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Abstract: In this paper, we treat the subgroup of a Rubik’s Cube group generated by using only half-turns of the
faces. We describe the subgroup as the abstract group forms without using any computers.
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1. Introduction

Rubik’s Cube has provided a fascination over the decades. The
structure of a Rubik’s Cube group interests many researchers.
2 × 2 × 2 and 3 × 3 × 3 Rubik’s Cubes are treated in this pa-
per. The set of all cube operations is a finite group whose binary
operation is as composition of operations. We call this a Rubik’s
Cube group. We denote 2 × 2 × 2 and 3 × 3 × 3 Rubik’s Cube
groups by G2 and G3 respectively. Rotating faces by 90 degrees
are generators of these groups. The square subgroup is the sub-
group of the Rubik’s Cube group generated by using only half-
turns of the faces. We denote the square subgroups of 2 × 2 × 2
and 3 × 3 × 3 Rubik’s Cube groups by Q2 and Q3 respectively.
The order of Q2 and Q3 was calculated by Joyner [4] with GAP,
which is a computer algebra program [2]. His book contains a
chapter for the square group (Ref. [4], p.191). But he did not
spend much effort to do it by hand, but rather used a computer at
the end. If we used a computer, we could not know the reason
why the properties of a Rubik’s Cube group hold.

It is known that the Rubik’s Cube group is decomposed into a
chain of length two, using the square subgroup as the intermedi-
ate subgroup. Kunkle and Cooperman improved an upper bound
of “God’s number,” which is the minimum number of moves re-
quired to solve any state of a Rubik’s Cube, using a property of
the square subgroup [3]. We need to analyze to the properties of
a Rubik’s Cube group to get a “God’s number.” Therefore, we
attempt to study the square subgroup of a Rubik’s Cube group to
a simpler analysis of “God’s number.” In this paper, we describe
Q2 and Q3 as the subgroups of G2 and G3 respectively without
using a computer. By this, we describe Q2 and Q3 as the abstract
group forms. Of course, we know the order of Q2 and Q3 by this.

The terminology used in this paper is as follows: 2 × 2 × 2 and
3 × 3 × 3 Rubik’s Cubes are subdivided into some smaller cubes,
which we call subcubes. There are three kinds of subcubes in a
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3× 3× 3 Rubik’s Cube, that is, center, edge and corner subcubes.
Here the center, edge and corner subcubes are one-face, two-face
and three-face subcubes, respectively. A 2 × 2 × 2 Rubik’s Cube
is subdivided into eight subcubes.

2. 2 × 2 × 2 Square Subgroup

Let Sn be the symmetric group of degree n, An the alternating
group of degree n, Bn the complement of An in Sn, and Zk the
abelian group Z/kZ. The group Sn acts on (Zk)n naturally such
that

σ(μ1, · · · , μn) = (μσ−1(1), · · · , μσ−1(n)) for σ ∈ Sn.

We define a subgroup T n
k of (Zk)n by

T n
k =

⎧⎪⎪⎨⎪⎪⎩(μ1, · · · , μn) ∈ (Zk)n

∣∣∣∣∣∣∣
n∑

i=1

μi = 0

⎫⎪⎪⎬⎪⎪⎭ ,

which is isomorphic to (Zk)n−1. Since the action of Sn on (Zk)n

makes T n
k invariant, we can define a semi-direct product Sn � T n

k

as the following:

(σ2, ν2)(σ1, ν1) = (σ2σ1, σ2ν1 + ν2)

for σ1, σ2 ∈ Sn and ν1, ν2 ∈ T n
k .

Each inverse element of the group is given by

(σ, ν)−1 = (σ−1,−σ−1ν) for σ ∈ Sn and ν ∈ T n
k .

Under the preparation for the above-mentioned notations, we
shall briefly review that

G2 = S8 � T 8
3 . (1)

The group S8 in Eq. (1) means that we can change the eight cor-
ner positions of each subcube of Rubik’s Cube as desired. Each
subcube has three distinct colors on their three exposed faces. The
color orientation of each subcube is expressible in an element of
Z3. The group T 8

3 means that the sum of the color orientations
(∈ Z3) is a conservative constant by operating on a Rubik’s Cube
(Ref. [4], §11.2.1). Conversely it is known that every element of
S8 � T 8

3 can be realized by an element of G2. Hence we get the
above expression. Note that G2 is isomorphic to a group gener-
ated by operations of corner subcubes in a 3×3×3 Rubik’s Cube.
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In Cotten’s theses readers can study about the properties of G2 in
more details [1].

