
Journal of Information Processing Vol.21 No.4 660–664 (Oct. 2013)

[DOI: 10.2197/ipsjjip.21.660]

Recommended Paper

Two Compact Codes
for Rectangular Drawings with Degree Four Vertices

Masashi Saito1 Shin-ichi Nakano1,a)

Received: January 23, 2013, Accepted: July 3, 2013

Abstract: A rectangular drawing is a partition of a rectangle into a set of rectangles. Rectangular drawings have
many important applications including VLSI layout. Since the size of rectangular drawings may be huge, compact
encodings are desired. Several compact encodings of rectangular drawings without degree four vertices are known. In
this paper, we design two compact encodings for rectangular drawings with degree four vertices. We give 5 f − B − n4

bits and 5 f −B−W −3 bits encodings for rectangular drawings, where f is the number of inner faces, n4 is the number
of vertices with degree four, and B (resp. W) is the number of inner faces touching the bottommost horizontal (resp.
rightmost vertical) line segments.

Keywords: coding, tree, rectangular drawing, depth first search

1. Introduction

Compact encodings of graphs are studied for many classes of
graphs [12], for instance, trees [8], and plane graphs [2], [3], [7],
[9], [13]. See a nice textbook [12].

The well known naive coding of ordered trees is as follows.
Given an ordered tree T we traverse T starting at the root with
depth first manner. If we go down an edge then we code it with 0,
and if we go up an edge then we code it with 1. Thus any ordered
tree T with n vertices has a code with 2(n − 1) = 2m bits, where
n is the number of vertices and m is the number of edges in T .
Some examples are shown in Fig. 1.

On the other hand, the number of ordered trees with n vertices
is known as the Catalan number Cn−1, and it is defined as fol-
lows [4], [10].

Cn =
1

n + 1
(2n)!
n!n!

=
4n

(n + 1)
√
πn

(
1 − 1

8n
+

1
128n2

+ O(n−3)

)
(1)

For example, the number of ordered trees with four vertices
is C4−1 = 5 as depicted in Fig. 1. We need at least log Cn−1 =

2n− o(n) = 2m− o(n) bits to code an ordered tree with n vertices.
So the naive coding using 2m bits for ordered trees is asymptoti-
cally optimal.

A rectangular drawing is a partition of a rectangle into a set of
rectangles. Rectangular drawings have many important applica-
tions including VLSI layout [5], [6], [11]. Since the size of rect-
angular drawings may be huge, compact encodings are desired.
Several compact encodings of rectangular drawings without de-
gree four vertices are known. See Refs. [5], [6], [14], [15].

1 Department of Computer Science, Gunma Univercity, Kiryu, Gunma
376–8515, Japan

a) nakano@cs.gunma-u.ac.jp

Fig. 1 The naive coding of ordered trees.

Fig. 2 Two rectangular drawings corresponding to the same plane graph.

In this paper, we design two compact encodings for rectangular
drawings with degree four vertices. We give 5 f − B − n4 bits and
5 f −B−W−3 bits encodings for rectangular drawings, where f is
the number of inner faces, n4 is the number of vertices with degree
four, and B (resp. W) is the number of inner faces touching the
bottommost horizontal (resp. rightmost vertical) line segments.

Note that we cannot treat rectangular drawings simply as plane
graphs. See two rectangular drawings in Fig. 2. They are isomor-
phic as plane graphs, however they are different as rectangular
drawings. Because in Fig. 2 (a) the two faces Fa and Fb share
a horizontal line, however in Fig. 2 (b) they share a vertical line.
We store the direction (horizontal or vertical) for each edge in a
given rectangular drawing.

The rest of the paper is organized as follows. Section 2 gives
some definitions. Section 3 explains our first encoding of rect-
angular drawings using 5 f − B − n4 bits. Section 4 explains our
second encoding of rectangular drawings using 5 f − B − W − 3

The initial version of this paper was presented at FIT2012 held in Sep.
2012, whose program chair then recommended its publication in Journal
of Information Processing (JIP).

c© 2013 Information Processing Society of Japan 660

Journal of Information Processing Vol.21 No.4 660–664 (Oct. 2013)

bits, using the (4 f −4) bit encoding in Ref. [14]. Finally Section 5
is a conclusion.

