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Abstract. We propose a new algorithm for solving frequent string mining problem with allowing approxi-
mate matches. The algorithm first computes the similarity between the strings in the database, and enumerate
clusters generated by similarity. We then compute representative strings for each cluster, and the represen-
tatives are our frequent strings. Further, by taking majority votes, we extend the obtained representatives to
obtain long frequent strings. The computational experiments we performed show the efficiency of both our
model and algorithm; we were able to find many string patterns appearing many times in the data, and that
were long but not particularly numerous. The computation time of our method is practically short, such as
20 minutes even for a genomic sequence of 100 millions of letters.

1 Introduction

String data is one of the most popular data types, including texts, word sequences, genome sequences, and so on.
When we analyze string data, we sometimes want to find frequently appearing string patterns, called frequent
strings, in the data. In the bioinformatics field, such frequent strings are called “motifs”, and many studies
have been done on the algorithms for finding motifs. Frequent string mining is the task to find frequent strings.
The problem of finding patterns frequently appearing in a given database is called frequent pattern mining,
and widely studied. The first problem was to find itemsets from a transaction (subset family) database [1].
The recent development of algorithms enables us to handle large scale databases, as shown in the implementation
competitions [5]. More structured patterns such as sequences and graphs are also considered, and many algorithms
are proposed [7, 11, 16].

Actually, there are at most n(n + 1)/2 substrings for a string of n letters, thus frequent strings can be
enumerated in polynomial time. Moreover, constructing a suffix array [8] makes it possible to obtain all the
frequent strings in a compact form in O(n) time. This computational efficiency has enhanced development in
many areas in this field, such as natural language processing.

On the other hand, for application to real-world data, we have to allow approximate matches, i.e., matches
that include errors. In natural languages, many ambiguities occur in writing, and numerous human errors such as
typos also occur. As a basic principle, genome sequences include errors. Consequently, it is exceedingly unlikely
that long subsequences coming from the same origin will be exactly identical. In such cases, exact matches can
give only short and trivial patterns. Unfortunately, frequent pattern mining cannot well deal with approximate
matching for finding large patterns. For example, if we allow patterns to have at most θ errors in matching, huge
number of short strings become frequent, since any string of θ letters can match anything in the string data. This
disturbs the usual hill climbing algorithms, since they in principle have to explore all small patterns.For example,
the algorithm of Mitasiunaite and Boulicaut[9] took one hour to one day, to extract frequent strings of length 5
to 10 with 2 or 3 errors, from string data of millions of letters. It would be very hard to find string patterns of
length more than 100 with up to 10 errors by this approach.

On the other hand, if we allow errors according to the pattern length, such as ρl mismatches for strings of length
l with a ratio ρ, hill climbing algorithms do not work since patterns do not satisfy the anti-monotone property.
Fundamentally, frequent pattern mining with approximate match (soft occurrence) has a difficulty on the definition
of the problem, since even if we ignore small patterns, there might be huge number of large frequent patterns. For
example, when string “AAAA...AAA” is included in many times in the data, any string with short distance from
it, such as “BBA...AAA” and “BAZ...AA”, can be a frequent string. We should formulate the problem so that
only some representatives of such strings will be output, however, defining representatives is difficult. Pattern
mining aims to enumerate patterns interesting/valuable to human being, and its good mathematical definition is
hard.

In this paper, we propose a new “method” for generating string patterns that may appear in the given
string data many times. That is, we define our task, but do not formulate the problem precisely. Instead of
that, we propose a process to generate string patterns from the input string data. Actually, many algorithms in
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bioinformatics take this approach (see a survey [14]). This approach is often taken in areas with mathematically
undefined objectives, such as information retrieval, and web science. In algorithmic area, heuristic algorithms can
be considered as this approach. For example, greedy algorithms have well-defined objectives, but their output can
not be formulated as a simple mathematical terms. The algorithms are description of the output.