Let’s consider the square subgroup Q2. The rotations of 90 de-
grees induce the cyclic permutations of length 4 to the positions
of the corner subcubes. These are odd permutations. Thus the ro-
tations of 180 degrees induce even permutations to the positions
of the corner subcubes. The color orientation of each corner sub-
cube does not change by these rotations of 180 degrees. Hence
Q2 is a subgroup of A8. When Q2 acts on corner subcubes, there
are two orbits and each orbit has four corner subcubes. We call
these orbits {1, 3, 5, 7} and {2, 4, 6, 8} (refer to Fig. 1). We define
subgroups S(o)

4 and S(e)
4 of S8 as follows:

S
(o)
4 = {σ ∈ S8 | σ(k) = k (k = 2, 4, 6, 8)}(� S4),

S
(e)
4 = {σ ∈ S8 | σ(k) = k (k = 1, 3, 5, 7)}(� S4),

and denote by f̃ the isomorphism from S(o)
4 onto S(e)

4 which is
induced from a bijection f : {1, 3, 5, 7} → {2, 4, 6, 8}; i �→ i + 1.
Then S(o)

4 × S(e)
4 is a subgroup of S8. Denote by A(o)

4 the alter-
nating group of S(o)

4 , and put B(o)
4 = S

(o)
4 − A(o)

4 . For an ele-
ment x(o) ∈ S(o)

4 and a subset X(o) ⊂ S(o)
4 , put x(e) = f̃ (x(o)) and

X(e) = f̃ (X(o)), respectively. Define a subgroup Q∗2 of G2 by

Q∗2 = {(σ, τ) ∈ S(o)
4 ×S(e)

4 | ε(σ) = ε(τ)}
= (A(o)

4 × A(e)
4 ) ∪ (B(o)

4 ×B(e)
4 ),

where ε is the signature of a permutation. Then we have

Q2 ⊂ Q∗2 ⊂ A8 ⊂ S8 ⊂ G2.

To study Q2 in detail, the positions of each subcube of a 2× 2× 2
Rubik’s Cube are labeled. The positions of each subcube of a
3 × 3 × 3 Rubik’s Cube need to be labeled later. We label the
positions of each subcube of the 3 × 3 × 3 Rubik’s Cube and re-
gard the corner subcube of the 3 × 3 × 3 Rubik’s Cube as the
position of each subcube of a 2 × 2 × 2 Rubik’s Cube. Each of
center subcubes is labeled ‘U’, ‘F’, ‘D’, ‘L’, ‘R’ and ‘B’ after
Up, Front, Down, Left, Right and Back. The positions of corner
subcubes and edge subcubes are labeled as the following.

We denote rotation of the faces ‘U’, ‘D’, ‘R’, ‘L’, ‘F’ and ‘B’
anti-clockwise by gU , gD, gR, gL, gF and gB, respectively. Then

g2
U = (5, 7)(6, 8), g2

D = (1, 3)(2, 4), g2
R = (1, 7)(4, 6),

g2
L = (3, 5)(2, 8), g2

F = (1, 5)(2, 6), g2
B = (3, 7)(4, 8),

where (i, j) is a transposition. We get the following formulae im-
mediately.

Fig. 1 Labeled Rubik’s Cube.

Formula 1.

g2
Dg

2
Lg

2
Dg

2
F = (2, 6)(4, 8), g2

Dg
2
Fg

2
Dg

2
L = (2, 8)(4, 6),

g2
Lg

2
Fg

2
Lg

2
D = (2, 4)(6, 8), (2)

g2
Dg

2
Rg

2
Dg

2
F = (1, 5)(3, 7), g2

Dg
2
Fg

2
Dg

2
R = (1, 7)(3, 5),

g2
Rg

2
Fg

2
Rg

2
D = (1, 3)(5, 7), (3)

g2
Dg

2
F = (1, 5, 3)(2, 6, 4), (4)

where g2
Dg

2
F means the first operation g2

F and the second g2
D. For

instance (1, 5, 3) is a cyclic permutation 1→ 5→ 3→ 1.