2. Preliminaries

In this section we give some definitions. A tree is a connected
graph with no cycle. A rooted tree is a tree with one vertex cho-
sen as its root. An ordered tree is a rooted tree in which children
of each vertex are ordered.

A drawing of a graph is plane if it has no two edges intersecting
geometrically except at a vertex to which they are both incident.
A plane drawing divides the plane into connected regions called
f aces. The unbounded face is called the outer face, and other
faces are called inner faces.

A rectangular drawing is a partition of a rectangle into a set
of rectangles. We regard the four corners of each rectangle as
vertices. Let nd be the number of vertices with degree d. Now
n = 4+n3+n4 holds, since every rectangular drawing has exactly
four vertices with degree two at the four corners of the outer face.
Thus 2 · 4 + 3 · n3 + 4 · n4 = 2m holds, where m is the number of
egdes. Those equations and the Eular’s formula n − m + f = 1
give m = 3 f − n4 + 1, and n = 2 f − n4 + 2.

A degree three vertex is north missing if it has a down-
ward edge, a rightward edge, and a leftward edge. Let nN be
the number of north missing vertices. Similarly south miss-
ing, east missing, west missing, nS , nE , nW are defined. Thus,
nN + nS + nE + nW = n3 holds. Since each north missing vertex
is the top end of some maximal vertical line segment and each
south missing vertex is the bottom end of some maximal vertical
line segment, nN = nS holds. Similarly nE = nW holds.

3. Compact code I

In this section we give our first compact encoding for rectan-
gular drawings based on the depth first search of an ordered tree.
The encoding is similar to the one in Ref. [15], however which
only works for rectangular drawings without degree four. Our
encoding needs 5 f − B− n4 bits for each of the rectangular draw-
ings.

Let B be the number of inner faces touching the bottommost
horizontal line segment. Given a rectangular drawing R, we first
remove the bottommost horizontal line segment of the outer face
as shown in Fig. 3 (b). Now the resulting graph R′ has m−B edges.
Then, we replace the lower right corner of each remaining inner
face as shown in Fig. 4. See a complete example in Fig. 3 (c). Let
R′′ be the resulting graph.
Lemma 3.1

The resulting graph R′′ is a tree with m − B + n4 edges.
Proof. Since we only break each cycle corresponding to an in-
ner face at the lower right corner, the resulting graph has no inner
face and is still connected. Thus R′′ is a tree. After removing B

edges, R′ has m− B edges. Since the upward edge of each degree
four vertex is replaced by two edges, R′′ has m − B + n4 edges.

Q.E.D.
Starting at the upper left corner we traverse the tree R′′ with

depth first manner (with right priority). See Fig. 3 (d). Each edge
is traced exactly twice in both directions. Intuitively we trace
counterclockwise around the wall corresponding to the tree R′′.

Fig. 3 (a) A rectangular drawing R, (b) removal of the botttommost hori-
zontal line segment, (c) replacement of lower right corners, (d) the
trace.

Fig. 4 Replacement of the lower right corner of each inner face.

Whenever we arrive at a vertex, say v, by tracing an edge, say e,
we always have only “two” possibilities for the next direction to
trace, as shown below, even though there are four possible direc-
tions, up, down, left and right. We have four cases.
Case 1: When trace e downward.

If the trace is the first trace of e then the next trace is either
downward or upward. See Case 1(a) in Fig. 5. If the next trace
is leftward then it contradicts the fact that we have cut the lower
right corner of each inner face. If the next trace is rightward then
this means v has degree two and v has only an upward edge and
a rightward edge. In R such vertex exists only at the lower left
corner. Since we have removed the bottommost horizontal line
segment, R′′ has no such vertex. A contradiction.

If the trace is the second trace of e then v has degree four and e

is the upward edge of v. Then next trace is always leftward. See

c© 2013 Information Processing Society of Japan 661

Journal of Information Processing Vol.21 No.4 660–664 (Oct. 2013)

Fig. 5 The possible next traces.

Case 1(b) in Fig. 5.
Case 2: When trace e rightward.

The next direction to trace is either downward or rightward.
See Case 2 in Fig. 5. If the next trace is upward then which means
v has degree two and v has only an upward edge and a leftward
edge. A contradiction, as shown in Case 1. If the next trace is
leftward then v has degree one and v has only a leftward egde. In
R there is no degree one vertex. In R′ every degree one vertex has
an upward edge. In R′′ every degree one vertex has either upward
or downward edge. A contradiction.
Case 3: When trace e leftward.