To design our algorithm, we observe that if a string approximately matches some substrings in the string
data, the substrings are relatively similar to each other. This observation leads us that clusters of substrings
generated by similarity can be regarded as the set of substrings that some frequent patterns match. On this basis,
we enumerate the clusters first and then compute their representatives. The representatives are our model of
frequent strings, and we show its completeness. We can prove that for any frequent string defined in a usual way,
there is a representative not so different from the pattern. Furthermore, by taking majority votes, we extend the
frequent strings in both directions to obtain longer frequent strings.

Actually, there are similar approaches in bioinformatics [6, 13, 14] However, because of the computational
difficulty, they can deal only with small data, can find few patterns, or have some heuristics such as removing very
frequent small strings from the data, that loses completeness and disables to deal with other string data. Moreover,
they do not use enumerational approaches, thus the obtained patterns usually do not have the completeness. For
example, let us see the algorithm HomologMiner [6] that is designed to find clusters of similar substrings. It
first removes all frequently appearing short strings called repeat sequences from the input genome sequences, by
looking at the library of repeat sequences. It then computes the similarity between all substrings, and cluster the
substrings. Because of the heavy pairwise comparison (even though they avoid heavy DP), they needed up to ten
hours. δ-free pattern mining aims to reduce the number of patterns by pruning patterns including patterns with
similar occurrences[4], but the reduction ratio is limited, say 1/10.

To achieve a high computational performance, we keep our task to be simple. We address two tasks in this
paper; find short string patterns that have Hamming distances of at most the given threshold d to many substrings
of the input string data, and to find many string patterns that have short edit distances to many substrings of
the input string data. The former can be seen as motifs, and the latter can be seen as consensus sequences, that
have been extensively studied in bioinformatics. By using Hamming distance as error criterion, we can find similar
substring pairs in a very short time. There are several algorithms for this task, especially in bioinformatics such
as BLAST [2, 3] and FASTA [10]. Among these, we chose the algorithm of [15] because of its high performance.
Actually, the other algorithms basically use exact matches to find approximate matches, thus they do not fit our
purpose; if we use these algorithms, we should use exact match directly, to make everything clear and simple.
The algorithm we chose can terminate in a few minutes even for 10 million of genome sequences of 30 letters with
Hamming distance threshold 2.

Our computational experiments show that our algorithm runs in a practically short time, say 10 minutes,
even for large scale data of up to one million letters, for many kinds of real world data such as genome sequences,
natural language texts, and word sequences. The patterns found by our method are long, and their number is
quite small compared to those found by usual frequent pattern mining. The number of patterns found is usually
in the order of 100 or 1,000. This range is suitable for the practical use of pattern mining, i.e., ten is too small (it
should be solved by optimization approaches), and one million is too much.

2 Preliminaries

Let Σ be an alphabet of letters, and a string be a sequence of letters. The length of a string S is the number of
letters in S and is denoted by |S|. The ith letter of a string S is written S[i], and i is called the position of S[i].
The substring of S starting from the ith letter and ending at the jth letter is a string S[i]S[i+ 1] . . . S[j], and is
denoted by S[i, j]. When i < 1 or i > |S|, S[i] is a special letter ‘$’ that is not in Σ. For example, when string S
is ABCDEFG, S[3] = C, and S[4, 6] = DEF . When j < i, we define S[i, j] to be the empty string, and when
i < 1, the S[i, j] starts with ‘$’. For two strings S1 and S2, the concatenation of S2 to S1 is a string S given by
appending S2 to the tail of S1, i.e., |S| = |S1|+ |S2|, S[i] = S1[i] if i ≤ |S1|, and S2[i− |S1|] otherwise.

For two strings S1 and S2 of the same length, the Hamming distance of S1 and S2 is defined by the number
of positions i satisfying S1[i] 6= S2[i]. Such letters are called the mismatches of S1 and S2, and the positions of
mismatches are called the mismatch positions of S1 and S2. The edit distance (Levenshtein distance) between
S1 and S2 is defined by the minimum number of operations to transform S1 to S2, where the operations are to
change/insert/delete one letter. Suppose that we are given a distance measure. For a string S, the substrings in
the string data that have a short distance to S are called the occurrences of S. A set of occurrences of S is called
an occurrence set of S.