The group A(o)
4 has a unique subgroup V (o) of order 4, that is,

V (o) = {1, (1, 3)(5, 7), (1, 5)(3, 7), (1, 7)(3, 5)} � (Z2)2.

Then V (o) is a normal subgroup of A(o)
4 , which is abelian. We have

A
(o)
4 = V (o) ∪ {(1, 3, 5)±1, (3, 7, 5)±1, (1, 5, 7)±1, (1, 7, 3)±1}.

Define a(o) = (1, 5, 3) ∈ A(o)
4 − V (o) and b(o) = (1, 3) ∈ B(o)

4 then
a(e) = (2, 6, 4) and g2

D = b(o)b(e).
Formula 2. Define a(o) = (1, 5, 3) and b(o) = (1, 3), then the

following holds.

g2
Ug

2
D = g

2
Dg

2
U = (1, 3)(5, 7)(2, 4)(6, 8) ∈ V (o) × V (e),

g2
Rg

2
L = g

2
Lg

2
R = (1, 7)(3, 5)(2, 8)(4, 6) ∈ V (o) × V (e),

g2
Fg

2
B = g

2
Bg

2
F = (1, 5)(2, 6)(3, 7)(4, 8) ∈ V (o) × V (e),

g2
Ug

2
R = (1, 5, 7)(4, 8, 6) ∈ a2

(o)V
(o) × a2

(e)V
(e),

g2
Ug

2
L = (3, 7, 5)(2, 6, 8) ∈ a2

(o)V
(o) × a2

(e)V
(e),

g2
Ug

2
F = (1, 7, 5)(2, 8, 6) ∈ a(o)V

(o) × a(e)V
(e),

g2
Ug

2
B = (3, 5, 7)(4, 6, 8) ∈ a(o)V

(o) × a(e)V
(e),

g2
Dg

2
R = (1, 7, 3)(2, 4, 6) ∈ a2

(o)V
(o) × a2

(e)V
(e),

g2
Dg

2
L = (1, 3, 5)(2, 8, 4) ∈ a2

(o)V
(o) × a2

(e)V
(e),

g2
Dg

2
F = (1, 5, 3)(2, 6, 4) ∈ a(o)V

(o) × a(e)V
(e),

g2
Dg

2
B = (1, 3, 7)(2, 4, 8) ∈ a(o)V

(o) × a(e)V
(e),

g2
Rg

2
F = (1, 5, 7)(2, 4, 6) ∈ a2

(o)V
(o) × a2

(e)V
(e),

g2
Rg

2
B = (1, 7, 3)(4, 8, 6) ∈ a2

(o)V
(o) × a2

(e)V
(e),

g2
Lg

2
F = (1, 3, 5)(2, 6, 8) ∈ a2

(o)V
(o) × a2

(e)V
(e),

g2
Lg

2
B = (3, 7, 5)(2, 8, 4) ∈ a2

(o)V
(o) × a2

(e)V
(e).

Theorem 3. Put a(o) = (1, 5, 3) and b(o) = (1, 3), then

Q2 = (V (o) × V (e)) ∪ (a(o)V
(o) × a(e)V

(e)) ∪ (a2
(o)V

(o) × a2
(e)V

(e))

∪ (b(o)V
(o) × b(e)V

(e)) ∪ (b(o)a(o)V
(o) × b(e)a(e)V

(e))

∪ (b(o)a
2
(o)V

(o) × b(e)a
2
(e)V

(e)).

Proof. Define a subgroup Q̃2 of Q∗2 by

Q̃2 = (V (o) × V (e)) ∪ (a(o)V
(o) × a(e)V

(e)) ∪ (a2
(o)V

(o) × a2
(e)V

(e))

∪ (b(o)V
(o) × b(e)V

(e)) ∪ (b(o)a(o)V
(o) × b(e)a(e)V

(e))

∪ (b(o)a
2
(o)V

(o) × b(e)a
2
(e)V

(e)).

