lexicographically decreasing order. We
try to set the largest LMS suffix at A[2k], the second largest LMS
suffix at A[2(k − 1)] and so on. If for the ith largest LMS suffix,
A[2i] = EMPTY , we simply set A[2i] to be this value. Otherwise,
2i was an LMS-suffix and part of the list. In this case, we store
the value in A[2i − 1]. Notice that again since LMS suffixes can-
not start at consecutive positions, if 2i was an LMS suffix, 2i − 1
cannot be an LMS suffix, and the algorithm will never try to set
another value at this position.

Since the original linked list of LMS-suffixes was not overwrit-
ten and is preserved, we can traverse this again this time setting
the corresponding positions to EMPTY . Then, checking all posi-
tions 2i for 1 ≤ i ≤ k, if A[2i] = EMPTY then the corresponding
value was stored in A[2i − 1] and can be retrieved. Finally, we
copy the values at A[2i] to A[i] for each 1 ≤ i ≤ k. Thus, LMS SA
can be computed in linear time using O(1) working space. □

5. Computational Experiments
We implemented BGtwo and two variations of BGone, these

are differ in the computation of Φ array. One of which computes
Φ array directly from T (BGoneT), and the other firstly com-
putes SA and then computes Φ array from SA (BGoneSA). The
3 implementation are available at http://code.google.com/
p/bgone/. We compared our algorithms with the implementa-
tion of KKP1, KKP2, and KKP3 *2. We use SACA-K which
is the implementation of Nong’s algorithm to compute LMS SA
in BGoneT, and use divsufsort to compute SA in the other im-
plementations, BGtwo, BGoneSA, KKP1, KKP2, and KKP3.
Note that in terms of speed, BGoneT has a disadvantage since
although divsufsort is not a truly linear time algorithm, it is gen-
erally faster than SACA-K. These conditions were chosen since
the latter algorithms can choose any suffix array construction al-
gorithm, while BGoneT cannot.

All computations were conducted on a Mac Xserve (Early
2009) with 2 x 2.93GHz Quad Core Xeon processors and 24GB
Memory, only utilizing a single process/thread at once. The pro-
grams were compiled using the GNU C++ compiler (g++) 4.7.1
with the -Ofast -msse4.2 option for optimization. The run-
ning times are measured in seconds, starting from after reading
input text in memory, and the average of 3 runs is reported. We

*2 https://www.cs.helsinki.fi/group/pads/lz77.html

c⃝ 2013 Information Processing Society of Japan 6

Vol.2013-AL-145 No.6
2013/11/6

IPSJ SIG Technical Report

Table 1 Time and space consumption for computing LZ factorization. The
times were measured after reading input text in memory. The run-
time of KKP1 includes the writing and reading time of SA to and
from the disk.

Algo KKP1 KKP2 KKP3 BGtwo BGoneT BGoneSA
Arrays 2 2 3 2 1 1

pro 75.57 67.50 56.41 80.30 157.85 136.13
eng 69.34 61.11 49.84 75.50 156.25 132.29
dna 72.35 64.01 52.76 79.46 146.46 136.85
src 55.58 47.45 38.53 57.68 116.18 98.76
cor 54.83 46.68 37.45 58.64 116.94 101.34
cere 140.82 122.83 107.51 177.94 323.00 299.18
ker 69.19 59.04 49.81 77.15 154.16 131.48
ein 145.25 126.92 111.90 178.67 333.97 287.76

use the data used in previous work *3. Table 5 shows running
times of the algorithms, and how many integer arrays is used.

The results show that the runtimes of our algorithms is only
about twice as slow as KKP1, despite the added complexity in-
troduced so that the algorithm can run on a single integer array.
One reason that KKP1 is faster may be because BGone needs
random access on the integer array to compute the NSV array,
while KKP1 does not. Although KKP1 needs to write and read
SA to and from the disk, sequential I/O seems to be faster than
random access on the memory. BGoneSA which computes Φ ar-
ray through SA is a little faster than BGoneT which computes Φ
directly.

References
[1] Al-Hafeedh, A., Crochemore, M., Ilie, L., Kopylov, J., Smyth, W., Tis-

chler, G. and Yusufu, M.: A comparison of index-based Lempel-Ziv
LZ77 factorization algorithms, ACM Computing Surveys (in press).

[2] Crochemore, M.: Linear searching for a square in a word, Bulletin of
the European Association of Theoretical Computer Science, Vol. 24,
pp. 66–72 (1984).

[3] Crochemore, M. and Ilie, L.: Computing Longest Previous Factor in
linear time and applications, Information Processing Letters, Vol. 106,
No. 2, pp. 75–80 (2008).

[4] Duval, J.-P., Kolpakov, R., Kucherov, G., Lecroq, T. and Lefebvre,
A.: Linear-time computation of local periods, Theoretical Computer
Science, Vol. 326, No. 1-3, pp. 229–240 (2004).

[5] Goto, K. and Bannai, H.: Simpler and Faster Lempel Ziv Factoriza-
tion, DCC, pp. 133–142 (2013).

[6] Kärkkäinen, J., Kempa, D. and Puglisi, S. J.: Linear Time Lempel-Ziv
Factorization: Simple, Fast, Small, Proc. CPM’13 (2013).

[7] Kärkkäinen, J., Manzini, G. and Puglisi, S. J.: Permuted Longest-
Common-Prefix Array, CPM, pp. 181–192 (2009).

[8] Kärkkäinen, J. and Sanders, P.: Simple Linear Work Suffix Array Con-
struction, Proc. ICALP 2003, pp. 943–955 (2003).

[9] Kasai, T., Lee, G., Arimura, H., Arikawa, S. and Park, K.: Linear-
time Longest-Common-Prefix Computation in Suffix Arrays and Its
Applications, Proc. CPM 2001, pp. 181–192 (2001).

[10] Kolpakov, R. and Kucherov, G.: Finding Maximal Repetitions in a
Word in Linear Time, Proc. FOCS 1999, pp. 596–604 (1999).

[11] Kreft, S. and Navarro, G.: Self-indexing Based on LZ77, Proc. CPM
2011, LNCS, Vol. 6661, pp. 41–54 (2011).

[12] Manber, U. and Myers, G.: Suffix arrays: A new method for on-
line string searches, SIAM J. Computing, Vol. 22, No. 5, pp. 935–948
(1993).

[13] Nong, G.: Practical linear-time O(1)-workspace suffix sorting for con-
stant alphabets, ACM Trans. Inf. Syst., Vol. 31, No. 3, p. 15 (2013).

[14] Nong, G., Zhang, S. and Chan, W. H.: Two Efficient Algorithms
for Linear Time Suffix Array Construction, IEEE Trans. Computers,
Vol. 60, No. 10, pp. 1471–1484 (2011).

[15] Rytter, W.: Application of Lempel-Ziv factorization to the approxima-
tion of grammar-based compression, Theoretical Computer Science,
Vol. 302, No. 1–3, pp. 211–222 (2003).

[16] Ziv, J. and Lempel, A.: A Universal Algorithm for Sequential Data
Compression, IEEE Transactions on Information Theory, Vol. IT-23,
No. 3, pp. 337–343 (1977).

*3 http://pizzachili.dcc.uchile.cl/texts.html,
http://pizzachili.dcc.uchile.cl/repcorpus.html.

c⃝ 2013 Information Processing Society of Japan 7

Vol.2013-AL-145 No.6
2013/11/6