We have five subcases, as shown in Fig. 5. Since we have traced
e leftward v has a rightward edge.

If v is the upper left corner then this is the last trace so there
is no next trace (Case 3(a)). If v has no leftward edge then v has
degree three, so the next trace is always upward (Case 3(b)). If v
has no downward egde then v has degree two and the next trace is
always leftward (Case 3(c)).

Otherwise the next trace is either leftward (Case 3(d)) or up-
ward (Case 3(e)). We need one bit for each occurrence of
Case 3(d) or Case 3(e).
Case 4: When trace e upward.

We have seven subcases, as shown in Fig. 5. If the trace is
the first trace of e then the next trace is always downward (then

leftward). See Case 4(a) in Fig. 5. In this case v has degree one.
If the trace is the second trace of e then v has degree either two,

three or four. If v is the upper left corner then the next trace is al-
ways rightward. See Case 4(b) in Fig. 5. If v has no leftward edge
then the next trace is always rightward. See Case 4(c) in Fig. 5.

Otherwise the next trace is either rightward (Case 4(d) and
Case 4(e), or leftward (Case 4(f)) and (Case 4(g)). We need
one bit for each occurrence of Case 4(d), Case 4(e), Case 4(f)
or Case 4(g).

We trace each edge exactly twice in both directions, and we
need one bit for each trace to record the direction of the next
trace. However the last trace has no next trace (Case 3(a)), so we
can save one bit. Thus we need 2m − 1 bits in total. However we
have a chance to save more bits. For Case 1 and Case 2 we need
m − B bits in total. For Case 3 we need nN + n4 bits in total. For
Case 4 we need nN + nE + n4 + 1 bits in total.

Now we have the following theorem.
Theorem 3.2

There is an encoding of rectangular drawings with degree four

vertices using 5 f − B − n4 bits.
Proof. (m − B) + (nN + n4) + (nN + nE + n4 + 1) = (3 f − n4 + 1 −
B)+ (nN +nS +nE +n4)+n4 +1 = 3 f +1− B+ (n−nW −4)+1 =
3 f + 1 − B + (2 f − n4 + 2) − nW − 3 = 5 f − B − n4 − nW .

The encoding time is linear. With a suitable data structure with
a stack, similar to Ref. [15], one can reconstruct the original rect-
angular drawing from the bitstring in O(f) time. Whenever we
find a degree two vertex (in leftward trace) or degree one vertex
(in downward trace) we push the starting vertex into the stack,
and whenever we find a degree one vertex (in upward trace) we
merge it with the vertex at the top of the stack to reconstruct an
original degree three or four vertex. See Fig. 6.

4. Compact Code II

In this section, we give our second encoding for rectangular
drawing using the (4 f − 4) bits encoding in Ref. [14] for rectan-
gular drawing without degree four vertices. Given a rectangular
drawing R, we replace each degree four vertex as shown in Fig. 7.
See a complete example in Fig. 8. Then we encode R into a bit-
string S using the method in Ref. [14]. The length of S is 4 f − 4
bits. To reconstruct the original rectangular drawing R, we need
to append some information to indicate degree four vertices in the
original drawing. So, we encode whether the lower right corner
of each rectangle not touching either the bottommost nor right-
most segment has degree four or not, into f − B − W + 1 bits.
Note that the lower right corner of each face touching either the
bottommost or rightmost segment has always degree three or less
in the original drawing. Here we use a natural ordering of inner
faces defined in Ref. [14].

We have the following theorem.
Theorem 4.1

There is an encoding of rectangular drawing with 5 f−B−W−3
bits.

The encoding and decoding time is linear with a suitable data
structure.

c© 2013 Information Processing Society of Japan 662

Journal of Information Processing Vol.21 No.4 660–664 (Oct. 2013)

Fig. 6 Decoding of Code I.

Fig. 7 Replacement of each degree four vertex.

Fig. 8 Replacement of each degree four vertex in a rectangular drawing R.