We shall show Q̃2 ⊂ Q2. By Formula 1 Eq. (2), {1} × V (e) ⊂ Q2.
By Formula 1 Eq. (3), V (o) × {1} ⊂ Q2. Thus V (o) × V (e) ⊂ Q2. By
Formula 1 Eq. (4), a(o)a(e) = g

2
Dg

2
F ∈ Q2. Hence

(V (o) × V (e)) ∪ (a(o)V
(o) × a(e)V

(e)) ∪ (a2
(o)V

(o) × a2
(e)V

(e)) ⊂ Q2.
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Since b(o)b(e) = g
2
D ∈ Q2, we have Q̃2 ⊂ Q2 ⊂ Q∗2. Because

#(Q̃2) = 25 · 3 and #(Q∗2) = 25 · 32, we have Q2 = Q̃2 or Q2 = Q∗2.
Since the following isomorphism holds:

A
(o)
4 /V

(o) = {V (o), a(o)V
(o), a2

(o)V
(o)} � Z3,

the group A(o)
4 /V

(o) is abelian. Since Q2 ⊂ Q∗2,

Q2 = (Q2 ∩ (A(o)
4 × A(e)

4 )) ∪ (Q2 ∩ (B(o)
4 ×B(e)

4 )).

Define a normal subgroup N of Q2 by

N = Q2 ∩ (A(o)
4 × A(e)

4 ), (5)

then the set {g2
αg

2
β | α, β = U,D,R, L, F, B} is a generator system

of N. Denote by ϕ the natural projection from A(o)
4 onto A(o)

4 /V
(o).

Then the map defined by

F : A(o)
4 × A(e)

4 → A(o)
4 /V

(o); (x(o), y(e)) �→ ϕ(x(o)y
−1
(o))

is a surjective homomorphism since A(o)
4 /V

(0) is an abelian group,
and

Ker F = (V (o)×V (e)) ∪ (a(o)V
(o)× a(e)V

(e)) ∪ (a2
(o)V

(o)× a2
(e)V

(e))

� A(o)
4 × A(e)

4 = Q∗2 ∩ (A(o)
4 × A(e)

4 ).

By Formula 2, N ⊂ Ker F. Thus Q2 � Q∗2. Therefore Q2 must be
equal to Q̃2. �

Applying Theorem 3, we know many facts. For instance, we
know that it is impossible to get the following state (Fig. 2) of a
Rubik’s Cube using only a half-turn of the faces since the state
corresponds to ((1, 3, 5), 1) ∈ Q∗2 − Q2.

In the rest of this section, we study the structure of the normal
subgroup N of Q2 defined by Eq. (5). We prepare the following
formulae in order to do this.
Formula 4. Put a(o) = (1, 5, 3), then

a(o)(1, 3)(5, 7) = (1, 5)(3, 7)a(o) = (3, 5, 7),

a(o)(1, 5)(3, 7) = (1, 7)(3, 5)a(o) = (1, 3, 7),

a(o)(1, 7)(3, 5) = (1, 3)(5, 7)a(o) = (1, 7, 5).

For a(o) = (1, 5, 3), define an automorphism σ(o) of V (o) by
xa(o) = a(o)σ(x) (x ∈ V (o)). Since xa2

(o) = a(o)σ(o)(x)a(o) =

a2
(o)σ

2
(o)(x), . . . , we have xak

(o) = ak
(o)σ

k
(o)(x). For x ∈ V (o),

the value of σ(o)(x) is calculated by Formula 4. A homomor-
phism ϕ(o) : Z3 = {1, a(o), a2

(o)} → Aut(V (o)) is defined by
ϕ(o)(ak

(o))(x) = σk
(o)(x). Identifying Z3 with {1, a(e), a2

(e)} we can
define an automorphism σ(e) of V (e) and a homomorphism ϕ(e)

from Z3 into Aut(V (e)) in a similar way. Define a homomorphism
(ϕ(o), ϕ(e)) : Z3 → Aut(V (o)×V (e)) by ak

(o) �→ (ϕ(o)(ak
(o)), ϕ(e)(ak

(e))).

Fig. 2 Example.

We can define a semi-direct product Z3 � (V (o) × V (e)) as the fol-
lowing:

(ak
(o), x1, y1)(al

(o), x2, y2)= (ak+l
(o) , (x2, y2)(ϕ(o), ϕ(e))(a

l
(o))(x1, y1)).

Then

(ak
(o), x1, y1)(al

(o), x2, y2)=(ak+l
(o) , (x2, y2)(ϕ(o)(a

l
(o))x1, ϕ(e)(a

l
(e))y1))

=(ak+l
(o) , x2σ

l
(o)(x1), y2σ

l
(e)(y1)). (6)

Thanks to Theorem 3, the normal subgroup N defined by Eq. (5)
is expressed as

N = (V (o) × V (e)) ∪ (a(o)V
(o) × a(e)V

(e)) ∪ (a2
(o)V

(o) × a2
(e)V

(e)).