3 Model and Method

We formulate our frequent string pattern mining problem as follows.
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Problem: Cluster-based Frequent String Mining
input string set D = {S1, . . . , Sm}
1. (Cluster enumeration) Find groups (clusters) of substrings of strings in D such that the substrings in the group
are similar to each other.
2. (Centroid computation) Compute a string similar to all the substrings in a cluster, for each cluster.

This would involve a computational difficulty on the cluster enumeration step if the length of strings to be
found was long. To cope with this difficulty, we observe that “long similar strings have a common short string that
is similar to substrings of each long string.” In particular, if the long strings are similar in terms of a distance that
allows more general errors, the short string might be similar in terms of a distance that allows more specific errors.
Here “errors” includes mismatches, insertions, deletions, copies, duplications, moves, etc. “Specific errors” means
a class composed of few of these, and “general errors” a class comprising many of these. The latter is observed
frequently in genome sequences; two long genome sequences similar in the edit distance usually have substrings
similar in the Hamming distance. For example, BLAST [2, 3] and FASTA [10] that are de facto standard similarity
search tools in bioinformatics, use this principle to find long similar strings; they find a pair of substring that are
exactly the same, and check whether they are a part of similar long substrings. This principle motivates us to use
short frequent substrings as seeds of long frequent substrings. That is, we first find short frequent substrings and
then extend each short string in both directions until it becomes not similar to its occurrences. Accordingly, the
problem for long strings is formulated as follows.

Problem: Cluster-based Long Frequent String Mining
input string set D = {S1, . . . , Sm}
1. (Seed enumeration) Find groups (clusters) of substrings of short length in the set of strings such that the
substrings in the group are similar to each other.
2. (Centroid computation) For each cluster, compute a string similar to all the substrings in a cluster, and extend
the string in both directions until it is not similar to many substrings in the cluster.

If a seed is too short in length, it may be included in many different frequent string patterns. On the other
hand, the seeds have to be shortened as much as possible to achieve the computational efficiency. This trade-off
is a key to achieving practical efficiency with this model.

4 Algorithm
We propose an efficient algorithm for solving these problems. The key idea is using a multi-sorting algorithm [15]
for finding similar short substrings. This algorithm inputs a set of strings of the same length l, and finds all the
string pairs having a Hamming distance of at most d. Applying this algorithm to all substrings in the string data
gives a graph representation of similarity among all substrings. A number of clustering algorithms can be used to
find clusters, but here we use a simple method for adapting large-scale data.

Hereafter, we assume that a substring has length l. For a substring of length l, let N(S) be the set of substrings
of length l of a string in the string data such that the Hamming distances to S is at most d. Note that S is included
in N(S). To make a cluster, we choose a substring S maximizing |N(S)| which corresponds to a maximum degree
vertex in the graph representing the similarity relation among the substrings. We then make a cluster by N(S).
We repeat this after removing the substrings in the cluster from the candidates of S. The process ends when
|N(S)| achieved a value of less than σ, that is a given threshold value.

For each cluster, we compute its representative string C(N(S)), which we call centroid, by using a majority
voting algorithm described as follows. Here, v({s1, . . . , sk}, ρ) = c if kρ letters sj in {s1, . . . , sk} are c, and is the
wildcard otherwise.

Algorithm StringVote ({S1, . . . , Sk}, ρ(> 0.5))
1. for i := 1 to l, set S∗[i] to v({S1[i], . . . , Sk[i]}, ρ)
2. return S∗

The length of C(N(S)) is l, and its ith letter is determined by the voting, i.e., the letter appearing most often
in all the ith letters of strings in N(S). For example, if the first letters of three strings in a cluster are all A,
B, and A, the majority is A, and the first letter of the centroid C(N(S)) becomes A. For the case in which the
majority letter is not especially significant, we use a threshold value ρ so that if the majority letter appears less
than ρ|N(S)| in the substrings in N(S), we set the letter to the “wildcard”, instead of the majority letter.