5. Conclusion

In this paper, we gave two simple compact codings for rectan-

gular drawings with degree four vertices. The coding needs only
5 f − B− n4 or 5 f − B−W − 3 bits for each rectangular drawings.
Code I is more compact for large n4, and code II is more com-
pact for large W. The running time for encoding and decoding is
O(f) = O(n).

The number of rectangular drawings with no degree four ver-
tices is Ω(11.56 f) = Ω(23.53 f) [1]. We need at least log |C| bits
on average to encode an object in a set C. So we need at least
3.53 f + c bits to encode a rectangular drawing for some constant
c.

References

[1] Amano, K., Nakano, S. and Yamanaka, K.: On the number of rect-
anglar drawings: Exact couting and lower and upper bounds, IPSJ
SIG Notes, Vol.AL-115, No.5, pp.33–40 (2007).

[2] Chuang, R.C.-N., Garg, A., He, X., Kao, M.-Y. and Lu, H.-I.: Com-
pact encodings of planar graphs via cannical ordering and multiple
parentheses, Proc. 25th International Colloquium on Automata, Lan-
guages, and Programming, LNCS 1443, pp.118–129 (1998).

[3] Chiang, Y.T., Lin, C.-C. and Lu, H.-I.: Orderly spanning trees with
applications to graph encoding and graph drawing, Proc. 12th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp.506–515 (2001).

[4] Graham, R.L., Knuth, D.E. and Patashinik, O.: Exercise 9.60 in Con-
crete Mathematics, 2nd ed., Addison-Wesley (1994).

[5] Kant, G. and He, X.: Regular edge labeling of 4-connected plane
graphs and its applications in graph drawing problems, Thero. Com-
put. Sci., Vol.172, pp.175–193 (1997).

[6] Kozminiski, K. and Kinnen, E.: An algorithm for finding a rectangu-
lar dual of a planar graph for use in area planning for VLSI integrated
Circuits, Proc. 21st DAC, pp.655–656 (1984).

[7] Keeler, K. and Westbrook, J.: Short encodings of planar graphs and
maps, Discrete Appl. Math., Vol.58, No.3, pp.239–252 (1995).

[8] Minro, J.I. and Raman, V.: Succinct representations of balanced
parentheses, static trees and planar graphs, Proc. 38th IEEE sympo-
sium on Foundations of Computer Science, pp.118–126 (1997).

[9] Papadimitriou, C. and Yannakakis, M.: A note on succinct representa-
tions of graphs, Inf. Comput., Vol.71, pp.181–185 (1985).

[10] Rosen, K.H. (Ed.): Handbook of discrete and combinatorial mathe-
matics, CRC Press, Boca Raton (2000).

[11] Rahman, S., Nishizeki, T. and Ghosh, S.: Rectangular drawings of
plannar graphs, J. Algorithms, Vol.50, pp.62–78 (2004).

[12] Spinard, J.P.: Efficient graph representations, AMS (2003).
[13] Turan, G.: Succinct representations of graphs, Discrete Appl. Math.,

Vol.8, pp.289–294 (1984).
[14] Takahashi, T., Fujimaki, R. and Inoue, Y.: A (4n-4) bit respresen-

tations of rectangular drawing of floorplan, Proc. COCOON 2009,
LNCS 5609, pp.44–55 (2009).

[15] Yamanaka, K. and Nakano, S.: Coding floorplans with fewer bits,
IEICE Trans. Fundamentals, Vol.E89-A, No.5, pp.1181–1185 (2006).

Editor’s Recommendation
The authors propose an efficient technology to encode

rectangle-divided rectangles. Addressing a previously unresolved
problem to deal with vetices of degree four, the paper was highly
evaluated in terms of both novelty and interest.

(Koiti Hasida, FIT2012 program chair)

Masashi Saito received his M.E. degree
from Gunma University in 2013. His re-
search interests include graph algorithms.

c© 2013 Information Processing Society of Japan 663

Journal of Information Processing Vol.21 No.4 660–664 (Oct. 2013)

Shin-ichi Nakano received his M.E. de-
gree from Tohoku University in 1987. In
1987 he joined Seiko Epson Corp. and in
1990 he joined Tohoku University. Since
1999 he has been a faculty member of
Department of Computer Science, Gunma
University. His research interests are
graph algorithms and graph theory.

c© 2013 Information Processing Society of Japan 664