Joyner gave the following propositions without proofs [4]. Our
results derive the proofs.

Proposition 5. (Ref. [4], p. 191) N � Z3 � (V (o) × V (e)) �
Z3 � (Z2)4.

Proof. A simple calculation using Formula 4 and Eq. (6) im-
plies that the bijection defined by F : Z3 � (V (o) × V (e)) →
N; (ak

(o), x, y) �→ (ak
(o)x, a

k
(e)y) is a group isomorphism. �

Proposition 6. (Ref. [4], p. 191) For any subcube, the stabilizer

of the subcube which the square subgroup Q2 acts on 2 × 2 × 2
Rubik’s Cube is isomorphic to S4.

Proof. Since the orbits of the corner subcube 1 and 2 are
{1, 3, 5, 7} and {2, 4, 6, 8} respectively, it is sufficient to prove that
both stabilizer Stab(Q2 : 1) and Stab(Q2 : 2) are isomorphic to
S4. In Q2, the stabilizer Stab(Q2 : 1) is expressed by the follow-
ing equation:

Stab(Q2 : 1) = ({1} × V (e)) ∪ ({(3, 5, 7)} × a(e)V
(e))

∪ ({(3, 5, 7)2} × a2
(e)V

(e)) ∪ ({(5, 7)} × b(e)V
(e))

∪ ({(5, 7)(3, 5, 7)} × b(e)a(e)V
(e))

∪ ({(5, 7)(3, 5, 7)2} × b(e)a
2
(e)V

(e)).

Hence the map Stab(Q2 : 1)→ S4; (x, y) �→ y is an isomorphism.
Similarly we get Stab(Q2 : 2) � S4. �

3. 3 × 3 × 3 Square Subgroup

Let’s briefly review that the 3 × 3 × 3 Rubik’s Cube group G3

is given by

G3 = ((A8 � T 8
3 ) × (A12 � T 12

2 )) ∪ ((B8 � T 8
3 ) × (B12 � T 12

2 )).

(7)

Since the relative positions of the corner subcubes are invariant,
we may fix them. The motion of corner subcubes of a 3 × 3 × 3
Rubik’s Cube are the same as that of a 2 × 2 × 2 Rubik’s Cube.
There are twelve edge subcubes of a 3 × 3 × 3 Rubik’s Cube.
The position of each edge subcube of a 3 × 3 × 3 Rubik’s Cube
is shifted as we like. Each edge subcube has two distinct col-
ors on their two exposed faces. The color orientation of each
edge subcube is expressed by an element of Z2. The group T 12

2

in Eq. (7) means that the sum of color orientations (∈ Z2) of the
edge subcubes is a conservative constant. Each turn of a face by

c© 2013 Information Processing Society of Japan 400
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90 degrees induces a cyclic permutation of length 4 to both the
position of a corner subcube and an edge subcube. The cyclic
permutation of length 4 is an odd permutation. Hence for each
state of a Rubik’s Cube, the signature of the position permutation
of the corner subcube coincides with that of the position of the
edge subcube. Conversely it is known that every element of the
group in the right-hand side of Eq. (7) can be realized by an ele-
ment of G3. Therefore we get the above expression. Readers can
study about the properties of G3 in Cotten’s theses and Joyner’s
book in more details [1], [4].

Now we consider the square subgroup Q3. Each turn of a face
by 180 degrees induces an even permutation of length 4 to both
the position of a corner subcube and an edge subcube. The ori-
entations of each edge subcube and each corner subcube are un-
changed. Thus Q3 is a subgroup of A8 × A12. The action of Q3

on corner subcubes is the same as that of Q2. When Q3 acts on
edge subcubes, there are three orbits and each orbit has four edge
subcubes. In Fig. 1, these orbits are

[i] = {1, 3, 6, 8}, [ii] = {2, 4, 5, 7} and [iii] = {9, 10, 11, 12}.