Instead of the voting, we can simply use S itself as the centroid. However, in some case, S can be different from
the common string. For example, S = BBAAAAAA, and all strings in N(S) are AAAAAAAA except for one,
BBBBAAAA. The representative of this cluster should be AAAAAAAA, but S is different from it. However, in
the analysis explained in the next section, choosing S has an advantage. Using the voting algorithm, our algorithm
for Cluster-based Frequent String Mining problem is described as follows.
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Algorithm FreqString (D, l, d, σ, ρ)
D: string set, l: substring length, d: Hamming distance threshold, σ: degree threshold, ρ: voting threshold

1. S := all substrings of length l in a string in D
2. call multi-sorting algorithm to compute N(S) for all substrings in S
3. choose a substring S in S maximizing |N(S)|
4. if |N(S)| < σ stop

5. compute C(N(S)) by StringVote (N(S), ρ)
6. S := S \N(S)
7. if S 6= ∅ go to 3

Let N denote the number of output pairs by the multi-sorting algorithm, i.e., N = (
∑

S∈S
|N(S)|)/2. In

practical terms, the multi-sorting algorithm terminates in O(l(|S| + N)) time if l is sufficiently large and d is
sufficiently small, e.g., in the case where l = 30 and d = 3 for genome sequences [15]. Steps 1, 3, 4 and 7 can
be done in O(|S|) time in total. Since step 6 can be done by removing all pairs including a substring in N(S),
and no pair is removed twice, thus accounting computation time for step 6 results O(N). Step 5 can be done in
O(l |N(S)|) time, thus needs O(lN) time in total. In summary, the computation time depends on the time for
multi-sorting algorithm, and can be expected to be O(l(|S| +N)) in practice. We can see this by looking at the
result of our experiments; the memory usage that is linear to N and the computation time.

For finding longer frequent substrings, we extend the seeds as follows. Suppose that we obtain centroid S∗ from
a cluster N(S). Then, for all substrings in the cluster, we compute the majority letter in the same way as given
above, among all letters following the substrings in strings in D. Note that if some substrings are located at the
end of some texts, we consider that any following letter is a special letter ‘$’ meaning “void”. The majority letter,
or the wildcard, is the l + 1 th letter of the extended centroid. We further compute the second following letter,
the third following letter and so on. We want to stop this when the majority is often not significant. We stop
the extension if there are more than θ wildcards in the last l letters of the extending centroid, where θ is a given
threshold. The stopping criteria, majority threshold, and some other parameters or methods of the extension can
be changed as the user likes, but to make the similarity of the strings uniform, we propose to use the same setting
as that for the centroid computation and the multi-sorting algorithm. The algorithm is described as follows.

Algorithm StringVoteExt (S, {p1, . . . , pk}, l, ρ(> 0.5), θ)
1. i := 0; j := l − 1; S∗ := StringVote ({S[p1, p1 + l − 1], . . . , S[pk, pk + l − 1]}, ρ)
2. i := i− 1; set S∗[i+ 1] to v({S[p1 + i], . . . , S[pk + i]}, ρ)
3. if S∗[i+ 1] 6= $ and S∗[i+ 1, i+ l] has wildcards of at most θ, go to 2.
4. j := j + 1; set S∗[j + 1] to v({S[p1 + j], . . . , S[pk + j]}, ρ)
5. if S∗[j + 1] 6= $, and S∗[j − l + 1, j + 1] has wildcards of at most θ, go to 4.
6. return S∗[i+ 2, j]

After computing the centroid, we remove all substrings in the cluster N(S) from S. We further remove the
substrings from S that are included in the substring S′ obtained by extending a substring in the cluster in both
directions as the same length as the extent of the centroid. This is because in the next phase, the substrings
removed would make a cluster, and the extension of the seed obtained by the cluster would be the same as that
for the currently obtained centroid. The algorithm FreqLongString for Cluster-based Long Frequent String Mining
is obtained by modifying steps 5 and 6 of FreqString as follows.

5. compute C(N(S)) by StringVoteExt (D, { positions of N(S) in D}, l, ρ, θ)
6. extend the substrings in N(S) in the same length as for Step 5, and remove
all substrings included in the extended substrings from S.

The additional computation time needed for this process is for the extension and the removal of the substrings.
This needs, roughly, O(Nh) time where h is the average length of the extension. Thus, not so many centroids are
extended in long lengths, and therefore we may not lose computational efficiency.

To achieve efficiency of the computation, we are motivated to use exact matches as seeds, i.e., substrings
having no mismatches, since finding exactly the same substrings is much easier than finding similar substrings.
However, this may result in a loss of model efficiency. If we use identical substrings, the cluster size will be small,
and the voting may not work well. If we use much shorter identical substrings, they are possibly included in other
non-similar strings, thus the voting will be done for non-similar strings. Using similar substrings may exclude
non-similar strings, and increase the cluster size.

5 Completeness of the Model

This section shows a completeness of the model, by stating that any frequently appearing string is similar to at
least one output pattern. Suppose that C is the set of strings of length l obtained by FreqString, from a string set
D = {S1, . . . , Sm}.
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Table 1. Results for X chromosome; length of 1,000 letters

d 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800 291572

time 0 0.45 0.9 1.84 3.71 7.23 14.9 30 65 141 339 889 1559
(sec) 1 0.51 1.08 2.23 4.63 9.23 19.5 42 99 296 1197

2 0.58 1.3 3.09 7.22 15.4 34 76 203 804
3 0.91 2.05 5.18 13.1 28 66 155 456 2082

memory 0 72 72 72 72 80 112 190 350 659 1284 1983 2705
(MB) 1 72 72 72 72 81 112 190 350 1217 3684

2 72 72 72 72 72 81 112 195 2879
3 72 72 72 72 72 89 126 316 5212

#short 0 7 19 25 25 68 83 178 461 1603 4879 7003 15021
patterns 1 42 101 179 291 471 803 1696 5935 15836 41939

2 53 166 288 433 1168 1820 3770 14874 31193
3 88 415 1022 2537 1978 4239 6945 15879 58460

#long 0 0 1 2 3 4 7 11 26 56 111 273 341
patterns 1 1 5 13 28 45 66 107 234 569 1019

2 2 4 20 38 52 136 229 493 980
3 3 7 29 55 64 130 254 349 398

average 0 0 1123 667 429 301 335 220 218 193 244 304 277
length 1 87 302 205 158 142 142 142 173 180 204

2 106 432 191 167 161 133 130 146 152
3 126 278 161 122 121 130 113 123 219

Lemma 1. For any S and N(S), the Hamming distance between S and C(N(S)) is less than d/ρ. In particular,

it is less than 2d if ρ > 1/2.

Proof. Let P be the set of mismatch positions of S and C(N(S)). For each p in P , let Z(p) be the set of S′ ∈ N(S)
such that at the position p, S′ has a letter different from S. We then see that |Z(p)| ≥ ρ(|N(S)|). Since each
S′ ∈ N(S) can have at most d positions mismatching S,

∑
p∈P |Z(p)| ≤ d(|N(S)| − 1). Thus

d|N(S)| − d ≥
∑

p∈P

|Z(p)| ≥
∑

p∈P

ρ|N(S)| = |P |ρ|N(S)|,

thus we have |P | < d/ρ ⊓⊔

Lemma 2. Suppose that at least σ substrings in strings in D have Hamming distances at most d/2 to S. If S is

a string in S, there is always a string S∗ ∈ C s.t. the Hamming distance between S and S∗ is at most (1 + 1/ρ)d.