Hence we can define three subgroups S[i]
4 ,S

[ii]
4 and S[iii]

4 of S12,
which are isomorphic to S4, such that S[i]

4 × S[ii]
4 × S[iii]

4 is a
subgroup of S12 in a similar manner as in Section 2. Define a
subgroup Q∗3 of G3 by

Q∗3 = Q2 × {(σ1, σ2, σ3) ∈ S[i]
4 ×S[ii]

4 ×S[iii]
4

| ε(σ1)ε(σ2)ε(σ3) = 1},

then we have

Q3 ⊂ Q∗3 ⊂ A8 × A12 ⊂ G3.

Obviously #(Q∗3) = 213 · 34 holds.
Concerning generators of Q3, the following holds.

g2
U = (5, 7)C(6, 8)C(5, 7)E(6, 8)E ,

g2
D = (1, 3)C(2, 4)C(1, 3)E(2, 4)E ,

g2
R = (1, 7)C(4, 6)C(4, 7)E(10, 11)E ,

g2
L = (3, 5)C(2, 8)C(2, 5)E(9, 12)E ,

g2
F = (1, 5)C(2, 6)C(1, 6)E(11, 12)E ,

g2
B = (3, 7)C(4, 8)C(3, 8)E(9, 10)E ,

where subscripts C and E mean the position of the corner sub-
cube and the edge subcube, respectively. By the above equations,
the following formula is obtained.

Formula 7.

g2
Ug

2
Rg

2
Lg

2
Dg

2
Rg

2
L = (1, 3)E(6, 8)E , (8)

g2
Ug

2
Rg

2
Fg

2
Rg

2
Ug

2
Rg

2
Fg

2
R = (1, 6, 8)E , (9)

g2
Ug

2
Rg

2
Fg

2
Lg

2
Fg

2
Lg

2
Ug

2
Lg

2
Ug

2
Rg

2
Bg

2
Dg

2
Bg

2
Dg

2
Rg

2
Bg

2
Dg

2
Fg

2
Ug

2
Lg

2
Ug

2
F

= (5, 7)E(6, 8)E . (10)

The following theorem is the main result of this paper.

Theorem 8. Q3 = Q2 × {(σ1, σ2, σ3) ∈ S[i]
4 × S[ii]

4 × S[iii]
4 |

ε(σ1)ε(σ2)ε(σ3) = 1}.

Proof. It is sufficient to prove that Q∗3 ⊂ Q3 since we proved
Q3 ⊂ Q∗3. By Formula 7 Eq. (8), (1, 3)E(6, 8)E ∈ Q3. Since
(1, 6)E(3, 8)E is conjugate to (1, 3)E(6, 8)E ∈ Q3 by an inverse
of the element in Formula 7 Eq. (9), (1, 6)E(3, 8)E ∈ Q3. We
can define subgroups A[k]

4 and V [k] and a subset B[k] of S[k]
4 for

k = i, ii and iii as in Section 2. Since V [i] is generated by
(1, 3)E(6, 8)E and (1, 6)E(3, 8)E , we have V [i] × {1} × {1} ⊂ Q3.
By Formula 7 Eq. (9), (1, 6, 8)E ∈ Q3. Since A[i]

4 is generated
by (1, 6, 8)E and V [i], we have A[i]

4 × {1} × {1} ⊂ Q3. Simi-
larly, ({1} × A[ii]

4 × {1}) ∪ ({1} × {1} × A[iii]
4 ) ⊂ Q3. Therefore

A[i]
4 ×A[ii]

4 ×A[iii]
4 ⊂ Q3. By Formula 7 Eq. (10), (6, 8)E(5, 7)E ∈ Q3

holds. Hence

(6, 8)EA
[i]
4 × (5, 7)EA

[ii]
4 × A[iii]

4 = B[i]
4 ×B[ii]

4 × A[iii]
4 ⊂ Q3.

Similarly, (B[i]
4 ×A[ii]

4 ×B[iii]
4 )∪ (A[i]

4 ×B[ii]
4 ×B[iii]

4 ) ⊂ Q3. By these
relations,

{1} × {(σ1, σ2, σ3) ∈ S[i]
4 ×S[ii]

4 ×S[iii]
4 | ε(σ1)ε(σ2)ε(σ3) = 1}

⊂ Q3.

By Formula 7 Eq. (10),

Q3 
 g2
U (5, 7)E(6, 8)E = (5, 7)C(6, 8)C .

Similarly, since generators of Q2 × {1} are elements of Q3,
Q2 × {1} ⊂ Q3. Hence Q∗3 ⊂ Q3. �
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