Proof. From the assumption we have that |N(S)| ≥ σ. Thus, S is included in N(S′) for some S′ in Step 5 of
algorithm FreqString. Since the Hamming distance between S and S′ is at most d, and from Lemma 1, the
Hamming distance between S′ and C(N(S′)) is at most d/ρ, we have that the Hamming distance from S to
C(N(S′)) is at most (1 + 1/ρ)d. C(N(S′)) is a member of C, therefore the statement holds. ⊓⊔

Lemma 3. Suppose that d is even and at least σ substrings in strings in D have Hamming distances at most d/2
to S. There is always a string S∗ ∈ C s.t. the Hamming distance between S and S∗ is at most (1.5 + 1/ρ)d.

Proof. Let H be the set of substrings of strings in D such that the Hamming distance to S is at most d/2. Since
|H| ≥ σ and any two strings in H have Hamming distance of at most d, at least one of H belongs to N(S′) that
induces a string S∗ ∈ C. From Lemma 1, the Hamming distance from S to S∗ is at most (1.5 + 1/ρ)d. ⊓⊔

From these lemmas, we can see that the output of our algorithm covers all frequent strings. When we choose
S as the centroid of N(S), the upper bound in the statement of the lemma can be improved. From the proof of
the above lemma, there is a string S′ such that Hamming distance to S is at most d/2, and included in some
cluster N(S∗). Thus, the Hamming distance from S to S∗ is bounded by d if S is a substring of a string in D,
and 1.5d otherwise.

6 Experiments

Our implementation is coded in C, and no sophisticated libraries such as binary trees are used. All experiments
were done on a 3.2 GHz Core i7-960 computer with a Linux operating system having 24GB of RAM memory. Note
that we did not use multi-cores in the experiment. The codes and the instances we used can be found available
at the author’s website (http://research.nii.ac.jp/~uno/codes.html).

We used a genome sequence and a word sequence as instances. The genome sequence was the human X
chromosome taken from National Center for Biotechnology Information (NCBI) database. It was 143,733,266
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Table 2. Results for word sequence; length of 1,000 letters

d 25 50 100 200 400 800 1600 3200 4700

time 0 0.1 0.19 0.46 1.26 2.93 22.9 43 175 267
(sec) 1 0.22 0.6 1.93 7.22 22.4 110 388 2978

2 1.72 6.23 27 120 466 2155

memory 0 36 36 36 36 36 62 99 257 354
(MB) 1 36 36 36 72 52 126 330 1575

2 36 36 43 107 280 885

#short 0 82 145 499 1905 3717 8673 20773 66915 86540
patterns 1 296 949 3660 12639 32825 92408 228485 734335

2 1898 4572 10242 21067 40413 85325

#long 0 36 74 271 696 1409 3128 6417 16526 19665
patterns 1 72 168 339 762 1493 3226 6425 15571

2 89 177 347 715 1455 3224

average 0 13 16 14 17 18 17 17 17 18
length 1 16 15 16 16 16 14 14 15

2 14 14 13 13 13 12

Table 3. Results for change in pattern length (X chromosome); degree is average number of similar patterns, and deg< 2
is ratio of patterns that have at most two occurrences

l, d 10,0 15,0 15,1 15,2 20,0 20,1 20,2 30,0 30,1 30,2 30,3 50,0 50,2 50,4 50,6

time(sec) 690 37 192 1391 22 62 174 30 42 76 155 63 82 151 366
memory (MB) 1072 150 439 1551 97 181 340 112 112 112 197 121 124 124 106
#short patterns 2466 512 11915 164853 314 4168 6808 83 834 1975 4743 34 113 586 1404
#long patterns 1388 150 1011 770 86 302 0 27 107 229 254 2 11 88 106
average length 27 141 75 45 167 113 0 220 142 130 113 360 157 69 57
degree 0 5 0 0 11 5 0 8 14 13 9 1 1 90 95
deg< 2 98 37 69 89 22 25 0 72 13 11 17 0 0 0 0

letters in length, and comprised 4 kinds of letters and a special letter ’N’ meaning the wildcard (except comment
lines). The instances we generated from the X chromosome were doubled by attaching its reverse, since genome
sequences are often similar to the reverse of subsequence of the other sequences. The word sequences were generated
from the benchmark data named “20 Newsgroups” (http://people.csail.mit.edu
/jrennie/20Newsgroups/). With the exception of dashes and periods, all symbols were removed from the data,
and each word was assigned a unique ID. The word sequence was the sequence of ID’s of the words in the data.
The alphabet size of the word sequence was 132,859, and the length was 5,454,672.

Tables 1 and 2 show the experimental results for the performance in terms of the changes of the input size and d.
Since the computation time and the memory usage does not differ much between FreqString and FreqLongString,
we show those of FreqLongString. We set the pattern length l to 30 on Table 1 and 12 on Table 2, σ to 10, ρ
to 1/2, θ to 2, and found the extended centroids for the cases of d = 0, 1, 2, 3, and d = 0, 1, 2, respectively. The
instances were generated by taking substrings starting from the beginning, and were written in length of 1,000
letters. Tables 3 and 4 show the results obtained by the changes of the seed length l. We use the instances of
length 6,400,000 for the X chromosome, and 1,600,000 for the word sequence.

The computation time was almost linear in the length except for large instances with large d, and even though
the length is hundred millions, the computation time was comparatively short. For large scale data, the number
of similar substrings was quite huge, thereby the computation time was long. In such cases, we should use much
larger l and d, for not losing the efficiency as shown below. The number of patterns did not substantially explode,
and the average pattern length was stable. In testing the appearance of the patterns we obtained in the genome
sequence, we counted the substrings such that the edit distance to the pattern string was at most the 10% of
the pattern length. Few patterns appeared few times, say 5–10 times, but other patterns appeared more than 30
times. For the increase of d, the increase in the pattern number and pattern length appeared to saturate at some
point. This implies that in practice we do not have to care about large d.

We can find much more patterns by increasing d, especially for genome sequences, but too large d results in a
long computation time. Thus, using small d would be a good solution. In genome sequences, we found many short
patterns with small l, and few long patterns with large l. This is caused by that for small l, there are too many
similar substrings for a substring. Such many substrings would be a part of non-similar long strings, thereby we
could find only their common short substrings. For large l, we might not unify the groups, but when d is small,
especially d = 0, we could find only few groups composed of quite similar substrings, and thus obtained very few
patterns. With slightly large d and non-short l, we can find many sufficiently long patterns within quite short
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Table 4. Results for change in pattern length; word sequence

l, d 8,0 12,0 12,1 18,0 18,1 18,2 18,3 25,0 25,2 25,4 40,0 40,2 40,4 40,6

time(sec) 2573 43 387 17.6 32 121 872 14 33 148 27 36 65 2731
memory (MB) 1557 110 380 3398 60 138 558 61 62 69 63 63 64 64
#short patterns 9380 6041 5351 6031 2484 3419 3357 3262 1143 2263 3261 428 562 804
#long patterns 6585 6417 6425 2499 3799 3754 3845 983 1696 2277 425 533 731 804
average length 14 17 14 18 20 17 18 15 14 16 17 17 15 13
degree 0 0 0 0 0 0 0 0 0 0 0 0 0 0
deg< 2 100 100 100 98 99 100 100 99 99 97 100 100 96 100

Table 5. Results with using interleaving sampling; X chromosome
d 3200 6400 12800 25600 51200 102400 204800 291572

time 0 2.53 5.23 10.7 22.6 47 102 246 386
(sec) 1 3.04 6.38 13.7 30 75 216 680 1316

2 3.85 9.46 20.8 51 165 701 2550
3 6.21 13.9 33 92 374 2108

#long 0 1 3 4 37 152 399 995 1313
patterns 1 31 48 72 218 563 1116 2566 3330

2 46 115 193 454 1102 1454 4278
3 104 171 284 614 1052 1929

average 0 1710 977 769 353 378 393 413 386
length 1 189 200 178 234 262 262 293 280

2 160 164 161 215 215 217 227
3 139 135 136 181 193 211

time. This result supports our motivation to use similar short substrings for frequent string mining. In particular,
we can see many copies/quotations in the word sequences, and consequently we found many groups of copies
for the case of d = 0, and the large average length of patterns. By introducing similarity, we could find shorter
patterns, that would not come from the groups of “copy and paste”.

We also tested the similarity between patterns discovered. For each pattern S, we counted the number of
strings S′ similar to it; such that S (or S′) had an edit distance of at most 0.1|S| to a substring of S′. We tested
the output in the second experiment, and show results in the last two rows of Tables 3 and 4. The first row shows
how many patterns are similar to one pattern on average, and the second row shows the fraction of patterns
having at most two other similar patterns. In all cases, each pattern is similar to at most 15% of other patterns
on average, and there are several patterns not similar to other patterns. The patterns we obtained from the data
are in some sense independent to each other. In word sequences, and genome sequences with d = 0, almost all
patterns have no similar pattern. It comes from that we found only groups of quite similar substrings, and “copy
and paste”, thus the strings in different groups are not similar to each other.

The computation time can be reduced by using “interleave sampling” of substrings proposed in [15]. By using
the method, we can find continuous pairs of substrings having small Hamming distance, i.e., we find pairs of
substrings S1 and S2 such that S1[i, i+ l] and S2[i, i+ l] have a Hamming distance of at most d for any i. When
we find such string pairs from short string pairs, we never miss sufficiently long continuously similar substrings,
even if we take only 1/c of all substrings, for some constant c such as c = l1/2. This enables us to fasten the
computation without losing the efficiency. In Table 5 and Table 6, we could reduce the computation time to 1/5,
without decreasing the number of patterns found, and the length of the patterns.

Comparison with other methods

The comparison of the methods for this problem is actually very difficult, since they share the same task, but the
problems formulations are different. For example, many algorithms in bioinformatics finds the frequent string from
exact matches. They are faster than those of approximate matches, and the accuracy and completeness might be
less, but no one can be sure about this. Some algorithms reduce the input data by domain specific background
knowledge, and/or some corpus for efficient computation. It is hard to have a good criteria for the evaluation of
algorithms. Instead of a good evaluation criteria, we just show the results of the computational experiments in
Table 7, that are reported in literature. The numbers are approximations.

7 Conclusion

We formulate a simple frequent string pattern mining problem with approximate match, and propose an algorithm.
By using the multi-sorting algorithm for the similarity computation, our algorithm could perform quite well even
for large-scale real-world string data. The number of patterns we obtained in this approach was not excessively
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Table 6. Results with using interleaving sampling; X chromosome

d 400 800 1600 3200 4700

time 0 1.21 10.9 18.4 56 93
(sec) 1 6.41 35 108 677

2 125 547 2191

#long 0 777 1733 4881 13409 16655
patterns 1 1351 3095 6182 14798

2 1338 3164 5908

average 0 16 4881 17 17 18
length 1 16 6182 15 15

2 15 5908 14

Table 7. Comparison of the performance of the algorithms

algorithm distance errors problem size #patterns CPU time

FreqLongString edit distance 10% 100MB 1000 1000
(hill climbing) [9] edit distance 2 or 3 >10MB huge 1 day
HomologMiner [6] Hamming distance - 30MB few 10 hours
RepeatScout [12] edit distance - 50MB few 2 hours

large such that the patterns obtained are tractable. The experimental results showed that by introducing the
similarity, we can obtain much more long patterns or non-trivial patterns without drastically increasing the
computational cost. We used Hamming distance for the similarity evaluation, but the obtained patterns are
actually frequent even in the term of the edit distance. It is noteworthy that using simple criteria makes it possible
to find interesting, large patterns with more sophisticated criteria. Interesting future research is to extend this
algorithm to handle more sequence-like string patterns to accept more ambiguous data such as natural language
texts.
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